
When Can Graph Hyperbolicity be Computed
in Linear Time??

Till Fluschnik1,??, Christian Komusiewicz2,? ? ?, George B. Mertzios3,
André Nichterlein1,3,†, Rolf Niedermeier1, and Nimrod Talmon4,‡

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany,
{till.fluschnik, andre.nichterlein, rolf.niedermeier}@tu-berlin.de

2 Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany,
christian.komusiewicz@uni-jena.de

3 School of Engineering and Computing Sciences, Durham University, UK,
george.mertzios@durham.ac.uk

4 Weizmann Institute of Science, Rehovot, Israel,
nimrodtalmon77@gmail.com

Abstract. Hyperbolicity measures, in terms of (distance) metrics, how
close a given graph is to being a tree. Due to its relevance in model-
ing real-world networks, hyperbolicity has seen intensive research over
the last years. Unfortunately, the best known practical algorithms for
computing the hyperbolicity number of a n-vertex graph have running
time O(n4). Exploiting the framework of parameterized complexity anal-
ysis, we explore possibilities for “linear-time FPT” algorithms to com-
pute hyperbolicity. For instance, we show that hyperbolicity can be com-
puted in time 2O(k) + O(n + m) (m being the number of graph edges,
k being the size of a vertex cover) while at the same time, unless the
SETH fails, there is no 2o(k)n2-time algorithm.

1 Introduction

(Gromov) hyperbolicity [16] of a graph is a popular attempt to capture and
measure how metrically close a graph is to being a tree. The study of hyperbol-
icity is motivated by the fact that many real-world graphs are tree-like from a
distance metric point of view [2, 3]. This is due to the fact that many of these
graphs (including Internet application networks or social networks) possess cer-
tain geometric and topological characteristics. Hence, for many applications (cf.,
e.g. [3]), including the design of (more) efficient algorithms, it is useful to know

? This work was initiated at the yearly research retreat of the Algorithmics and Com-
putational Complexity (AKT) group of TU Berlin, held in in Krölpa, Thuringia,
Germany, from April 3rd till April 9th, 2016.

?? Supported by the DFG, project DAMM (NI 369/13-2).
? ? ? Supported by the DFG, project MAGZ (KO 3669/4-1).

† Supported by a postdoctoral fellowship of the DAAD while at Durham University.
‡ Supported by a postdoctoral fellowship from I-CORE ALGO.

1

the hyperbolicity of a graph. The hyperbolicity of a graph is a nonnegative num-
ber δ; the smaller δ is, the more tree-like the graph is; in particular, δ = 0 means
that the graph metric indeed is a tree metric. Typical hyperbolicity values for
real-world graphs are below 5 [2].

Hyperbolicity can be defined via a four-point condition: Considering a size-
four subset {a, b, c, d} of the vertex set of a graph, one takes the (nonnegative)
difference between the two largest of the three sums ab+cd, ac+bd, and ad+bc,
where, e.g., ab denotes the length of the shortest path between vertices a and b
in the given graph. The hyperbolicity is the maximum of these differences over
all size-four subsets of the vertex set of the graph. For an n-vertex graph, this
characterization of hyperbolicity directly implies a simple (brute-force) O(n4)-
time algorithm to compute its hyperbolicity. It has been observed that this
running time is too slow for computing the hyperbolicity of large graphs as
occurring in applications [2, 3, 4, 13]. On the theoretical side, it was shown
that relying on some (rather impractical) matrix multiplication results, one can
improve the upper bound to O(n3.69) [13]. Moreover, roughly quadratic lower
bounds are known [4, 13]. In practice, however, the best known algorithm still has
an O(n4)-time worst-case bound but uses several clever tricks when compared to
the straightforward brute-force algorithm [3]. Indeed, based on empirical studies
an O(mn) running time is claimed, where m is the number of edges in the
graph. Furthermore, there are heuristics for computing the hyperbolicity of a
given graph [7].

