
Brief Announcement: Rapid Asynchronous Plurality Consensus
Robert Elsässer

University of Salzburg, Austria

elsa@cosy.sbg.ac.at

Tom Friedetzky

Durham University, U.K.

tom.friedetzky@dur.ac.uk

Dominik Kaaser

Universität Hamburg, Germany

dominik.kaaser@uni-hamburg.de

Frederik Mallmann-Trenn

École normale supérieure, France

Simon Fraser University, Canada

mallmann@di.ens.fr

Horst Trinker

University of Salzburg, Austria

horst.trinker@sbg.ac.at

ABSTRACT
We consider distributed plurality consensus on a complete graph of

size n with k initial opinions in the following asynchronous com-

munication model. Each node is equipped with a random Poisson

clock with parameter λ = 1. Whenever a node’s clock ticks, it sam-

ples some neighbors uniformly at random and adjusts its opinion

according to the sample.

Distributed plurality consensus has been deeply studied in the

synchronous communication model. A prominent example is the

so-called Two-Choices protocol, where in each round, every node

chooses two neighbors uniformly at random, and if the two sampled

opinions coincide, then that opinion is adopted. This protocol is

very efficient when k = 2. If k = O(nε ) for some small ε , we show
that it converges to the initial plurality opinion within O(k · logn)
rounds, w.h.p., as long as the initial difference between the largest

and second largest opinion is Ω

(√
n logn

)
. On the negative side, we

show that there are cases in which Ω(k) rounds are needed, w.h.p.
To beat this lower bound, we combine the Two-Choices proto-

col with push-pull broadcasting. We divide the process into sev-

eral phases, where each phase consists of a two-choices round

followed by several broadcasting rounds. Our main contribution

is a non-trivial adaptation of this approach to the above asyn-

chronous model. If the support of the most frequent opinion is

at least (1 + ε) times that of the second-most frequent one and

k = O(exp(logn/log logn)), then our protocol achieves the best

possible run time of O(logn), w.h.p. Key to our adaptation is that

we relax full synchronicity by allowing o(n) nodes to be poorly

synchronized, and the well synchronized nodes are only required

to be within a certain time difference from one another. We enforce

this “sufficient” synchronicity by introducing a novel gadget into

the protocol. Other parts of the adaptation are made to work using

arguments and techniques based on a Pólya urn model.

KEYWORDS
Plurality Consensus; Distributed Randomized Algorithms; Asyn-

chronicity

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4992-5/17/07.

https://doi.org/10.1145/3087801.3087860

1 INTRODUCTION
We consider the following plurality consensus process on the clique

Kn of size n. Initially, the nodes are partitioned into k groups repre-

senting k colors C1, . . . ,Ck . We will denote the number of nodes

having color Cj as c j . W.l.o.g., we assume that colors are ordered

in descending order such that c1 ≥ c2 ≥ · · · ≥ ck .

Synchronous Model. In the synchronous model we assume that

the protocol operates in discrete rounds. In each round, the nodes

may sample other nodes uniformly at random and then simultane-

ously change their opinion as a function of the observed samples.

One prominent example here is the Two-Choices process [2] where

in each round every node samples two nodes chosen uniformly at

random, with replacement. If the chosen nodes’ colors coincide,

then the node adopts this color.

Asynchronous Model. In the continuous asynchronous model,

every node is equipped with a random clock which ticks according

to a Poisson distribution with parameter λ = 1. Whenever a node

ticks, it samples nodes uniformly at random and updates its opinion

based on the sampled values.

Instead of considering the asynchronous parallel process in con-

tinuous time, we rather analyze the process in the sequential model.

In this sequential model, we assume that a discrete time is given

by the sequence of ticks, and at any of the discrete time steps, a

node is selected uniformly at random from the set of all nodes to

perform its task. The two models lead to the same run time, see [4].

