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17 3d supersymmetric gauge theories and Hilbert series

Stefano Cremonesi

Abstract. The Hilbert series is a generating function that enumerates gauge
invariant chiral operators of a supersymmetric field theory with four super-
charges and an R-symmetry. In this article I review how counting dressed
’t Hooft monopole operators leads to a formula for the Hilbert series of a 3d
N ≥ 2 gauge theory, which captures precious information about the chiral
ring and the moduli space of supersymmetric vacua of the theory. (Conference
paper based on a talk given at String-Math 2016, Collège de France, Paris.)

1. Introduction

There is a long and illustrious tradition of fruitful interplay between super-
symmetric quantum field theory and geometry [51, 55, 63, 55]. The main bridge
between the two topics is the concept of the moduli space of supersymmetric vacua,
the set of zero energy configurations of the field theory, which in the context of su-
persymmetric field theories with at least four supercharges is a complex algebraic
variety equipped with a Kähler metric.

Moduli spaces of vacua of quantum field theories with four supercharges in
four spacetime dimensions have been studied in great detail since the 1990’s, and
their algebro-geometric structure is well understood. Less understood are their
counterparts in three dimensions, due to new scalar fields which are obtained by
dualizing vectors in three dimensions. Interesting results on the moduli spaces of
vacua of three-dimensional theories with four supercharges were obtained by means
of semiclassical analysis [29, 1], but a precise understanding of the underlying
algebraic geometry was lacking, except for a few simple theories [11].

In this article I will review recent developments that allow one to make exact
statements on the algebraic geometry of the moduli spaces of supersymmetric vacua
of three-dimensional gauge theories with four or more supercharges [26, 24, 23, 22,
27]. The key idea is to count the gauge invariant chiral operators that parametrize
the moduli space of supersymmetric vacua, using a generating function called the
Hilbert series. In the context of three-dimensional supersymmetric field theories,
the gauge invariant chiral operators are dressed ’t Hooft monopole operators: I
will describe their properties and how to count them, leading to a formula for
the Hilbert series. A peculiarity of ’t Hooft monopole operators, that hindered
the understanding of the algebraic geometry of moduli spaces of vacua of three-
dimensional supersymmetric gauge theories, is that they obey relations that arise
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in the quantum theory. However, by applying plethystic techniques to the Hilbert
series that counts dressed monopole operators, one can deduce information on the
charges of generators and relations of the chiral ring of the field theory, which is the
coordinate ring of its moduli space of vacua. The formalism is therefore capable
of producing predictions on the quantum relations between monopole operators,
without making any assumptions on them.

The article is organized as follows. In section 2 I recall the concepts of moduli
space of vacua and of chiral ring in the familiar ground of four-dimensional theories
with four supercharges (4d N = 1 theories). In section 3 I introduce the Hilbert
series in that context and give a few useful examples for what follows. In section 4
I introduce three-dimensional theories with four supercharges (3d N = 2 theories)
and contrast them with 4d N = 1 theories. In section 5 I discuss supersymmetric ’t
Hooft monopole operators and some of their properties. In section 6 I present the
main formula (6.3) for the Hilbert series, that counts dressed monopole operators.
In section 7 I apply these ideas to Coulomb branches of 3d N = 4 theories, and
in section 8 to moduli spaces of vacua of 3d N = 2 Yang-Mills and Chern-Simons
theories. I conclude with a few remarks and open questions in section 9.

2. Moduli space of supersymmetric vacua and chiral ring

Let us first recall some well-known facts about four-dimensional gauge theories
with four Poincaré supercharges (4d N = 1 theories). Most of the structure of 4d
N = 1 supersymmetric theories carries over to 3d N = 2 supersymmetric theories,
which will be our main focus in the following.

The 4d N = 1 supersymmetry algebra consists of the following generators: the
Lorentz generators Mµν = −Mνµ (µ, ν = 0, . . . , 3) for rotations and boosts, which
generate the Lorentz group SO(1, 3); the momentum Pµ, an SO(1, 3) vector which
generates translations in the Minkowski spacetime R1,3; the complex supercharges

Qα and Q
α̇
= (Qα)† (α = 1, 2 and α̇ = 1, 2), left-handed and right-handed Weyl

spinors transforming in the two-dimensional representations [1; 0] and [0; 1] of the
double cover of the Lorentz group Spin(1, 3) = SL(2,C) ∼= SL(2,R) × SL(2,R),
which generate translations along the Grassmann odd directions of superspace;
and possibly R, a Lorentz scalar which generates a U(1)R symmetry that acts non-
trivially on the supercharges. The commutation relations are those required by the
Lorentz properties of the generators recalled above, together with

{Qα,Qα̇} = 2(σµ)αα̇Pµ

[R,Qα] = −Qα , [R,Qα̇] = Qα̇ ,
(2.1)

where (σµ)αα̇ = (−1, σi)αα̇ and σi are the Pauli matrices that satisfy σhσj = δhj +
iǫhjkσk. In addition there might be a global non-R symmetry algebra, often called
flavour symmetry, generated by scalar charges which commute with the generators
of the supersymmetry algebra.

Fields in a 4d N = 1 supersymmetric field theory fit in irreducible repre-
sentations of the 4d N = 1 superalgebra, which in turn constrains the form of
interactions. Altogether, a 4d N = 1 supersymmetric Lagrangian gauge theory is
specified by the following data:

(1) Gauge group: a compact semisimple Lie group G, to which one asso-
ciates real vector multiplets V a, with a = 1, . . . , rk(G);
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(2) Matter content: a representation R of G, to which one associates com-
plex chiral multiplets X i, with i = 1, . . . , dim(R);

(3) Superpotential: a G-invariant holomorphic polynomial W (X) in the
matter fields.

The scalar fields in the chiral multiplets, which we also denote as X i with a
common abuse of notation, interact through a potential

(2.2) V =
∑

i

|Fi|
2 +

g2

2

∑

a

(Da)2 .

Here Fi(X) = ∂W
∂Xi are the F -terms, which equal the derivatives of the super-

potential, Da(X,X†) =
∑

iX
†
i (T

a)ijX
j are the D-terms, which equal the mo-

ment maps of the action of the gauge group G on the matter representation R,
and g is the Yang-Mills coupling constant.1 For U(1) gauge factors, the moment
map can be shifted by a constant, the Fayet-Iliopoulos (FI) parameter ξ, so that
DU(1) =

∑
i qi|X

i|2 − ξ, with qi the U(1) charge of X i.
One can associate to a supersymmetric gauge theory specified by these data

an object of great physical and mathematical interest: its moduli space of super-
symmetric vacuaM [63]. Physically,M controls the low energy behaviour of the
quantum field theory. Many of the impressive results on the dynamics of super-
symmetric field theories obtained in the 1990’s were indeed rooted in the analysis
of their moduli spaces of vacua [55]. Mathematically,M provides a natural bridge
between supersymmetric field theories and (differential and algebraic) geometry.
Physically based results on moduli spaces of vacua of supersymmetric field theories
can thus lead to interesting mathematical predictions.

Concretely, the moduli space of supersymmetric vacua M is defined as
the set of constant field configurations that minimize the potential (2.2), modulo
gauge equivalence:

(2.3)
M = {(X,X†)| Fi(X) = 0 ∀i, Da(X,X†) = 0 ∀a}/G = F//G

∼= {(X)| ∂W (X) = 0}/GC = F/GC .

4d N = 1 supersymmetry implies that the moduli space of vacuaM is a (possibly
singular) Kähler manifold. The first line of (2.3) expressesM as a symplectic (in
fact Kähler) quotient of F by the gauge group G, whereas the second line expresses
M equivalently as a holomorphic (GIT) quotient by the complexified gauge group
GC. Here

(2.4) F = {(X)| ∂W (X) = 0}

is the space of solutions of the F -term equations, often called F -flat moduli space
or master space [35]. Algebraically, it is a complex affine variety defined by the
vanishing of the F -term relations ∂W (X) = 0.

In the following I will adopt the holomorphic viewpoint in the second line of
(2.3) and view the moduli space of vacuaM as a complex algebraic variety. M is
typically an affine variety. Of particular interest are superconformal field theories,
whose moduli spaces of vacua are cones. The C∗ action whose radial part dilates
the cone is the complexification of the U(1)R symmetry of the field theory.