To explore the possibility of faster algorithms for hyperbolicity in relevant
special cases is the guiding principle of this work. More specifically, introducing
some graph parameters, we investigate whether one can compute hyperbolicity
in linear time when these parameters take small values. In other words, we em-
ploy the framework of parameterized complexity analysis (so far mainly used for
studying NP-hard problems) applied to the polynomial-time solvable hyperbolic-
ity problem. In this sense, we follow the recent trend of studying “FPT in P” [15].
Indeed, other than for NP-hard problems (where parameterized complexity is
typically applied), for some parameters we achieve not only exponential depen-
dence on the parameter but also polynomial ones. Note that such algorithms are
unlikely for metric parameters like diameter or hyperbolicity.

Our contributions. Table 1 summarizes our main results. On the positive side,
for a number of natural graph parameters we can attain “linear FPT” running
times. Our “positive” graph parameters here are the following:

– the covering path number, that is, the minimum number of paths where only
the endpoints have degree greater than two and which cover all vertices;

– the feedback edge number, that is, the minimum number of edges to delete
to obtain a forest;

– the number of graph vertices of degree at least three;
– the vertex cover number, that is the minimum number of vertices needed to

cover all edges in the graph;

Table 1. Summary of our algorithmic results. Herein, k denotes the parameter and n
and m denote the number of vertices and edges, respectively.

Parameter Running time

covering path number O(k4(n+m)) [Theorem 5]
feedback edge number O(k4(n+m)) [Theorem 6]
number of ≥ 3-degree vertices O(k8(n+m)) [Theorem 8]

vertex cover number 2O(k) +O(n+m) [Theorem 10]

distance to cographs O(44k · k7 · (n+m)) [Theorem 15]

– the distance to cographs, that is, the minimum number of vertices to delete
to obtain a cograph.5

On the negative side we prove that, with respect to the parameter vertex cover
number k, we cannot hope for any 2o(k)n2−ε algorithm unless the Strong Ex-
ponential Time Hypothesis (SETH) fails. We also obtain a “quadratic-time
FPT” lower bound with respect to the parameter maximum vertex degree, again
assuming SETH. Finally, we show that computing the hyperbolicity is at least
as hard as computing a size-four independent set in a graph. It is conjectured
that computing size-four independent sets needs Ω(n3) time [20]. Due to lack of
space, many details and proofs (marked with (?)) had to be deferred.6

2 Preliminaries and Basic Observations

We write [n] := {1, . . . , n} for every n ∈ N. For a function f : X → Y and X ′ ⊆
X we set f(X ′) := {y ∈ Y | ∃x ∈ X ′ : f(x) = y}.

Graph theory. Let G = (V,E) be a graph. We define |G| = |V |+|E|. For W ⊆ V ,
we denote by G[W] the graph induced by W . We use G −W := G[V \W] to
denote the graph obtained from G by deleting the vertices of W ⊆ V . A path
P = (v1, . . . , vk) in G is a tuple of distinct vertices in V such that {vi, vi+1} ∈ E
for all i ∈ [k − 1]; we say that such a path P has endpoints v1 and vk, we call
the other vertices of P inner vertices, and we say that P is a v1-vk path. We
denote by ab the length of a shortest a-b path if such a path exists; otherwise,
that is, if a and b are in different connected components, we define ab := ∞.
Let P = (v1, . . . , vk) be a path and vi, vj two vertices on P . We denote by vivj |P
the distance of vi to vj on the path P , that is, vivj |P = |j − i|. For a graph G

we denote by V ≥3G the set of vertices of G that have degree at least three.

Hyperbolicity. Let G = (V,E) be graph and a, b, c, d ∈ V . We define D1 := ab+
cd, D2 := ac+bd, and D3 := ad+bc (referred to as distance sums). Moreover, we

5 Cographs are the graphs without induced P4s. Distance to cographs is upper-
bounded by the parameter distance to cluster graph [10] and thus also by the pa-
rameter vertex cover number.