1.1 Our Contributions
We consider a modification of the Two-Choices protocol to design

an efficient distributed voting algorithm, allowing a large number

of different opinions in the asynchronous settings. So far, most

work in this area concentrated on the synchronous communication

model. As we see below, the Two-Choices protocol has certain

limitations – even in this synchronous setting.

Limits of the Two-Choices Approach. The Two-Choices protocol
seems to be very efficient if the number of colors is two [2]. The

following result can be seen as an extension of Cooper et al. [2] on

the complete graph to more than two opinions.

Theorem 1.1. Consider the synchronous model. LetG = Kn be the
complete graph withn nodes. Let k = O(nε ) be the number of opinions
for some small constant ε > 0. The Two-Choices plurality consensus
process converges with high probability1 to C1 within O(n/c1 · logn)

1
The expression with high probability means a probability of at least 1 − n−Ω(1)

.

https://doi.org/10.1145/3087801.3087860


rounds, if the initial bias is at least c1 − c2 ≥ z ·
√
n logn for some

constant z. Furthermore, if we assume that c1 − c2 = z ·
√
n logn for

some constant z and c2 = · · · = ck , then the Two-Choices protocol
requires Ω(n/c1 + logn) rounds in expectation to converge.

Interestingly, the required initial gap does not depend on

the number of opinions present. Moreover, if c1 − c2 = O

(√
n
)
,

then C2 wins with constant probability. To overcome the Ω(k)
lower bound in general, we combine the Two-Choices pro-

cess with a rumor spreading algorithm. We first consider this

approach in the synchronous setting and denote the corre-

sponding algorithm by OneExtraBit. For this, we investigate

a slightly modified model called the memory model. In this

model, we allow each node to transmit one additional bit.

This allows us to reduce the run time from O(n/c1 · logn) to

O((log(c1/(c1 − c2)) + log logn) · (logk + log logn)) = O

(
log

2 n
)
,

and the dominating color still wins with high probability, while

the initial bias needs only to be slightly larger.

Theorem 1.2. Consider the synchronous model. LetG = Kn be the
complete graph withn nodes. Let k = O(nε ) be the number of opinions
for some small constant ε > 0. Assume c1 − c2 ≥ z ·

√
n log

3/2 n for
some constant z, then the plurality consensus process OneExtraBit
on G converges within

O((log(c1/(c1 − c2)) + log logn) · (logk + log logn))

rounds to C1, with high probability.

Coming from a different angle, essentially the same result was

obtained independently by Berenbrink et al. [1] and by Ghaffari

and Parter [3]. To obtain our main result, we will generalize this

approach to the asynchronous communication model.

Our main contribution is an adaptation of the algorithm

OneExtraBit to the asynchronous setting. In the sequential asyn-

chronous model, many nodes may remain unselected for up to

O(logn) time, which implies that no algorithm can converge

in o(logn) time. Thus, our aim is to construct a protocol that

solves plurality consensus in O(logn) time. We show that if the

difference between the numbers of the largest two opinions is at

least Ω(c2), where c2 is the size of the second largest opinion, and

k = nO(1/log logn)
, then our algorithm solves plurality consensus

and achieves the best possible run time of O(logn), provided a

node is allowed to communicate with at most constantly many

other nodes in a step. Our result is formally stated in the following

theorem.

Theorem 1.3. Consider the asynchronous model. Let G = Kn be
the complete graph with n nodes. Let k = O(exp(logn/log logn))
be the number of opinions. Let ε > 0 be a constant. Assume c1 ≥

(1 + ε) · ci for all i ≥ 2, then the asynchronous plurality consensus
process on G converges within time Θ(logn) to the majority opinion
C1, with high probability.

2 SYNCHRONOUS CONSENSUS
In order to achieve a polylogarithmic run time we combine the two-

choices process with the speed of broadcasting. More specifically,

the protocol consists of Θ(log(n/c1) + log logn) phases which in

turn consist of two sub-phases: (i) one round of the Two-Choices

process and (ii) several rounds of the so-called Bit-Propagation

sub-phase in which each node that changed its opinion during the

preceding two-choice step broadcasts its new opinion.