1In the D2 term I have used a basis of the Lie algebra that diagonalizes the Killing form. If
the gauge group G is semisimple there is one Yang-Mills coupling constant per simple factor.
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Closely related to the moduli space of supersymmetric vacua are the concepts
of chiral operators and chiral ring [62]. Local gauge invariant chiral operators

Oi(x) form a subset of observables in a 4d N = 1 field theory which are protected
from quantum corrections. These are 1

2 -BPS operators that are annihilated by all
the supercharges of positive R-charge:

(2.5) Qα̇Oi(x) = 0 ∀ α̇ = 1, 2 .

A crucial property of chiral operators is that their spacetime derivatives are
Q-exact and therefore vanish in expectation values, provided supersymmetry is
unbroken. It follows that a product of chiral operators is free of short distance
divergences and that its expectation value factorizes into the product of spacetime
constant one-point functions: 〈Oi1(x1) . . .Oin(xn)〉 = 〈Oi1〉 . . . 〈Oin〉.

Chiral operators form a commutative ring, the chiral ring R, with product

(2.6) OiOj = cij
kOk +Qα̇(. . . )

α̇ ,

where the only spacetime dependence is in the Q-exact term, and repeated indices
are summed over. Since we are physically interested in taking expectation values,
we will work at the level of Q-cohomology and omit Q-exact terms in (2.6) from
now on. The chiral ring is then specified once a basis of chiral operators {Oi} and
the structure constants cij

k are provided.
The expectation values 〈Oi〉 of gauge invariant chiral operators, or equivalently

Q-cohomology classes, are holomorphic functions on the moduli space of vacuaM.
It is generally expected, though not proven to the best of my knowledge, that the
correspondence between expectation values of chiral operators and holomorphic
functions on M is one-to-one, once relations are taken into account. With this
physically motivated assumption, the chiral ring R of the supersymmetric field
theory is identified with the coordinate ring of its moduli space of vacua M. We
would then like to characterize the chiral ring as a quotient ring

(2.7) R = C[O1, . . . ,On]/I ,

determine the generators O1, . . . ,On of the polynomial ring and the defining rela-
tions of the ideal I.

In a 4d N = 1 gauge theory, the chiral operators are G-invariant polynomials
in the matter fields X .2 If there is no gauge symmetry, the chiral ring is just the
Jacobian ring of the superpotential W . In a gauge theory, however, the quotient
by the gauge group in (2.3) makes it often hard to explicitly determine generators
and relations of the chiral ring, and therefore the defining equations of the moduli
spaceM as an algebraic variety.

3. The Hilbert series

Since determining generators and relations of the chiral ring of a supersymmet-
ric gauge theory is in general a difficult task, it helps to exploit as much as possible
the symmetries of the theory. A very useful tool in this respect is the Hilbert se-

ries [8],3 a generating function that counts scalar gauge invariant chiral operators,

2We neglect here glueball operators [17], since they do not play a role in three dimensions.
3See also [70] for an early incarnation of this concept.
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graded by their charges under a Cartan subalgebra of the global symmetry:

(3.1) H(t, x̂) = TrH

(
tR

∏

î

x̂
Q̂

î

î

)
.

Here H = {Oi|Qα̇Oi = 0, MµνOi = 0} denotes the vector space of gauge invari-
ant scalar chiral operators, that parametrize the moduli space of supersymmetric
vacua.4 It can be decomposed into common eigenspaces of the U(1)R generator R

and the generators Q̂î of the Cartan subalgebra of the flavour symmetry. For a su-
perconformal field theory the R-charges can be taken positive, thus (3.1) is a Taylor
series in t (and a Laurent series in x̂̂i), and the eigenspaces are finite dimensional.
The Hilbert series is a character on the vector space of scalar chiral operators: the
coefficients of the series are the dimensions of the common eigenspaces of the global
symmetry.

In light of the correspondence between the space H of scalar chiral operators
of the supersymmetric field theory in (3.1) and the space H0(M) of holomorphic
functions on its moduli space of vacuaM, the Hilbert series (3.1) can be interpreted
geometrically as a character of the action of the global symmetry group on H0(M).
For a superconformal field theory, whose moduli space of vacua is a cone, the Hilbert
series equals the equivariant index of the Dolbeault operator onM

(3.2) H(t, x̂) = Tr

(
tR

∏

î

x̂
Q̂

î

î

∣∣∣ H0(M)

)
=

∑

p

(−1)p Tr

(
tR

∏

î

x̂
Q̂

î

î

∣∣∣ Hp(M)

)
,

dubbed index-character in [65], because higher Dolbeault cohomology groupsHp(M)
vanish for p > 1. In (3.1)-(3.2) we have distinguished the R-charge, which generates
a C∗ action that rescales the holomorphic top form ofM, from the flavour charges

Q̂î, which generate a torus action that leave the holomorphic top form invariant.
Useful information on the moduli space of vacua M can be extracted from

the Hilbert series [8]. For instance, the complex dimension d of M is the order
of the pole at t = 1 of the unrefined Hilbert series H(t, 1), and the coefficient
of (1 − t)−d is proportional to the volume of the (d − 1)-dimensional base of M.
Most importantly, the charges of the generators and relations can be extracted
using plethystic techniques, if higher syzygies can be disentangled.5 Once this is
achieved, the problem of presenting the moduli space M as an algebraic variety
(or equivalently the chiral ring as a quotient ring (2.7)) is reduced to determining
a finite number of coefficients, that specify which linear combinations of the chiral
operators having the appropriate charges appear as generators or relations.

After this general discussion, let us see how the Hilbert series is computed in
practice for a sample of 4d N = 1 supersymmetric quantum field theories. We
start by considering theories with no gauge group, so that the moduli space (2.3)
coincides with the F -flat space (2.4). For the theory of a free chiral multiplet X of
R-charge R[X ] = r, the moduli space is the complex plane, the chiral ring is the

4An alternative count of protected operators is provided by the “superconformal” index [72],
which also counts fermionic and short non-chiral operators, and depends on the superpotential
only through the R-charges of matter fields. Since our interest is in the moduli space of vacua
and the chiral ring, we focus on the Hilbert series rather than the superconformal index.

5This is often possible with some physical input, such as an independent determination of
the dimension of the moduli space, and the help of computer algebra such as Macaulay2 [42].
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polynomial ring in one complex variable C[X ] and the Hilbert series is simply the
geometric series counting powers of X :6

(3.3) H = 1 + τ + τ2 + · · · =
1

1− τ
= PE[τ ] , τ = tr .

If X is subject to a superpotential W (X) = XN+1, the Hilbert series becomes

(3.4) H = 1 + τ + τ2 + · · ·+ τN−1 =
1− τN

1− τ
= PE[τ − τN ] , τ = t

2
N+1 .

The chiral ring is C[X ]/〈XN〉 and the moduli spaceM consists of a point of multi-
plicity N . The generator X and the relation XN = 0 are respectively associated to
the positive term +τ and the negative term −τN in the argument of the plethystic
exponential. In general, the plethystic logarithm of the Hilbert series terminates
for theories whose moduli spaces are complete intersections, the dimension of which
is the number of generators minus the number of relations.

The case of a generic polynomial superpotentialW (X) = XN+1+
∑N

i=1 ciX
N−i

of degree N + 1 can be treated similarly: even though the U(1)R symmetry is
explicitly broken by the subleading terms in the superpotential, it can be restored
by assigning R-charges to the parameters ci, as is common practice in the analysis
of supersymmetric field theories [73]. The parameters ci are not dynamical and
are not counted by the Hilbert series, which is insensitive to them and remains
(3.4), but they may (and do) appear in the relations. The Hilbert series only
constrains the charges of the relations, which in this case must be of the form
XN +

∑
i αiciX

N−i = 0, but does not fix the coefficients, which in this case we
know to be αi = (N − i)/(N +1). Of course there is no need to invoke the Hilbert
series to study the chiral ring of such a simple theory, but this example makes
it clear which information can be extracted from the Hilbert series (i.e. charges
of operators, generators and relations) and which cannot (i.e. the precise form
of the relations, unless they are entirely fixed by symmetry). Even when there
are coefficients in the relations that cannot be determined by symmetry alone, the
Hilbert series is a very useful tool for deducing the most general form of the chiral
ring relations that is consistent with symmetry.

Another simple but more interesting example of moduli space is provided by
the XYZ model, a theory of three chiral multiplets X , Y and Z with the trilinear
superpotential W = XY Z. From the F -term relations ∂W = 0 we deduce that
the chiral ring is C[X,Y, Z]/〈Y Z,ZX,XY 〉. The moduli spaceM consists of three
1-dimensional components (in physical jargon “branches”) parametrized by X , Y

6PE is the plethystic exponential, the generating function of symmetric powers. For a mul-
tivariate function f(x1, . . . , xn) that vanishes at the origin,

PE[f(x1, . . . , xn)] = exp

( ∞∑

p=1

1

p
f(xp

1
, . . . , xp

n)

)
.