6 A full version is available at https://arxiv.org/abs/1702.06503.

https://arxiv.org/abs/1702.06503

define δ(a, b, c, d) := |Di−Dj | if Dk ≤ min{Di, Dj}, for pairwise distinct i, j, k ∈
{1, 2, 3}. If any two vertices of the quadruple {a, b, c, d} are not connected, we
set δ(a, b, c, d) = 0.7 The hyperbolicity of G = (V,E) is defined as δ(G) :=
maxa,b,c,d∈V {δ(a, b, c, d)}. Note that by our definition, if G is not connected,
δ(G) computes the maximal hyperbolicity over all connected components of G.
We say that the graph is δ-hyperbolic for some δ ∈ N if it has hyperbolicity at
most δ. That is, a graph is δ-hyperbolic8. if for each 4-tuple a, b, c, d ∈ V we
have

ab+ cd ≤ max{ac+ bd, ad+ bc}+ δ.

Formally, the Hyperbolicity problem is defined as follows.

Hyperbolicity
Input: An undirected graph G = (V,E) and a positive integer δ.
Question: Is G δ-hyperbolic?

The following lemma will be useful later. For any quadruple {a, b, c, d},
Lemma 1 upper bounds δ(a, b, c, d) by twice the distance between any pair of
vertices of the quadruple.

Lemma 1 ([7, Lemma 3.1]). δ(a, b, c, d) ≤ 2 ·minu6=v∈{a,b,c,d}{uv}

Reduction Rule 1. As long as there are more than four vertices, remove ver-
tices of degree one.

Lemma 2 (?). Reduction Rule 1 is correct and can be exhaustively applied in
linear time.

3 Polynomial Linear-Time Parameterized Algorithms

In this section, we provide polynomial linear-time parameterized algorithms with
respect to the parameters feedback edge number and number of vertices with
degree at least three; that is, we present algorithms with running time having
a linear-time dependence on the input size times a polynomial-time dependence
on the parameter value (to which we refer to as PL-FPT running time).

To this end, we first introduce an auxiliary parameter, the minimum max-
imal path cover number, which we formally define below and also describe a
polynomial linear-time parameterized algorithm for it.

Building upon this result, for the parameter feedback edge number we then
show that, after applying Reduction Rule 1, the number of maximal paths can
be upper-bounded by a polynomial of the feedback edge number. This implies
a polynomial linear-time parameterized algorithm for the feedback edge number
as well. For the parameter number of vertices with degree at least three, we

7 This case is often left undefined in the literature. Our definition however enables to
consider also disconnected graphs.

8 Note that there is also a slightly different definition where graphs we call δ-hyperbolic
are called 2δ-hyperbolic [7, 17]; we follow the definition of Brinkmann et al. [6].

introduce an additional reduction rule to achieve that the number of maximal
paths is upper-bounded in a polynomial of this parameter. Again, this implies
an algorithm with PL-FPT running time.

Minimum maximal path cover number.

Definition 3 (Maximal path). Let G be a graph and P be a path in G. Then,
P is a maximal path if the following holds: (1) P contains at least two vertices;
(2) all its inner vertices have degree two in G; (3) either both its endpoints have
degree at least three in G, or one of its endpoints has degree at least three in G
while the other endpoint is of degree two in G; and (4) P is size-wise maximal
with respect to these properties.

We will be interested in the minimum number of maximal paths needed to
cover the vertices of a given graph; we call this number the minimum maximal
path cover number. While not all graphs can be covered by maximal paths (e.g.,
edgeless graphs), graphs which have minimum degree two and contain no isolated
cycles, i.e. components that form induced cycles, can be covered by maximal
paths (this follows by, e.g., a greedy algorithm which iteratively starts a path
with an arbitrary uncovered vertex and exhaustively extends it arbitrarily; since
there are no isolated cycles and the minimum degree is two, we are bound to
eventually hit at least one vertex of degree three). Based on the approximation
algorithm given in the next lemma, we assume in the following that we are given
a maximal path cover.

Lemma 4 (?). There is a linear-time 2-approximation algorithm for the min-
imum maximal path cover number for graphs which have minimum degree two
and contain no isolated cycles.

Now we are ready to design a polynomial linear-time parameterized algorithm
for Hyperbolicity with respect to the minimum maximal path cover number.