More precisely, we equip each node with an additional bit of

memory which is set to True if and only if the node changed its

opinion in the Two-Choices sub-phase. In the Bit-Propagation sub-

phase, each node u samples nodes randomly until a node v with

its bit set to True is found. Then u adopts v’s opinion and sets its

own bit to True, which means that subsequently any node sampling

u will set their bit as well.

The first sub-phase ensures that after the Two-Choices round

the number of nodes holding opinion C1 and having their bit set

to True is concentrated around c2

1
/n. After the Bit-Propagation sub-

phase all nodes will have their bit set, and the size of Cj ’s support

is concentrated around c2

j /x , where x is the total number of bits

set after the Two-Choices sub-phase. This is enough to show that

at the end of the phase after O(log(n/c1)) rounds the difference

between C1 and any opinion Cj , C1 increases quadratically such

that c ′
1
/c ′j ≥ (1 − o(1))c2

1
/c2

j . Due to the quadratic growth in the

difference between C1 and every other opinion, the number of

required phases is only of orderΘ(log(n/c1) + log logn).We assume

that every node is aware of (upper bounds on) n and k , allowing us
to use these values within the algorithm, and in particular to run it

in multiple phases of length Θ(logk + log logn) each.

3 TOWARDS ASYNCHRONOUS CONSENSUS
Recall that the key to the speed of the synchronous algorithm is

the combination of the two-choice process with an information dis-

semination process. However, this interweaving of these processes

requires that the nodes execute the sub-phases simultaneously.

While this is trivially the case in the synchronous setting, it is ex-

tremely unlikely in the asynchronous setting, since the numbers of

ticks of different nodes may differ by up to O(logn).
To overcome this restriction, we adopt the following weaker

notion of synchronicity. At any time we only require a (1 − o(1))

fraction of the nodes to be almost synchronous. This relaxes full syn-
chronicity in three ways: First, nodes are only almost synchronous,

meaning that for any two nodes their working times may differ

by up to ∆ = Θ(logn/log logn). Secondly, we allow o(n) nodes to
be poorly synchronized. Finally, we require this to hold only with

high probability.

The above notion does not require the nodes to synchronize

actively per se, since their number of ticks is to some extent con-

centrated even without active synchronization. However, it turns

out that without synchronizing perpetually, the number of poorly

synchronized nodes in each phase will become larger than the ini-

tial bias towards the plurality opinion c1 − c2 and could therefore

influence the consensus significantly. We thus actively synchro-

nize nodes at the end of each phase to decrease the fraction of

poorly synchronized nodes such that their number is in o(c1 − c2),

resulting in a negligible influence of those nodes.

Once several technical challenges are resolved, the resulting

weak synchronicity allows us to reuse the high-level structure

of the synchronous algorithm. As in the synchronous case, the

asynchronous protocol consists of one Two-Choices sub-phase and

one Bit-Propagation sub-phase, the latter of which propagates the



choices of the Two-Choices phase to all nodes in the network. In

addition to these sub-phases we have a third sub-phase in which

we synchronize nodes.

After executing the first two sub-phases, the relative difference

between C1 and any opinion Cj , C1 increases quadratically and

thus we only require O(log logn) such phases. Each of the sub-

phases has a length of O(logn/log logn), amounting to a total run-

time of O(logn). While the asynchronous version may look very

similar to the synchronous protocol, the analysis differs signifi-

cantly from the synchronous case, in both approach and technical

execution.

3.1 The Asynchronous Protocol
Our asynchronous protocol consists of two parts. The goal of the

first part is to increase the number of nodes of color C1 to at least

c1 ≥ (1 − ε) · n for some small constant ε . Once the execution of

the first part has finished, the nodes execute a simple two-choices

algorithm in an asynchronous manner, after which C1 wins with

high probability.