This implies that PE[
∑

i ai
∏

j x
bij
j ] =

∏
i(1 −

∏
j x

bij
j )−ai . The inverse of the plethystic expo-

nential is the plethystic logarithm PL. For a multivariate function g that equals 1 at the origin,

PL[g(x1, . . . , xn)] =
∞∑

k=1

µ(k)

k
log g(xk

1 , . . . , x
k
n) ,

where µ(k) is the Möbius function.
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and Z respectively, meeting at a point. The Hilbert series reads

H =
1

1− τx
+

1

1− τy
+

1

1− τz
− 2 = (τ = t2/3 , xyz = 1)

=
1− τ2(yz + xz + xy) + 2τ3xyz

(1− τx)(1 − τy)(1 − τz)
.

PL[H ] = (x+ y + z)τ − (yz + xz + xy)τ2 + 2τ3 − (x+ y + z)τ4 + . . . .

(3.5)

The first line shows that the moduli spaceM consists of three copies of C meeting
at a point; the second line shows the three generators in the denominator, and that
the moduli space is not a complete intersection because the numerator does not
factorize. The plethystic logarithm in the last line allows us to extract information
about the ring: the generatorsX,Y, Z of the polynomial ring appear at order τ , the
generators of the ideal of relations by which we quotient ∂XW,∂YW,∂ZW at order
τ2, and then we see higher order syzygies: X∂XW − Y ∂YW and X∂XW −Z∂ZW
at order τ3, ∂XW∂YW − Z

2∂ZW and cyclic permutations at order τ4, and so on.
The plethystic logarithm is a series which does not terminate: this is the general
structure for theories with non-complete intersection moduli spaces.

Next we consider gauge theories. Gauging a subgroupG of the flavour symme-
try leads in the holomorphic description of the moduli space in (2.3) to the quotient
M = F/GC of the F -flat moduli space by the complexified gauge group. At the
level of the Hilbert series, the projection to gauge singlets is achieved by averaging
the Hilbert series HF of the ungauged theory (whose moduli space is the F -flat
moduli space F) over the gauge group

(3.6) H(t, x̂) =

∮
dµG(x)HF (t, x, x̂)

using the Haar measure

(3.7)

∮
dµG(x) =

( r∏

j=1

∮
dxj
2πixj

) ∏

α∈∆+

(1− xα) .

The integral is over the maximal torus of G, r = rk(G) is the rank of the gauge
group, ∆+ is the set of positive roots of its Lie algebra, and I have used the short-
hand xα =

∏r
i=1 x

αi

i . Gauge fugacities are denoted by x and ungauged flavour
fugacities by x̂.

A simple class of examples, that will be useful in the following, is provided by
theories with gauge group G and a chiral multiplet Φ in the adjoint representation.
(This is also the vector multiplet sector of 4d N = 2 theories with gauge group G.
The branch of the moduli space of vacua where the vector multiplet scalar Φ takes
expectation values is called the Coulomb branch.) Setting τ = tR[Φ], the Hilbert
series reads

(3.8) H(τ) =

∮
dµG(x) PE[τχ

G
ad(x)] =

r∏

i=1

1

1− τdi(G)
,

where χGad(x) is the character of the adjoint representation of the gauge group.
The result expresses the well-known fact that the ring of invariants of the adjoint
representation is freely generated by Casimir invariants ui of degrees di(G). Hence
R = C[g]G = C[φ1, . . . , φr]/WG = C[u1, . . . , ur]. E.g. for G = SU(N) the Casimir
invariants are di(SU(N)) = 2, 3, . . . , N .
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2 1 2
QiQ̃

ĩ

v x u

Figure 1. Quiver diagram for SQED with two flavours.

B

B < 0 B = 0 B > 0

Figure 2. Line bundles on the conifold and resolutions.

Another example is a U(1) gauge theory with two matter fields Qi of charge

1 and two matter fields Q̃ĩ of charge −1, also known as SQED with two flavours.
See figure 1 for the quiver diagram of this theory. It turns out to be interesting to
compute the Hilbert series in the presence of a background electric charge −B for
the U(1) gauge symmetry, even though this may seem artificial from the perspective
of four-dimensional gauge theory. (We will see that B has a more natural inter-
pretation in three dimensions.) This modified Hilbert series, often called baryonic

Hilbert series [36], counts polynomials in the matter fields Q and Q̃ of total electric
charge B to compensate the background electric charge −B, and is computed by
the formula [36]

H−B(τ, u, v) ≡ g1(τ, u, v;B) =

∮
dx

2πix
x−B PE

[
τx

(
u+

1

u

)
+ τ

1

x

(
v +

1

v

)]

=

{∑∞
n=0[n+B;n]u,vτ

2n+B B ≥ 0∑∞
n=0[n;n−B]u,vτ

2n−B B ≤ 0
.

(3.9)

Here u and v are fugacities for the SU(2)u×SU(2)v flavour symmetries that rotate

Qi and Q̃ĩ respectively, and [n;m]u,v denotes the character of the representation
[n;m] of SU(2)u × SU(2)v.

The background electric charge or “baryonic charge” B in (3.9) is a discrete
analogue of the Fayet-Iliopoulos parameter ξ introduced after (2.2), which leads to
a resolution of the conical moduli space of vacua in the symplectic reduction in
the first line of (2.3). The theory that we are discussing is nothing but the gauged
linear sigma model for the conifold, albeit viewed as a four-dimensional theory:
its moduli space of vacua M is the conifold if ξ = 0, and the resolved conifold if
ξ 6= 0, with the resolutions at ξ > 0 and ξ < 0 being related by a flop transition.
In the holomorphic language, the Hilbert series (3.9) with insertion of the baryonic
charge B counts holomorphic sections of the line bundle O(BD), where D is the

toric divisor associated to Q fields, and −D the toric divisor associated to Q̃ fields.
See figure 2 for a summary. The baryonic Hilbert series counts operators of the

schematic form QB(QQ̃)n for B ≥ 0 and Q̃−B(QQ̃)n for B ≤ 0. For B = 0 we
obtain the Hilbert series of the conifold

(3.10) H0(τ, u, v) = PE[τ [1; 1]u,v − τ
2] ,
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corresponding to the ring C[M1
1 ,M

1
2 ,M

2
1 ,M

2
2 ]/〈M

1
1M

2
2 −M

1
2M

2
1 〉 generated by the

four mesons M i
ĩ
= QiQ̃ĩ subject to a singlet relation det(M) = 0. We have thus

recovered the algebraic description of the conifold [18].

4. 3d N = 2 gauge theories vs 4d N = 1 gauge theories

Moduli spaces of supersymmetric vacua of four-dimensional supersymmetric
gauge theories, which have been described so far and analysed with the help of the
Hilbert series, are of mathematical and physical interest and many nontrivial results
have been obtained [8, 34, 41, 45, 47]. However, the construction is limited on
both fronts. Mathematically, even though supersymmetry only requires the moduli
space of vacuaM of 4d N = 1 theories to be a Kähler manifold (or hyperkhler for
the Higgs branch of 4d N = 2 theories), the latter is actually a Kähler quotient (or
hyperkhler quotient for the Higgs branch of 4d N = 2 theories) for a Lagrangian
supersymmetric gauge theory. On the physical side, the computation of the Hilbert
series is essentially classical and reduces to counting gauge invariant polynomials
in the matter fields appearing in the UV Lagrangian.7

Moduli space of vacua which are not (hyper)Kähler quotients occur for non-
Lagrangian supersymmetric theories in four dimensions, and string theory or M-
theory constructions have been used to study some of their properties, along the
lines of [37]. We will pursue here an alternative way to overcome the limitations
explained above, by considering three-dimensional supersymmetric gauge theories
with at least four supercharges (3d N ≥ 2) instead of four-dimensional theories.

The 3d N = 2 supersymmetry algebra can be obtained by dimensional re-
duction of the 4d N = 1 supersymmetry algebra and is therefore very similar to
(2.1). The main modifications are that the supercharges are complex conjugate
3d Dirac spinors Qα and Qβ transforming as doublets of SL(2,R), and that the
anticommutator of two supercharges is

(4.1) {Qα,Qβ} = 2(γµ)αβPµ + 2iǫαβZ .