Theorem 5 (?). Let G = (V,E) be a graph and k be its minimum maximal
path cover number. Then, Hyperbolicity can be solved in O(k4(n+m)) time.

Feedback edge number. We next present a polynomial linear-time parameterized
algorithm with respect to the parameter feedback edge number k. The idea is
to show that a graph that is reduced with respect to Reduction Rule 1 contains
O(k) maximal paths.

Theorem 6 (?). Hyperbolicity can be computed in O(k4(n + m)) time,
where k is the feedback edge number.

Number of vertices with degree at least three. We finally show a polynomial
linear-time parameterized algorithm with respect to the number k of vertices
with degree three or more. To this end, we use the following data reduction rule
additionally to Reduction Rule 1 to bound the number of maximal paths in the
graph by O(k2) (in order to make use of Theorem 5).

Reduction Rule 2. Let G = (V,E) be a graph, u, v ∈ V ≥3G be two vertices of
degree at least three, and Puv be the set of maximal paths in G with endpoints u
and v. Let P9

uv ⊆ Puv be the set containing the shortest path, the four longest
even-length paths, and the four longest odd-length paths in Puv. If Puv\P9

uv 6= ∅,
then delete in G all inner vertices of the paths in Puv \ P9

uv.

Lemma 7 (?). Reduction Rule 2 is correct and can be exhaustively applied in
linear time.

Observe that if the graph G is reduced with respect to Reduction Rule 2
after Reduction Rule 1 was applied, then for each pair u, v ∈ V ≥3G there ex-
ist at most nine maximal paths with endpoints u and v. Thus, G contains at
most O(k2) maximal paths and using Theorem 5 we arrive at the following.

Theorem 8. Hyperbolicity can be solved in O(k8(n + m)) time, where k is
the number of vertices with degree at least three.

4 Parameter Vertex Cover

A vertex cover of a graph G = (V,E) is a subset W ⊆ V of vertices of G such
that each edge in G is incident to at least one vertex in W . Deciding whether
a graph G has a vertex cover of size at most k is NP-complete in general [14].
There is, however, a simple linear-time factor-2 approximation (see, e.g., [18]). In
this section, we consider the size k of a vertex cover as the parameter. We show
that we can solve Hyperbolicity in time linear in |G|, but exponential in k;
further, we show that, unless SETH fails, we cannot do asymptotically better.

A Linear-Time Algorithm Parameterized by the Vertex Cover Number. We prove
that Hyperbolicity can be solved in time linear in the size of the graph and
exponential in the size k of a vertex cover. This result is based on a linear-time
computable problem kernel of size O(2k) that can be obtained by exhaustively
applying the following reduction rule.

Reduction Rule 3. If there are at least five vertices v1, v2, . . . , v` ∈ V , ` >
4, with the same (open) neighborhood N(v1) = N(v2) = . . . = N(v`), then
delete v5, . . . , v`.

We next show that the above rule is correct, can be applied in linear time, and
leads to a problem kernel for the parameter vertex cover number.

Lemma 9 (?). Reduction Rule 3 is correct and can be applied exhaustively in
linear time. Furthermore, if Reduction Rule 3 is not applicable, then the graph
contains at most k + 4 · 2k vertices and O(k · 2k) edges, where k is the vertex
cover number.

With Reduction Rule 1 we can compute in linear time an equivalent instance
having a bounded number of vertices. Applying to this instance the trivial O(n4)-
time algorithm yields the following.

Theorem 10. Hyperbolicity can be computed in O(24k+n+m) time, where k
denotes the size of a vertex cover of the input graph.

SETH-based Lower Bounds. We show that, unless SETH breaks, the 2O(k) +
O(n + m)-time algorithm obtained in the previous subsection cannot be im-
proved to an algorithm even with running time 2o(k) · n2−ε. This also implies,
that, assuming SETH, there is no problem kernel with 2o(k) vertices computable
in O(n2−ε) time, i. e., the kernel obtained by applying Reduction Rule 3 cannot
be improved significantly. The proof follows by a many-one reduction from the

problem Orthogonal Vectors: herein, given two sets
−→
A and

−→
B each con-

taining n binary vectors of length ` = O(log n), the question is whether there

are two vectors −→a ∈
−→
A and

−→
b ∈
−→
B such that −→a and

−→
b are orthogonal, that is,

such that there is no position i for which −→a [i] =
−→
b [i] = 1.

