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ABSTRACT
An implicit material point method (MPM) with the second-order convected particle interpolation
(CPDI2) is presented in this paper. In the MPM a body is described by a number of Lagrangian ma-
terial points, at which state variables are stored and tracked. Calculations are then carried out on a
background Eulerian computational mesh. A mapping and re-mapping algorithm is employed, to allow
the state variables and other information to be mapped back and forth between the material points
and background mesh nodes during an analysis. To reduce the error during these mappings, there are
several extensions. The latest extension is termed CPDI2, which uses a quadrilateral particle domain
to replace a material point. The CPDI2 extension has been implemented explicitly with using regular
grids in published papers. This work develops an implicit CPDI2 method with an elasto-plastic material
model. The motivation is that an implicit scheme can reduce the computational cost by allowing a large
time step, while enforcing the yield condition accurately and increase stability. Both quadrilateral and
triangular particle domains are used. An example shows that the use of a triangular particle domain is
more flexible than the quadrilateral particle domain.
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1. Introduction
The Material Point Method (MPM) is a numerical method used to simulate massive deforma-
tion of solids requiring less effort than the FEM and meshless methods. In the MPM a body is
described by a number of Lagrangian material points, at which state variables are stored and
tracked. Calculations are then carried out on a background Eulerian computational mesh. A
mapping and re-mapping algorithm is employed, to allow the state variables and other infor-
mation to be mapped back and forth between the material points and background mesh nodes
during an analysis. However, errors commonly are caused by the numerical noise inherent in
the original MPM, that arises when a material point crosses the boundary between elements of
the computational mesh [1].
To reduce this problem, some extensions to the MPM have been proposed by replacing a zero-
volume material point with a finite-volume particle domain, including the Generalized Inter-
polation Material Point (GIMP) method [2], Convected Particle Domain Interpolation (CPDI)
[3], and Second-order CPDI (CPDI2) [4]. For a 2D problem, the particle domains are tracked as
rectangles in the GIMP method, as parallelograms in the CPDI method, and as quadrilaterals
in the CPDI2 method. The CPDI2 method can more accurately track particle domains and
their deformation than others. The CPDI2 has been implemented explicitly with a regular grid
in published papers [4].
This work develops an implicit CPDI2 method with an elasto-plastic material model. An implicit
scheme can reduce the computational cost by allowing a large time step, whilst enforcing the
yield condition accurately and leading to a general increase in stability [5]. The implicit nature
occurs at two stages in the calculations: in the solver of the nonlinear boundary value problem
and in the stress integration algorithm. Both quadrilateral and triangular particle domains are
used in this study.



material point FE mesh nodes

Figure 1: The three phases in one computational step of the material point method: (i) the information
held on material points is mapped to the background mesh nodes, (ii) the equilibrium is solved on the
mesh to obtain the displacement of the mesh nodes, and (iii) the mesh is reset.

 

                      (a)                                             (b)                                               (c) 

 

Figure : the initial and deformed configurations from the CPDI2 code 

 

 

Figure : the initial and deformed configurations from the GIMP code 

 

Reduce the width to have square mesh and refine the mesh. 

 

 

Figure 2: (a) the initial configuration includes two particle domains (solid red) and one element (dashed
blue), (b) the deformed configuration computed with the GIMP, (c) the deformed configuration with the
CPDI2.

2. Method
2.1. Particle domains

In the GIMP method, a particle domain is a fixed axis-aligned rectangle that translates with the
particle, so it may result in a gap or overlap between particle domains, e.g. Figure 2(b). In the
CPDI method, a particle domain is a parallelogram, without the edge perpendicularity require-
ment in the GIMP method. In the CPDI2 method, a particle domain is a quadrilateral, with
the coordinates of its four corners stored. These particle domains are similar to a finite element
mesh constructed using four-node elements. Therefore, they can exactly track the deformation,
e.g. Figure 2(c).

2.2. Material models and implicit implementation

The von-Mises elasto-plastic constitutive law is used here. This law consists of a yield function

f (σ) =
1

ρ

√
2J2 − 1, (1)

where ρ is the yield strength and J2 the second deviatoric stress invariant. The plastic potential
g = f .
The implicit backward Euler (bE) integration is used for the stress return when the trial stress
enters the plastic regime. Given a trial strain ϵt, we need to find the elastic strain ϵe and the
plastic multiplier ∆γ. The returning stress is directly determined by

σr = [De]ϵe, (2)

and plastic strain is found from
�ϵp = ∆γ

{
∂g

∂σ

}
. (3)
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1. Elasto-plasticity 

 

Figure 1: Cauchy stress against the vertical position from the GIMP code. The solid lines 

show the analytical solutions. The part with nonzero sigma_x behaves plastic.  

     

Figure 2: Cauchy stress against the vertical position from the CPDI2 code. The solid lines 

show the analytical solutions. The numerical results also agree with analytical ones very well. 

Notably, the two sides of the column are constrained horizontally so that it has the same 

boundary conditions or assumption in the one-dimensional analytical solutions.  
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Figure 3: Cauchy stress against the vertical position from the CPDI2 code. The solid lines show the
analytical solutions.

 

 

                                                

   (a)           (b)            (c)                 (d)                 (e)                    (f) 

Figure 1:  (a) the initial configuration; (b) the deformed configuration subject to a small body force; (c) the deformed configuration when increasing the 

body force; (d) enlargement of the region at bottom of (c); (e) the deformed configuration with a large body force; (f) enlargement of the region at bottom 

of (e). 

Figure 4: (a) the initial configuration; (b) the deformed configuration subject to a small body force; (c)
the deformed configuration when increasing the body force; (d) enlargement of the region at bottom of
(c); (e) the deformed configuration with a large body force; (f) enlargement of the region at bottom of
(e).

Correspondingly, we have two residuals

the yield function f = 0, (4)

balance of strains ϵe − ϵet +∆γ

{
∂g

∂σ

}
= 0. (5)

3. Results
An elasto-plastic column subject to self-weight is modelled. In the first example, shown in Figure
3, a roller boundary condition is applied on the both sides of a column of material, hence this
problem is equivalent to the 1D problem for which an analytical solution is available. Good
agreement is obtained between the numerical and the analytical results validating the approach
for this problem.
In the second example, we use this code to model the deformation of column subject to self-
weight without side restraint. The roller boundary condition is applied at the left side and the
bottom, while the right side is traction-free. As the loading increases, the distortion of particle
domains occurs, see Figure 4(f). Because of a very large deformation, a quadrilateral particle
domain is degraded to a triangle. This results in the code failing.
In a third example, we use the triangular particle domain CPDI2. With a low body force, we
have the deformed configuration in Figure 5(b). With a large body force, we have the deformed
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Figure 3: The initial and deformed configurations of a column subject to a little and large self-weight.  Figure 5: The initial (a) and deformed configurations of a column subject to a low (b) and high (c)
self-weight.

configuration in Figure 5(c). The performance of the triangular domain CPDI2 is clearly superior
to the quadrialteral case, being more robust when particle domains are severely distorted.

4. Conclusions
We have extended the CPDI2 with quadrilaterial particle domains to use instead triangular
particle domains for modelling very large deformation problems. The elasto-plastic material
model has been implicitly implemented in the implicit MPM code. In an example, we have
shown that the use of triangular particle domains lead to improved stability.
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