Here γµ = (−1, σ1, σ3), and Z is a real generator of the centre of the supersym-
metry algebra. The central charge Z originates from the momentum along the
reduced dimension. In the same vein, the vector and chiral multiplets of 3d N = 2
supersymmetry can be obtained by dimensional reduction of the vector and chiral
multiplets of 4d N = 1 supersymmetry. Supersymmetric actions in three dimen-
sions take the same form as in four dimensions, except for the possibility, peculiar
to odd spacetime dimensions, to add supersymmetric Chern-Simons (CS) terms

(4.2) SCS =
kab
4π

∫
d3x d4θ ΣaVb =

kab
4π

∫
(AadAb + σaDb + superpartners) ,

where Σa = ǫαβDαDβVa is the field strength multiplet and Aa is the gauge connec-
tion for a U(1) gauge group. The real scalar σa is the lowest component of the field
strength multiplet Σa, and originates from the component A4 of the gauge connec-
tion in the dimensional reduction from four dimensions. (4.2) is a Chern-Simons
interaction between abelian gauge groups, but can be generalized to nonabelian

7Quantum corrected moduli spaces of vacua of several four-dimensional supersymmetric
gauge theories were intensively studied in the 1990’s [55], but the Hilbert series is to a large
extent insensitive to the complex structure deformations induced by quantum effects.
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gauge groups G in a straightforward way using the Killing form as the symmetric
pairing.

Despite the similarities between 4d N = 1 and 3d N = 2 supersymmetric gauge
theories at the classical level, they behave very differently quantum-mechanically.
In what follows I will describe how the quantum physics of three-dimensionalN ≥ 2
supersymmetric gauge theories leads to moduli spaces of supersymmetric vacuaM
which are (hyper)Kähler, as required by supersymmetry, though not (hyper)Kähler
quotients. Unlike most of the previous results on moduli spaces of vacua of 3d
supersymmetric gauge theories which were based on semiclassical analysis (see [56,
28, 29, 1, 32, 75, 54] for a partial sample), the aim here will be to understand these
moduli spaces as algebraic varieties and to develop general methods to characterize
the chiral rings of such theories. In particular, I will review explicit formulae for
the Hilbert series of the Coulomb branch of the moduli space of vacua of 3d N = 4
gauge theories and for the Hilbert series of the moduli space of vacua of 3d N = 2
gauge theories, which have been obtained in a series of recent works [26, 22, 27]
(see also [43]).

The count of holomorphic functions in the Hilbert series encodes information
about the moduli space of vacua and hints at a new construction of (hyper)Kähler
moduli spaces which is alternative to the standard (hyper)Kähler quotient. In the
context of 3d N = 4 gauge theories, the Hilbert series formula of [26] has spurred
recent activity both on the physical [24, 25, 23, 30, 31, 14, 66, 15, 44, 50, 16,
19, 49] and on the mathematical front [68, 67, 13, 12, 69, 60], leading eventually
to a mathematical definition of the Coulomb branch and to several other interesting
developments (see also Nakajima’s and Bullimore’s talk at this conference).

The novelty compared to four-dimensional theories is that three-dimensional
supersymmetric gauge theories contain chiral ’t Hooft monopole operators, a new
class of gauge invariant chiral operators which are not polynomials in the matter
fields. Monopole operators are subject to relations that arise quantum-mechanically
and cannot be obtained by differentiating a superpotential. It is difficult to directly
determine these relations for general theories, although impressive results have been
obtained by direct computation for simple theories using conformal field theory
techniques [11]. Nevertheless, we will see that physical arguments lead to a general
group-theoretic formula for the Hilbert series that completely bypasses this problem.
Once the Hilbert series is computed, exactly or in a Taylor expansion, we can learn
about the quantum relations among monopole operators by means of plethystic
methods, as was sketched in the four-dimensional examples described above.

5. ’t Hooft monopole operators

Before we can explain how to compute the Hilbert series of 3d N ≥ 2 su-
persymmetric gauge theories, we need to understand some of the properties of
supersymmetric ’t Hooft monopole operators.

In recent years it has been increasingly appreciated that local operators in a
quantum field theory need not be expressible as polynomials in the microscopic
fields that are used to write down the Lagrangian [58]. One also needs to include
“disorder” (or defect) operators, which may be defined by prescribing appropriate
singular boundary conditions in the path integral. While the definition of local
disorder operators appears to put them on a different footing from standard local
“order” operators, this difference is an artefact of our choice of field variables in



3D SUPERSYMMETRIC GAUGE THEORIES AND HILBERT SERIES 11

the description of the quantum field theory. All local operators are on the same
footing in the quantum theory. There are by now numerous examples of dualities
(quantum equivalences between classically different field theories) that map stan-
dard order operators to disorder operators and vice versa, going from sine-Gordon
– massive Thirring duality [21, 64], T-duality and mirror symmetry [39, 52] in
two spacetime dimensions to Intriligator-Seiberg mirror symmetry (supersymmetric
particle-vortex duality) [56] and Aharony duality [2] in three dimensions.

In the context of three-dimensional gauge theories, the relevant local disorder
operators are ’t Hooft monopole operators (monopole operators henceforth) [74],
which are introduced in the Euclidean formulation of the theory and may be ob-
tained by dimensionally reducing ’t Hooft loop operators in four dimensions. To
insert a monopole operator Vm(x) in a correlation function, one path integrates over
gauge field configurations with a Dirac monopole singularity at the insertion point
x. In a 3d N = 2 gauge theory, the monopole operator can be supersymmetrized
by imposing singular boundary conditions for all the bosonic fields in the 3d N = 2
vector multiplet. Using spherical coordinates (r, θ, ϕ) centred at x, we define a
1
2 -BPS bare monopole operator by imposing the following singular boundary
conditions as r→ 0 [11, 10]:

A± ∼
m

2
(±1− cos θ)dϕ

σ ∼
m

2r
.

(5.1)

In the first line of (5.1), A± is the gauge connection in the north/south patch of a
trivialization of the G-bundle over the S2 surrounding the insertion point x. The
Dirac monopole singularity is given by an embedding U(1) →֒ G, specified by the
magnetic charge m ∈ h/W , a constant element of the Cartan subalgebra h of
the gauge Lie algebra g, defined modulo Weyl reflections. Well-definedness of the
gauge bundle requires the Dirac quantization condition [33, 40]

(5.2) e2πim = 1G =⇒ m ∈ ΓG∨/W ,

hence the magnetic charge m is an element of the magnetic weight lattice, the
weight lattice of the Langlands [61] or GNO [40] dual group G∨ of the gauge group
G, modulo Weyl reflections. m can be viewed as the highest weight of an irreducible
representation of the dual group G∨, or equivalently as specifying a cocharacter in
Hom(U(1), G).

The boundary condition for the gauge connection in the first line of (5.1) defines
a monopole operator which does not preserve any supersymmetry. By further
imposing the boundary condition in the second line of (5.1) for the real scalar σ in
the 3d N = 2 vector multiplet (coming from the component of the 4d gauge field in
the reduced dimension), we define a 1

2 -BPS monopole operator that sits in a chiral
multiplet, like all the matter fields in the theory. It is a crucial fact [11] that there
exists a single half-BPS bare monopole operator for each choice of magnetic charge
m ∈ ΓG∨/W .

The bare monopole operator Vm defined by the boundary conditions (5.1) is
made gauge invariant by averaging over the Weyl group, if there are no gauge
Chern-Simons terms. It is called bare because, as will be explained below, monopole
operators can also be dressed by matter fields before they are made gauge invariant.

Note that in this construction a vector multiplet, containing the bosonic fields
A, σ appearing in (5.1) and their supersymmetric partners, is traded for a tower of
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chiral multiplets Vm, the monopole operators, labelled by their magnetic charges
m. As gauge invariant chiral operators, the monopole operators Vm can take ex-
pectation value on the moduli space of vacua M of the 3d N = 2 gauge theory.
In a semiclassical description, this corresponds to the fact that the real scalar σ
in the vector multiplet can take expectation value and contribute to the moduli
space. At a generic point of the Coulomb branch, where the adjoint σ takes expec-
tation value breaking G to its maximal torus, the Cartan components σi of σ are
complexified by dual photons τi defined by dτi = ∗Fi. For large expectation values
monopole operators can be expressed as Vm ≃ exp

(
m · ( σg2 + iτ)

)
up to quantum

corrections, but this semiclassical expression for monopole operators breaks down
at loci of enhanced gauge symmetry [29, 1]. We will use instead the path integral
definition of monopole operators (5.1), which is more implicit but is valid even in
strongly coupled regions of the moduli space of vacua with unbroken nonabelian
gauge symmetry.