Williams and Yu [19] proved that, if Orthogonal Vectors can be
solved in O(n2−ε) time, then SETH breaks. We provide a linear-time reduc-
tion from Orthogonal Vectors to Hyperbolicity where the graph G con-
structed in the reduction contains O(n) vertices and admits a vertex cover of
size O(log n) (and thus contains O(n · log n) edges). The reduction then implies
that, unless SETH breaks, there is no algorithm solving Hyperbolicity in time
polynomial in the size of the vertex cover and linear in the size of the graph. We
mention that Borassi et al. [4] showed that under the SETH Hyperbolicity
cannot be solved in O(n2−ε). However, the instances constructed in their reduc-
tion have a minimum vertex cover of size Ω(n). Note that our reduction is based
on ideas from the reduction of Abboud et al. [1] for the Diameter problem.

Theorem 11. Assuming SETH, Hyperbolicity cannot be solved in 2o(k) ·
(n2−ε) time, even on graphs with O(n log n) edges, diameter four, and domina-
tion number three. Here, k denotes the vertex cover number of the input graph.

Proof. We reduce any instance (
−→
A,
−→
B) of Orthogonal Vectors to an in-

stance (G, δ) of Hyperbolicity, where we construct the graph G as follows
(we refer to Figure 1 for a sketch of the construction).

Make each −→a ∈
−→
A a vertex a and each

−→
b ∈
−→
B a vertex b of G, and denote

these vertex sets by A and B, respectively. Add two vertices for each of the
` dimensions, that is, add the vertex set C := {c1, . . . , c`} and the vertex set D =
{d1, . . . , d`} to G and make each of C and D a clique. Next, connect each a ∈ A
to the vertices of C in the natural way, that is, add an edge between a and ci if
and only if −→a [i] = 1. Similarly, add an edge between b ∈ B and di ∈ D if and

only if
−→
b [i] = 1. Moreover, add the edge set {{ci, di} | i ∈ [`]}. This part will

constitute the central gadget of our construction.
Our aim is to ensure that the maximum hyperbolicity is reached for 4-

tuples (a, b, c, d) such that a ∈ A, b ∈ B, and −→a and
−→
b are orthogonal

vectors. The construction of G is completed by adding two paths (uA, u, uB)
and (vA, v, vB), and making uA and vA adjacent to all vertices in A∪C and uB
and vB adjacent to all vertices in B ∪D.

Observe that G contains O(n) vertices, O(n·log n) edges, and that the set V \
(A∪B) forms a vertex cover in G of size O(log n). Moreover, observe that G has
diameter four. Note that each vertex in A∪B ∪C ∪D is at distance two to each

...
...

C D

a1

...
ai

...
an

b1
...
bj

...
bn

A B

...
...

iff ai[1] = 1
iff bj [2] = 1

uA u uB

vA v vB

c1

...

c`

d1

...

d`

iff ai[1] = 1
iff bj [2] = 1

Fig. 1. Sketch of the construction described in the proof of Theorem 11. Ellipses indi-
cate cliques, rectangles indicate independent sets. Multiple edges to an object indicate
that the corresponding vertex is incident to each vertex enclosed within that object.

of u and v. Moreover, vA and vB are at distance three to u. Analogously, uA,
uB are at distance three to v. Furthermore u and v are at distance four. Finally,
observe that {uA, uB , v} forms a dominating set in G.

We complete the proof by showing that (
−→
A,
−→
B) is a yes-instance of Orthog-

onal Vectors if and only if G has hyperbolicity at least δ = 4.

(⇒) Let (
−→
A,
−→
B) be a yes-instance, and let −→a ∈

−→
A and

−→
b ∈

−→
B be a pair

of orthogonal vectors. We claim that δ(a, b, u, v) = 4. Since −→a and
−→
b are or-

thogonal, there is no i ∈ [`] with −→a [i] =
−→
b [i] = 1 and, hence, there is no

path connecting a and b only containing two vertices in C ∪ D, and it holds
that ab = 4. Moreover, we know that uv = 4 as that au = bu = av = av = 2.
Thus, δ(a, b, u, v) = 8− 4 = 4, and G is 4-hyperbolic.

(⇐) Let S = {a, b, c, d} be a set of vertices such that δ(a, b, c, d) ≥ 4. By
Lemma 1, it follows that no two vertices of S are adjacent. Hence, we assume
without loss of generality that ab = cd = 4. Observe that all vertices of C
and D have distance at most three to all other vertices. Similarly, each vertex
of {uA, vA, uB , vB} has distance at most three to all other vertices. (Consider
for example uA. By construction, uA is a neighbor of all vertices in A∪C ∪ {u}
and, hence, uA has distance at most two to vA and to all vertices in D. Thus,
uA has distance at most three to v, B, uB and vB and therefore to all vertices
of G. The arguments for vA, uB , and vB are symmetric.)

It follows that S ⊆ A∪B∪{u, v}, and therefore at least two vertices in S are
from A∪B. Thus, assume without loss of generality that a is contained in A. By
the previous assumption, we have that ab = 4. This implies that b ∈ B and −→a
and
−→
b are orthogonal vectors, as every other vertex in V \B is at distance three

to a and each b′ ∈ B with
−→
b′ being non-orthogonal to −→a is at distance three

to a. Hence, (
−→
A,
−→
B) is a yes-instance. ut

We remark that, with the above reduction, the hardness also holds for the
variants in which we fix one vertex (u) or two vertices (u and v). The reduc-
tion also shows that approximating the hyperbolicity of a graph within a factor
of 4/3 − ε cannot be done in strongly subquadratic time or with a PL-FPT
running time with respect to the vertex cover number.

Next, we adapt the above reduction to obtain the following hardness result
on graphs of bounded maximum degree.

Theorem 12 (?). Assuming SETH, Hyperbolicity cannot be solved in f(∆)·
(n2−ε) time, where ∆ denotes the maximum degree of the input graph.

5 Parameter Distance to Cographs

In this section we describe a linear-time parameterized algorithm for Hyper-
bolicity parameterized by the vertex deletion distance k to cographs; that is,
we present an algorithm with linear dependence on the input size but arbitrary
dependence on the parameter (to which we refer to as L-FPT). A graph is a
cograph if and only if it is P4-free. Given a graph G we can determine in linear
time whether it is a cograph and return an induced P4 if this is not the case.
This implies that in O(k · (m+ n)) time we can compute a set X ⊆ V of size at
most 4k such that G−X is a cograph.

A further characterization is that a cograph can be obtained from graphs
consisting of one single vertex via unions and joins [5].
– A union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph (V1 ∪
V2, E1 ∪ E2).

– A join of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph (V1 ∪
V2, E1 ∪ E2 ∪ {{v1, v2}|v1 ∈ V1, v2 ∈ V2}).

The union of t graphs and the join of t graphs are defined by taking succes-
sive unions or joins, respectively, of the t graphs in an arbitrary order. Each
cograph G can be associated with a rooted cotree TG. The leaves of TG are
the vertices of V . Each internal node of TG is labeled either as a union or join
node. For node v in TG, let L(v) denote the leaves of the subtree rooted at v.
For a union node v with children u1, . . . , ut, the graph G[L(v)] is the union of
the graphs G[L(ui)], 1 ≤ i ≤ t. For a join node v with children u1, . . . , ut, the
graph G[L(v)] is the join of the graphs G[L(ui)], 1 ≤ i ≤ t.

The cotree of a cograph can be computed in linear time [8]. In a subroutine
in our algorithm for Hyperbolicity we need to solve the following variant of
Subgraph Isomorphism.
Colored Induced Subgraph Isomorphism
Input: An undirected graph G = (V,E) with a vertex-coloring γ : V → N

and an undirected graph H = (W,F), where |W | = k, with a
vertex-coloring χ : W → N.