For later purposes, it is useful to repeat the previous construction in the pres-
ence of background magnetic charges for background vector multiplets asso-
ciated to the global non-R symmetries of the 3d N = 2 gauge theory. These
include flavour symmetries acting on the matter fields, as in 4d N = 1 field theo-
ries, but also topological symmetries special to three dimensions that only act on
monopole operators. Vector multiplets associated to gauge symmetries are fluctu-
ating dynamical fields, whereas vector multiplets associated to global symmetries
are frozen external parameters. We label these generalized monopole operators as
Vm;m̂,B, where m is the dynamical magnetic charge for the gauge symmetry G,
and m̂ and B are fixed background magnetic charges for the global flavour and
topological symmetries. Supersymmetry relates magnetic charges and real scalars
in (5.1), leading to the following correspondence between quantized charges that
characterize monopole operators and continuous real scalar fields or masses:

(5.3)
Gauge: m ←→ σ real scalar
Flavour: m̂ ←→ σ̂ real mass
Topological: B ←→ ξ FI parameter

We have encountered the “baryonic charge” B earlier in the context of 4d
N = 1 gauge theories in (3.9). There B was introduced as a background electric
charge for the gauge symmetry, the counterpart in the holomorphic quotient of the
Fayet-Iliopoulos parameter ξ, whose effect was to resolve the conical moduli space
of vacua in the symplectic quotient description. In the context of 3d N = 2 gauge
theories, the FI parameter ξ can be interpreted as a background real scalar in the
vector multiplet for the topological symmetry, and B is the associated background
magnetic charge.

5.1. Charges of monopole operators. We have defined a set of new chiral
operators, the monopole operators Vm, which together with the standard gauge
invariant polynomials in the matter fields parametrize the moduli space of super-
symmetric vacua of a 3d N ≥ 2 gauge theory. Since we are going to count monopole
operators in the Hilbert series, we need to know how they are (electrically) charged
under the global symmetries of the theory.

The first symmetry under which monopole operators are charged is the topo-
logical symmetry that was mentioned above. For a theory with gauge group G,
the topological symmetry group is GJ = Z(G), the centre of the gauge group.
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The magnetic charge m of a monopole operator is an element of the magnetic
weight lattice of the gauge group G, ΓG∨ , up to Weyl symmetry. The topological
charge of the monopole operator J(m) is the magnetic charge modulo elements
of the coroot lattice of G. For example, if G = U(N), the magnetic charge is
m = diag(m1, . . . ,mN ) ∈ Z

N/SN , the topological symmetry group is GJ = U(1)
and the topological charge is J(m) = Tr(m) =

∑
imi ∈ Z.

Monopole operators also carry electric charges under other global (as well as
gauge) symmetries at the classical level, if the theory has Chern-Simons couplings
(4.2). In general, the classical charges of monopole operators under the Cartan
generators are given by

(5.4) QclA(M) = −
∑

B

kABMB ,

where I labelled by {MA} = {mi, m̂î, Bi, 0} all the magnetic charges allowed by
supersymmetry: mi for the Cartan subalgebra of the gauge symmetry, m̂î for the
flavour symmetry, Bi for the topological symmetry, and 0 for the R-symmetry.
Formula (5.4) is just the statement that magnetic charges lead to electric charges in
the presence of Chern-Simons interactions (4.2). The charges of monopole operators
under continuous abelian subgroups of the topological symmetry can be included
in (5.4) by means of appropriate mixed gauge-topological Chern-Simons couplings.

The classical charges (5.4) receive quantum corrections of the form [11, 53, 7]

(5.5) QqA(M) = −
1

2

∑

ψa

QA[ψa]|m
eff
a (M)| ,

where the sum runs over all fermionic fields ψa in matter chiral multiplets and
vector multiplets, of charge QA[ψa] and “effective mass”8

(5.6) meff
a (M) =

∑

A

QA[ψa]MA .

Adding up the classical contribution (5.4) and the quantum contribution (5.5),
the total electric charges of monopole operators are

(5.7) Qeff
A (M) = −

∑

B

keffAB(M)MB ,

where the effective Chern-Simons levels

(5.8) keffAB(M) = kAB +
1

2

∑

ψa

QA[ψa]QB[ψa] sign(m
eff
a (M))

must be integer for gauge invariance. This in turn constrains the values of the bare
CS levels kAB .

8We are slightly abusing terminology here. The effective real mass of a chiral multiplet, which
equal its central charge Z appearing in the supersymmetry algebra (4.1), is actually (5.6) with the

magnetic charges MA replaced by the real scalars or masses ΣA, according to the correspondence
(5.3). In the background of a half-BPS monopole operator, magnetic charges and real scalars are
related as in the second line of (5.1), therefore the effective real mass is proportional to (5.6) and
inversely proportional to the distance r from the point where the monopole operator is inserted.
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5.2. Dressed monopole operators. So far we have discussed bare monopole
operators, chiral operators which are defined in terms of vector multiplets. The
boundary condition (5.1) breaks the gauge groupG to a subgroupGm, the stabilizer
of the magnetic charge: Gm ·m = 0. We call Gm the residual gauge group. (A

similar discussion applies to the flavour symmetry group Ĝ and the topological
symmetry group GJ .) In the background of the monopole operator Vm, the vector
multiplets for Gm, associated to roots α such that α(m) = 0, are massless. The
vector multiplets for G/Gm, associated to roots α such that α(m) 6= 0, are massive
by the Higgs mechanism. When integrated out, they correct the R-charge of Vm
according to the formula (5.5), where all fermions in the vector multiplet have
R-charge 1.

Translating the previous discussion in a mathematical formula, the contribution
of a dynamical vector multiplet to the Hilbert series of a 3d N = 2 gauge theory is

(5.9)
∏

α∈∆+

t−|α(m)|(1− xα)δα(m),0 .

The first factor accounts for the correction to the R-charge of the monopole operator
Vm due to the massive vector multiplets; the second factor is the contribution to
the Hilbert series of the residual gauge group Gm, whose fugacities x are eventually
integrated over.

A similar discussion applies to matter fields, which transform in the represen-

tation (R, R̂, 1) of G × Ĝ × GJ with weights (ρ, ρ̂, 0). In the background of the

monopole operator, the matter fields neutral under the U(1) subgroup of G × Ĝ
singled out by m have vanishing “effective mass”

(5.10) meff
ρ,ρ̂(m, m̂) = ρ(m) + ρ̂(m) .

They can take expectation value and dress the bare monopole operator without
spoiling its supersymmetry [26, 22, 27]. We call these massless matter fields
residual matter fields. On the other hand, the matter fields with nonvanishing
(5.10) are massive, cannot take expectation value and are integrated out. Their only
effect is to correct the charges of the bare monopole operator quantum-mechanically
according to formula (5.5).

In formulae, the contribution to the Hilbert series of a 3d N = 2 gauge theory
of a matter chiral multiplet X of R-charge r transforming in the representation

(R, R̂, 1) of G× Ĝ×GJ is

(5.11)
∏

ρ,ρ̂

(tr−1xρx̂ρ̂)−
1
2 |ρ(m)+ρ̂(m̂)| PE[δρ(m)+ρ̂(m̂),0 t

rxρx̂ρ̂] ,

where we have assumed that the matter field is not subject to F -term relations
descending from a superpotential in order to simplify the formula (see [22, 27] for
the generalization). The first factor accounts for the quantum correction to the
charges of the monopole operator Vm due to the massive matter fields; the second
factor is the contribution of the massless residual matter fields.

In conclusion, we can dress a bare gauge-variant monopole operator by a poly-
nomial in the residual matter fields to construct an operator that is invariant under
the residual gauge group Gm. The resulting dressed monopole operator is then
made G-invariant by averaging over the action of the Weyl group WG/WGm

.
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6. Monopole formula for the Hilbert series of 3d N ≥ 2 gauge theories

We have collected all the necessary ingredients to write down a formula for the
Hilbert series of a 3dN = 2 supersymmetric gauge theory. The Hilbert series counts
the gauge invariant chiral operators of the theory, which are dressed monopole
operators, possibly in the presence of background magnetic charges (m̂, B) for the
flavour and topological symmetries:

(6.1) H(t, x̂, z; m̂, B) = TrHm̂,B

(
tRzJ

∏

î

x̂
Q̂

î

î

)
.

Hm̂,B denotes the vector space of scalar chiral monopole operators of fixed back-

ground magnetic charges (m̂, B) for the flavour and topological symmetries Ĝ×GJ .
When m̂ = B = 0, (6.1) is the standard Hilbert series that counts gauge invariant
chiral operators that parametrize the moduli spaceM0 of the superconformal field
theory to which the gauge theory flows at low energy. The background magnetic
charges (m̂, B) correspond to turning on real masses for the flavour symmetry and
Fayet-Iliopoulos parameters, that lead to a resolution of the moduli space M0 of
the SCFT. The generalized Hilbert series with background magnetic charges then
counts holomorphic sections of line bundles rather than holomorphic functions on
M0, analogously to the baryonic Hilbert series (3.9).

The dressing of monopole operators is summarized in the data of a residual

gauge theory Tm;m̂,B of massless fields in the background of a monopole operator
of magnetic charges (m; m̂, B):

(1) A residual gauge group Gm (and flavour group Ĝm̂);

(2) Residual matter fields transforming in representations of Gm × Ĝm̂;
(3) A residual superpotentialWm, which is obtained by setting to zero all the

massive matter fields in the original superpotential W ;
(4) Background electric charges Qi(m, m̂,B) under the Cartan generators of

Gm.

Equipped with these data, we can write down the Hilbert series

(6.2) H
Tm;m̂,B

Q(m,m̂,B)(t, x̂)

that counts chiral operators of electric charges −Q(m, m̂,B) in the residual gauge
theory, according to the rules of section 3.

The Hilbert series (6.1) counts dressed monopole operators labelled by their
magnetic charges m for the gauge group G, which are summed over, and (m̂;B, 0)

for the global symmetry group Ĝ × GJ × U(1)R, which are held fixed. Putting
together all the ingredients discussed so far leads to the monopole formula for
the Hilbert series [22, 27]

(6.3) H(t, x̂, z; m̂;B) =
∑

m∈Γq

tR(m,m̂,B)zJ(m,m̂,B)
∏

î

x̂
Q̂

î
(m,m̂,B)

î
·H

Tm;m̂,B

Q(m,m̂,B)(t, x̂) .

The sum is over the quantum lattice of magnetic charges Γq, which is ΓG∨/W
or a sublattice thereof if there are nonperturbative effects that lift part of the
semiclassical Coulomb branch (see [22] and section 8 for details). The powers of
the fugacities t, z and x̂ in the prefactor keep track of the charges (5.7) of a bare

monopole operator under the global symmetry, and the Hilbert series H
Tm;m̂,B

Q(m,m̂,B)
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of the residual gauge theory is the dressing factor that keeps track of the charges
of the residual matter fields that dress the bare monopole operator.

We will see some applications of the monopole formula (6.3) for the Hilbert
series of the moduli space of vacua of three-dimensional N ≥ 2 gauge theories in
the following sections.

7. Coulomb branch of 3d N = 4 gauge theories

The monopole formula (6.3) becomes particularly simple when it is applied to
the vector multiplet sector of three-dimensional theories with eight supercharges,
i.e. 3d N = 4 supersymmetry. We will view 3d N = 4 gauge theories as special
cases of 3d N = 2 gauge theories, fixing once and for all an N = 2 subalgebra
of the N = 4 supersymmetry algebra. This is equivalent to choosing a particular
complex structure out of a P1 worth of them.

Like 4d N = 2 theories, 3d N = 4 supersymmetric gauge theories are com-
pletely specified by the following data:

(1) Gauge group: a compact semisimple Lie group G, to which one asso-
ciates N = 4 vector multiplets Va, with a = 1, . . . , rk(G), which contains
a gauge connection, three real scalars and fermionic partners. The N = 4
vector multiplet V decomposes into an N = 2 vector multiplet V (contain-
ing a gauge connection A with curvature F , a real scalar σ and fermions)
and an N = 2 chiral multiplet Φ in the adjoint representation of G (con-
taining a complex scalar that we also call Φ and fermions).

(2) Matter content: a (quaternionic) representation R of G, to which one
associates hypermultiplets Y i, with i = 1, . . . , dim(R). The hypermulti-

plets Y i decompose into a pair of N = 2 chiral multiplets X i and X̃i, each
containing a complex scalar plus fermions, and transforming in complex
conjugate representations R and R.9

The interactions are completely determined by N = 4 supersymmetry. In partic-

ular, the superpotential takes the form W = X̃ΦX , where Φ acts on X in the
representation R and the projection to the gauge singlet in R⊗R is implied.

The N = 4 supersymmetry algebra admits an R-symmetry automorphism
SU(2)C×SU(2)H . SU(2)C acts on vector multiplets, rotating the three real scalars
as a triplet. SU(2)H acts on hypermultiplets, rotating the two complex scalars X i

and (X̃i)
† as a doublet. The moduli space of supersymmetric vacua of a 3d N = 4

theory is locally of the formMC ×MH : on the Coulomb branchMC the scalars
in the vector multiplet take expectation value, whereas on the Higgs branch MH

the scalars in the hypermultiplets take expectation value. Although Hilbert series
methods can be easily applied to the total moduli space of vacua, which includes
mixed branches (see for instance [19]), we restrict here to the maximal-dimensional
components of the Coulomb and Higgs branches.

Higgs branches of 3d N = 4 supersymmetric gauge theories in three dimensions
are identical to the Higgs branches of 4d N = 2 supersymmetric gauge theories
with the same gauge group and matter content, being protected against quantum
corrections by a non-renormalization theorem [4]. In particular they are hyperkhler

9If the representation R is pseudoreal, one can introduce a half-hypermultiplet, which con-
tains half as many degrees of freedom as a standard hypermultiplet.
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quotients. Hilbert series of Higgs branches of gauge theories with eight supercharges
have been computed in [48, 9, 46].

More interesting results are obtained by applying the logic of this section to
Coulomb branches of 3d N = 4 gauge theories, which are hyperkhler manifolds of
quaternionic dimension r = rk(G). Hypermultiplet scalars vanish on the Coulomb
branch, which is parametrized by monopole operators dressed by scalars Φ in the
vector multiplet of the residual gauge group. Specializing formula (5.5) to the
Cartan generator of the SU(2)C R-symmetry, which assigns charge 2 to Φ and 0
to hypermultiplet scalars, one obtains the following R-charge for bare monopole
operators [11, 38]:

(7.1) R(m, m̂) = −
∑

α∈∆+

|α(m)| +
1

2

∑

ρ,ρ̂

|ρ(m) + ρ̂(m̂)| .

Taking into account the dressing of monopole operators by the adjoint scalar Φ in
the vector multiplet and the absence of nonperturbative corrections to the super-
potential, which is a consequence of N = 4 supersymmetry, the monopole formula
(6.3) takes the simple form [26, 24]

(7.2) H(τ, z; m̂) =
∑

m∈ΓG/WG

zJ(m)τ2R(m,m̂)PG(τ
2;m) ,

where the fugacity τ = t1/2 is introduced to have integer powers, and the dressing
factor

(7.3) PG(t;m) =

r∏

i=1

1

1− tdi(Gm)

counts polynomials in the Casimir invariants of the residual gauge group Gm, as in
formula (3.8) with G replaced by Gm. Note that the background magnetic charge
B for the topological symmetry was set to zero in (7.2), otherwise there are no
gauge invariant monopole operators dressed by Φ only; this agrees with the well
known fact that a Fayet-Iliopoulos parameter lifts the Coulomb branch.

It should be noted that the monopole formula (7.2) yields a well defined Tay-
lor series in τ provided the theory is good or ugly in the terminology of [38].10

Then the conformal dimension of chiral gauge invariant operators in the infrared
superconformal field theory is equal to their R-charge.

Recently, a mathematical interpretation of the monopole formula (7.2) for the
Hilbert series of the Coulomb branch of 3d N = 4 gauge theories has been provided
by Nakajima [68], leading to a number of interesting mathematical developments,
for which I refer to Nakajima’s talk at this conference.

A few additional remarks on (7.2) are in order. First of all, H(t, z; 0) is the
Hilbert series that counts holomorphic function on the Coulomb branch of the low
energy superconformal field theory, which is a cone. Conversely, m̂ 6= 0 corresponds
to turning on real masses that resolve the singularity.

10For bad theories (7.2) is not a convergent Taylor series, because there are infinitely many
monopole operators with the same charges. This problem can be bypassed by adding extra

hypermultiplets to make the theory good or ugly, with a large background magnetic charge for
the flavour symmetry that acts on them only. The background charge ensures that the common
eigenspaces of the Cartan subalgebra of the global symmetry have finite dimension and serves at
the same time as a cut-off.
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k N

Figure 3. 8-supercharge quiver diagram for U(k) SQCD with N
flavours.