Question: Is there a vertex set S ⊆ V such that there is an isomorphism f
from G[S] to H such that γ(v) = χ(f(v)) for all v ∈ S?

Informally, the condition that γ(v) = χ(f(v)) means that every vertex is mapped
to a vertex of the same color. We say that such an isomorphism respects the
colorings. As shown by Damaschke [9], Induced Subgraph Isomorphism on
cographs is NP-complete. Since this is the special case of Colored Induced
Subgraph Isomorphism where all vertices in G and H have the same color,
Colored Induced Subgraph Isomorphism is also NP-complete (contain-
ment in NP is obvious). In the following, we show that on cographs Colored
Induced Subgraph Isomorphism can be solved by an L-FPT algorithm when
the parameter k is the order of H.

Lemma 13 (?). Colored Induced Subgraph Isomorphism can be solved
in O(3k(n+m)) time in cographs.

We now turn to the algorithm for Hyperbolicity on graphs that can
be made into cographs by at most k vertex deletions. The final step is to
reduce Hyperbolicity to the problem Distance-Constrained 4-Tuple:
herein, given an undirected graph G = (V,E) and six integers d{a,b}, d{a,c},
d{a,d}, d{b,c}, d{b,d}, and d{c,d}, the question is whether there is a set S ⊆ V of
four vertices and a bijection f : S → {a, b, c, d} such that for each x, y ∈ S we
have xy = d{f(x),f(y)}.

Lemma 14 (?). Distance-Constrained 4-Tuple can be solved in O(44k ·k ·
(n+m)) time if G−X is a cograph for some X ⊆ V of size k.

We solve Hyperbolicity by creating O(k6) instances of Distance-
Constrained 4-Tuple as shown below.

Theorem 15. Hyperbolicity can be solved in O(44k ·k7 ·(n+m)) time, where
k is the vertex deletion distance of G to cographs.

Proof. Let G = (V,E) be the input graph and X ⊆ V , |X| ≤ k, such that G−X
is a cograph and observe that X can be computed in O(4k · (n+m)) time. Since
every connected component of G−X has diameter at most two, the maximum
distance between any pair of vertices in the same component of G is at most 4k+
2: any shortest path between two vertices u and v visits at most k vertices in X,
at most three vertices between every pair of vertices x and x′ from X and at
most three vertices before encountering the first vertex of X and at most three
vertices before encountering the last vertex of X.

Consequently, for the 4-tuple (a, b, c, d) that maximizes δ(a, b, c, d), there
are O(k6) possibilities for the pairwise distances between the four vertices. Thus,
we may compute whether there is a 4-tuple such that δ(a, b, c, d) = δ by checking
for each of the O(k6) many 6-tuples of possible pairwise distances of four ver-
tices in G whether there are 4 vertices in G with these six pairwise distances and
whether this implies δ(a, b, c, d) ≥ δ. The latter check can be performed in O(1)
time, and the first is equivalent to solving Distance-Constrained 4-Tuple
which can be done in O(44k ·k · (n+m)) time by Lemma 14. The overall running
time follows. ut

6 Reduction from 4-Independent Set

In this section, we provide a further relative lower bound for Hyperbolic-
ity. Specifically, we prove that, if the running time is measured in terms of n,
then Hyperbolicity is at least as hard as the problem of finding an indepen-
dent set of size four in a graph. The currently best running time for this problem
is O(n3.257) [11, 20]. Hence, any improvement on the running time of Hyperbol-
icity which breaks this bound (e.g., an algorithm running in o(n3) time), would
also yield a substantial improvement for the 4-Independent Set problem.

To this end, we reduce from a 4-partite (or 4-colored) variant of the Inde-
pendent Set problem. The standard reduction [12] from Independent Set
to Multicolored Independent Set shows that this 4-colored variant has the
same asymptotic running time lower bound as 4-Independent Set.