Secondly, it has been shown in [71] that the Hilbert series of the Coulomb
branch given by (7.2) can also be obtained as a particular (and more easily com-
putable) limit of the superconformal index. This means that in this limit the index
only receives contribution from the scalar chiral operators which are counted by
the Hilbert series, and not by other protected operators.

Thirdly, as we will see in some of the examples below, one can often deduce the
charges of generators and relations of the Coulomb branch chiral ring by resumming
(7.2) and applying plethystic techniques. In this respect the Hilbert series provides
complementary information to the more recent physical description of the Coulomb
branch in [14]: the latter allows to construct the relations explicitly, but in practice
determining the generators of the chiral ring and of the ideal of relations can be
difficult if the Coulomb branch is not a complete intersection. Instead the Hilbert
series can be computed as easily for complete as for non-complete intersections.

Finally, the Hilbert series (7.2) is sensitive to resolutions of the singularity
(Kähler deformations) through the dependence on m̂ and B, but is insensitive
to complex structure deformations. On the other hand the formalism of [14] is
sensitive to complex structure deformations but insensitive to resolutions.

7.1. Examples. We conclude this section with a few examples of Hilbert series
of 3dN = 4 theories with interesting Coulomb branches, restricting for simplicity to
zero background magnetic charges. Examples with m̂ 6= 0 can be found in [24, 25].

It is well known that the Coulomb branch of 3d N = 4 SQED, with G = U(1)
and N flavours of hypermultiplets of charge 1, is the AN−1 singularity C2/ZN [56].
This result is easily recovered by computing the Hilbert series [26]

(7.4) H(τ, z) =
1

1− τ2

∑

m∈Z

zmτN |m| = PE[τ2 + (z + z−1)τN − τ2N ] ,

which shows that the Coulomb branch chiral ring is generated by three operators
Φ, V+ ≡ V1 and V− ≡ V−1, subject to a single relation V+V− = ΦN . This is the
well-known algebraic description of the AN−1 singularity.

The computation is easily generalized to SQCD theories with G = U(k) and
N ≥ 2k − 1 flavours of fundamental hypermultiplets, which are summarized by
“quiver diagram” in figure 3, which uses the the eight-supercharge notation where a
circular node denotes a unitary gauge group, a square node denotes a unitary flavour
group, and edges denote hypermultiplets in the bifundamental representation. The
Hilbert series of the Coulomb branch is [26]

H(τ, z) =
∑

m1≥···≥mk

PU(k)(τ
2;m)z

∑
imi τ−2

∑
i<j(mi−mj)+N

∑
i |mi| =

= PE
[ k∑

j=1

(
τ2j + (z + z−1)τN+2(j−k) − τ2(N+j−k)

)]
.

(7.5)
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Figure 4. Generalized affine Dynkin quiver for k G2 instantons.

The dressing factor PU(k) can be written in terms of a partition of k that encodes
how many magnetic charges mi are equal, see appendix A of [26] for the explicit
form. The final expression in (7.5) shows that the Coulomb branch is a complete
intersection: there are 3k generators (k Casimirs and k + k dressed monopole op-
erators of topological charges ±1) subject to k relations, whose explicit form was
later obtained in [14].

A very interesting application is to theories whose Coulomb branches are moduli
spacesMG,k of k G-instantons on C2 [23]. These theories are described by (gener-
alized) quiver diagrams which are affine Dynkin diagrams of G, with a U(1) flavour
node attached to the zeroth root. See figure 4 for the example of G = G2. If G has
a non-simply-laced Lie algebra, the field theory has no known Lagrangian descrip-
tion, but a monopole formula for the Hilbert series of their Coulomb branches was
conjectured in [23] based on brane constructions and the action of outer automor-
phisms of simply laced Lie algebras. The proposal involves a minimal modification
of (7.2) that deals with multiple bonds in the Dynkin diagrams. For instance, the
triple bond in the affine Dynkin diagram of G2 leads to the contribution

(7.6) ∆R(m) = −
1

2

2k∑

i=1

k∑

j=1

|3m
(1)
i −m

(2)
j |

to the R-charge of monopole operators, where the factor of 3 accounts for the triple
bond directed from node 1 to node 2.

This conjectured modification ensures that the affine Dynkin quiver without
the flavour node is balanced, which is crucial for the enhancement of the topolog-
ical symmetry to a nonabelian gauge group G × SU(2), and passes several other
nontrivial consistency checks. Most importantly, it provides a uniform description
of instanton moduli spaces which is purely based on group theoretic data and is
alternative to the ADHM construction [5] that applies to classical gauge groups G.
See [12] for a further mathematical exploration of this modified monopole formula.

Using this general description, it was shown in [23] that the Hilbert series of
the moduli spaceMG,k of k G-instantons has the following perturbative expansion,
that holds for any G:

(7.7) HMG,k
(t, x, y) = PE

[ k−1∑

p=0

(
[p+1; 0]x,yt

p+1+[p; Ad]x,yt
p+2

)
− . . . tk+2+ . . .

]
.

Here x is an SU(2) fugacity, y collectively denotes G fugacities, and Ad denotes
the adjoint representation of G. The first 2k positive terms in the argument of
the plethystic exponential are generators. In particular [1; 0]x,yt corresponds to the
centre of mass of the k instantons, and ([2; 0]x,y + [0;Ad]x,y)t

2 correspond to the
moment maps of the SU(2)×G symmetry. The first relation appears at order tk+2.
It would be interesting to see whether this uniform analysis of instanton moduli
spaces can be pushed further to fully determine generators and relations.
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1 1 1
QQ̃

y−1 x y

Figure 5. Quiver diagram and fugacities for SQED with one flavour.

Nf N Nf

QQ̃

Figure 6. Quiver diagram for U(N) SQCD with Nf flavours.

8. Moduli spaces of 3d N = 2 theories and Hilbert series

The rationale for counting dressed monopole operators presented in section 6
was initially developed to study Coulomb branches of 3d N = 4 theories, but it was
soon realized that it applies just as well to the moduli space of vacua of theories
with N ≥ 2 supersymmetry. In this section we present a few examples involving
Maxwell, Yang-Mills [22] and Chern-Simons theories [27].

8.1. Maxwell and Yang-Mills theories. We begin with CP-invariant the-
ories, with no Chern-Simons interactions. For simplicity we set all background
magnetic charges m̂ and B to zero and take the superpotential to vanish (see [27]
for the generalization). Then the Hilbert series that counts gauge invariant chiral
operators, or equivalently holomorphic functions on the moduli space of supersym-
metric vacuaM, takes the general form [22, 43]

H(t, z, x̂) =
∑

m∈Γq

zJ(m)

( r∏

i=1

∮
dxi
2πixi

) ∏

α∈∆+

(1 − xα)δα(m),0 t−|α(m)|·

·
∏

ρ,ρ̂

(
trρ,ρ̂−1xρx̂ρ̂

)− 1
2 |ρ(m)|

PE
[
δρ(m),0t

rρ,ρ̂xρx̂ρ̂
]
,

(8.1)

where the product over ρ and ρ̂ runs over all weights of the representation R×R̂ of
the matter fields under the gauge and flavour symmetry, and rρ,ρ̂ are the R-charges
of the matter fields, which are constant in each irreducible representation. As
anticipated below (6.3), due to nonperturbative effects that lift part of the classical
Coulomb branch [29], the sum over magnetic charges is restricted to a sublattice
of ΓG∨/W , the quantum lattice of magnetic charges Γq, which in this case is

(8.2) Γq = {m ∈ ΓG∨/W |
∑

ρ

ρ(α∨
i )signρ(m) 6= 0 ∨ αi(m) = 0 ∀i = 1, . . . , r} ,

where αi and α
∨
i are simple roots and coroots of the gauge group G.

For instance, applying formula (8.1) to 3d N = 2 SQED with one flavour,
whose quiver diagram is in figure 5, one obtains the Hilbert series

H(t, z, y) =
∑

m∈Z

zmt(1−r)|m|y−|m|

∮
dx

2πix
PE

[
δm,0t

ry(x+
1

x
)

]
=

=
1

1− y2t2r
+

1

1− zy−1t1−r
+

1

1− z−1y−1t1−r
− 2 ,

(8.3)
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where y is a fugacity for the axial U(1) symmetry under which the matter fields Q

and Q̃ have charge 1, and equal R-charge r has been assigned to Q and Q̃. The final
result shows that the moduli space consists of three-one dimensional components

meeting at a point, generated by the meson M = Q̃Q and the monopole operators
V± ≡ V±1, subject to the relations V+V− = V+M = V−M = 0. This reproduces
the moduli space and chiral ring of the XY Z model (3.5), of which SQED with one
flavour is known to be dual [1, 29].