Theorem 16 (?). Any algorithm solving Hyperbolicity in O(nc) time for
some constant c yields an O(nc)-time algorithm solving 4-Independent Set.

7 Conclusion

To efficiently compute the hyperbolicity number, parameterization sometimes
may help. In this respect, perhaps our practically most promising results relate
to the O(k4(n + m)) running times (for the parameters covering path number
and feedback edge number, see Table 1). Note that they clearly improve on the
standard algorithm when k = O(n1/4). Moreover, the linear-time data reduc-
tion rules we presented may be of independent practical interest. On the lower
bound side, together with the work of Abboud et al. [1] our SETH-based lower
bound with respect to the parameter vertex cover number is among few known
“exponential lower bounds” for a polynomial-time solvable problem.

As to future work, we particularly point to the following open questions. First,
we left open whether there is an L-FPT algorithm exploiting the parameter
feedback vertex number for computing the hyperbolicity number. Second, for
parameter vertex cover number we have an SETH-based exponential lower bound
for the parameter function in any L-FPT algorithm. This does not imply that
it is impossible to achieve a polynomial parameter dependence when asking for
algorithms with running time factors such as O(n2) or O(n3).

Bibliography

[1] A. Abboud, V. Vassilevska Williams, and J. R. Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter in sparse
graphs. In Proc. 27th SODA, pages 377–391. SIAM, 2016.

[2] M. Abu-Ata and F. F. Dragan. Metric tree-like structures in real-world
networks: an empirical study. Networks, 67(1):49–68, 2016.

[3] M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On computing the
hyperbolicity of real-world graphs. In Proc. 23rd ESA, volume 9294 of
LNCS, pages 215–226, 2015.

[4] M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity
of some quadratic-time solvable problems. Electronic Notes in Theoretical
Computer Science, 322:51–67, 2016.

[5] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey,
volume 3 of SIAM Monographs on Discrete Mathematics and Applications.
SIAM, 1999.

[6] G. Brinkmann, J. H. Koolen, and V. Moulton. On the hyperbolicity of
chordal graphs. Annals of Combinatorics, 5(1):61–69, 2001.

[7] N. Cohen, D. Coudert, and A. Lancin. On computing the Gromov hyper-
bolicity. ACM Journal of Experimental Algorithmics, 20:1.6:1–1.6:18, 2015.

[8] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm
for cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[9] P. Damaschke. Induced subgraph isomorphism for cographs is NP-complete.
In Proc. 16th WG, volume 484 of LNCS, pages 72–78. Springer, 1991.

[10] M. Doucha and J. Kratochv́ıl. Cluster vertex deletion: A parameterization
between vertex cover and clique-width. In Proc. 37th MFCS, volume 7464
of LNCS, pages 348–359. Springer, 2012.

[11] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter
clique and dominating set. Theoretical Computer Science, 326(1-3):57–67,
2004.

[12] M. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the parameter-
ized complexity of multiple-interval graph problems. Theoretical Computer
Science, 410(1):53–61, 2009.

[13] H. Fournier, A. Ismail, and A. Vigneron. Computing the Gromov hyperbol-
icity of a discrete metric space. Information Processing Letters, 115(6-8):
576–579, 2015.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[15] A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs. In
Proc. 10th IPEC, volume 43 of LIPIcs, pages 102–113. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

[16] M. Gromov. Hyperbolic groups. In Essays in Group Theory, MSRI Publ.,
vol. 8, pages 75–263. Springer New York, 1987.

[17] D. Mitsche and P. Pralat. On the hyperbolicity of random graphs. The
Electronic Journal of Combinatorics, 21(2):P2.39, 2014.

[18] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, 1982.

[19] R. Williams and H. Yu. Finding orthogonal vectors in discrete structures.
In Proc. 25th SODA, pages 1867–1877. SIAM, 2014.

[20] V. V. Williams, J. R. Wang, R. Williams, and H. Yu. Finding four-node
subgraphs in triangle time. In Proc. 26th SODA, pages 1671–1680. SIAM,
2015.

	When Can Graph Hyperbolicity be Computed in Linear Time?