Even more instructive is the case of U(N) SQED with Nf flavours of funda-
mental and antifundamental matter, see figure 6. The nonabelian gauge dynamics
induces nonperturbative corrections to the superpotential, which make the quantum
lattice (8.2) two-dimensional:

(8.4) Γq = {m = (m1, 0, . . . , 0,mN) ∈ Z
N | m1 ≥ 0 ≥ mN} .

The Hilbert series can be computed straightforwardly [22], but we do not report the
result here. Suffices to say that the chiral ring of the theory follows immediately
from the structure of the residual gauge theories associated to lattice points in
(8.4) and the knowledge of their moduli spaces. Over the point m1 = mN = 0, the
residual theory is nothing but U(N) SQCD withNf flavours; over the 1-dimensional
boundary the residual theory is U(N −1) SQCD with Nf flavours (plus a free U(1)
theory); and over the two-dimensional interior the residual theory is U(N−2) SQCD
with Nf flavours (plus two free U(1) theories). It follows almost immediately that

the chiral ring of the theory is generated by the Nf ×Nf meson matrix M = Q̃Q
and the two monopole operators V+ ≡ V(1,0,...,0) and V− ≡ V(0,...,0,−1), subject to
the chiral ring relations

(8.5) minorN+1(M) = 0 , V±minorN (M) = 0 , V+V−minorN−1(M) = 0

which constrain the rank of the meson matrix and monopole operators. This result
is confirmed by explicit computation of the Hilbert series.

This structure of the moduli space of vacua was argued earlier in [2] by invoking
an extra nonperturbative superpotential involving mesons and monopole operators,
which however is singular at certain subloci of the moduli space. We learn from
this example that the moduli spaces and the chiral rings of the nonabelian N = 2
Yang-Mills theories can be successfully analysed by looking at dressed monopole
operators and using well-defined nonperturbative superpotentials that partially lift
the Coulomb branch, without resorting to singular nonperturbative superpotentials.

8.2. Chern-Simons theories. The formalism presented in section 6 can also
be applied to CP-violating gauge theories with Chern-Simons interactions (4.2),
which were studied intensively following [3] since they often appear on the world-
volume of M2-branes in M-theory.

As an example, we consider here the 3dN = 2 gauge theory on the worldvolume
of M2-branes probing the Calabi-Yau cone over the toric Sasaki-Einstein 7-fold
Q1,1,1, which is a circle fibration over P1×P1×P1. The toric diagram of the Calabi-
Yau Gorenstein singularity C(Q1,1,1) is a convex polytope in three dimensions,
which is shown in figure 7.

The gauge theory on the worldvolume of M2-branes is specified by the quiver
diagram in figure 8 and by the superpotential [6, 57]

(8.6) W = Tr(A1B1A2B2 −A1B2A2B1) + p1B1q1 + p2B2q2 .
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Figure 7. Toric diagram of C(Q1,1,1).

N0 N0

1

1

A1,2

B1,2

p1

p2
q1

q2

Figure 8. Quiver diagram of the worldvolume theory on N M2-
branes probing C(Q1,1,1). The subscripts denote bare CS levels.

m

m < 0 m = 0 m > 0

Figure 9. Line bundles and resolutions of the conifold from holo-
morphic functions on C(Q1,1,1). The toric diagrams of the re-
solved conifolds can be obtained by projecting the toric diagram
of C(Q1,1,1) of figure 7 in the vertical direction.

The bare Chern-Simons levels for the two gauge groups in the Lagrangian vanish,
k1 = k2 = 0, but effective Chern-Simons levels (5.8) are radiatively generated once
the fundamental flavours pi and qi gain a real mass and are integrated out.

The Hilbert series of the moduli space of vacua is easily computed for the
abelian theory on N = 1 M2-brane. Setting the background magnetic charges to
zero and the dynamical magnetic charges equal m1 = m2 = m (there are no gauge
invariant dressed monopole operators if m1 6= m2), the Hilbert series of the gauge
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theory (6.3) becomes [27]

H(t, u, v, z) =
∑

m∈Z

zmt
1
2 |m|

∮
dx

2πix
x−|m| PE

[
t
1
2 x

(
u+

1

u

)
+ t

1
2
1

x

(
v +

1

v

)]

=
∑

m∈Z

zmt
1
2 |m|g1(t

1/2, u, v; |m|) =
∞∑

n=0

[n;n;n]α,β,γt
n

(8.7)

where we have used (3.9) in the second line. The final result is nothing but the
Hilbert series of the cone over Q1,1,1, which can be computed alternatively using
the toric description of the geometry: the moduli space of the gauge theory on the
M2-branes is the transverse space that they probe. The integral in the first line
shows that the residual theory when m1 = m2 = m is the worldvolume theory for a
D-brane on the conifold [59], which up to a decoupled U(1) is the SQED theory with
2 flavours discussed at the end of section 3. The conifold arises here as the Kähler
quotient of the cone over Q1,1,1 by the U(1) action that corresponds to the vertical
direction in the toric diagram 7. Going from the first to the second line we have used
the baryonic Hilbert series (3.9) that counts holomorphic sections of line bundles
on the conifold, with baryonic charge B = |m|, due to the effective Chern-Simons
levels keff1 = −keff2 = sign(m). The last equality relates the sum over holomorphic
sections of line bundles ⊕mO(|m|D) on the conifold to holomorphic functions on
the cone C(Q1,1,1) (see figure 9 and compare with figure 2). The final expression
in (8.7), involving SU(2)3 characters in terms of the fugacities α = u, β = (v/z)1/2

and β = (vz)1/2, shows a global symmetry enhancement to SU(2)3 × U(1)R and
reproduces the Hilbert series of the cone over Q1,1,1. Generators and relations of
the ring can be easily extracted from the final formula [27].

The computation (8.7) can be easily generalized to include non-zero background
magnetic charges: the Hilbert series then counts holomorphic section of toric line
bundles on C(Q1,1,1) [27], which are in correspondence with resolutions of the cone
[7]. It can also be extended to the case of N > 1 M2-branes, in which case one can

show by means of the Hilbert series that the moduli space isM = SymNC(Q1,1,1),
as expected from string theory considerations [27].

Many more examples of M2-brane theories with N = 2 and N = 3 supersym-
metries have been studied using the Hilbert series formalism in [27]. Crucially,
the Hilbert series can be computed by counting gauge invariant dressed monopole
operators, and information on the chiral ring can be extracted from it, with no
need to assume the form of the quantum relation between monopole operators as
was originally done in [6, 57].

9. Conclusion

I have presented here a general formalism to count gauge invariant chiral opera-
tors that parametrize moduli spaces of supersymmetric vacua of three-dimensional
N ≥ 2 gauge theories. The formalism enumerates gauge invariant dressed monopole
operators and packages the information in a generating function called the Hilbert
series. By applying plethystic techniques to the Hilbert series, one can extract
the charges of the generators of the chiral ring and of the ideal of relations. The
formalism simplifies considerably the study of the chiral ring of three-dimensional
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supersymmetric gauge theories: in favourable cases it determines it completely, and
more generally it reduces the problem to determining a finite number of coefficients.

A number of interesting open questions are raised by these results:

(1) For the Coulomb branch of 3d N = 4 gauge theories, a procedure to
determine the chiral ring relations, including all coefficients, has been put
forward by Bullimore, Dimofte and Gaiotto [14]. Can that construction
be generalized to theories with lower supersymmetry, for which I have
reviewed how to compute the Hilbert series here?

(2) In a parallel development, a mathematical definition of the Coulomb
branch of 3d N = 4 gauge theories has been introduced by Nakajima
and collaborators [68, 13, 12], building on the monopole formula (7.2)
for the Hilbert series. Can one similarly define moduli spaces of vacua of
3d N ≥ 2 gauge theories mathematically, building on formula (6.3)?

(3) A path integral definition of the Hilbert series of the Coulomb branch
as an index has been provided for 3d N = 4 gauge theories [71, 20].
Can the Hilbert series of the moduli space of vacua of 3d N ≥ 2 theory be
defined as an index, at least when the F -flat moduli space F is a complete
intersection?

I hope that some of these questions can be answered in the near future.
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