The algorithm operates in multiple phases. Each of these phases

is split into three sub-phases. Each sub-phase consists of multiple

blocks of length ∆ each. During these sub-phases there are multiple

blocks of instructions where nodes literally do nothing. These do-
nothing-blocks are used, in combination with the following result

on synchronicity, to ensure that a large fraction of nodes executes

critical instructions at almost the same time. That is, for a large

fraction of nodes wewill show that these nodes execute instructions

as if they were bulk synchronized, which they clearly are not.

The first phase is the Two-Choices sub-phase, which consists of

two instructions, the Two-Choices step and the commit step. In the

Two-Choices step, every node samples two neighbors uniformly at

random. If and only if these neighbors’ colors coincide, the node

sets an intermediate color to the neighbors’ colors. In the commit

step, nodes change their color if they have their intermediate color

set and then set their bit accordingly. The second phase is the Bit-

Propagation sub-phase in which all nodes sample O(logn/log logn)
times another node: As soon as node u samples a node v with a

bit set, u also sets its bit and adopts v’s color. At the beginning of
the Bit-Propagation sub-phase, only a small fraction of the nodes

will have their bit set. Their number grows to almost all nodes

at the end. The crucial property is that among the nodes which

have their bit set, a very large fraction supports C1, while in the

first round the number of nodes having their bit set may be as

small as n/k in expectation. By modeling the process as a Pólya

urn process and by using martingale techniques, we show that the

distribution of colors among the nodes which set a bit after the

Two-Choices sub-phase remains almost unchanged at the end of

the Bit-Propagation sub-phase – the purpose of the Bit-Propagation

sub-phase is to grow the fraction of nodes supporting C1. Finally, in

the third phase, all nodes execute the so-called Sync Gadget. In this

gadget, nodes adjust their working time in order to synchronize.

Weak Perpetual Synchronization. In the asynchronous algorithm,

when a node is selected to tick, all operations are performed based

on the node’s current working time. In contrast, the real time of a

node is used to always count the total number of ticks performed

so far by this node. The Sync Gadget consists of a sampling sub-

phase of length log
3

logn. During these ticks, every node samples

a neighbor uniformly at random and collects the real time Tu of

the sampled neighbor u. Additionally, the node increments all real

times sampled so far by 1 until a so-called jump step is executed. At

the end of the phase at the jump step, after a proper waiting time,

the node sets its working time to the median of the samples.

3.2 The Endgame
At the end of the first part, at least (1 − ε)·n nodes have color C1. We

apply martingale techniques and drift theory to show that all nodes

will have adopted C1 before the first node finishes the execution of

the second part of the algorithm, with high probability.

4 DISCUSSION
Our algorithm solves plurality consensus in the asynchronous set-

ting in the best possible asymptotic run time in the setting where

the number of opinions k is bounded by exp(logn/log logn). It re-
mains an open question whether there exists an algorithm with the

same run time allowing for k = O(nε ) opinions; we note that even
in the synchronous setting this questions is open.

We believe that the concept of weak synchronicity (including

the Sync Gadget and the tactical waiting) as well as our analysis

techniques may well prove to be of independent interest.

We showed our main result assuming independent Poisson

clocks with parameter 1. However, our techniques should carry

over to a much more general setting as well. Moreover, we assumed

that once a node contacts another node, it receives that node’s

response without any delay. This assumption, however, might be

unrealistic in real networks (or other models of asynchronicity).

We may address this issue by extending our model to allow for

response delays following some exponential distribution with

constant parameter (which need not be 1, but must be independent

of n).
Finally, we feel that the ideas presented here may be applicable to

the adaptation of synchronous protocols to asynchronous settings

for a much wider class of problems, perhaps even eventually leading

to a generic framework.

REFERENCES
[1] Petra Berenbrink, Tom Friedetzky, George Giakkoupis, and Peter Kling. 2016.

Efficient Plurality Consensus, or: The benefits of cleaning up from time to time.

In Proc. ICALP ’16. 136:1–136:14.
[2] Colin Cooper, Robert Elsässer, and Tomasz Radzik. 2014. The Power of Two

Choices in Distributed Voting. In Proc. ICALP ’14. 435–446.
[3] Mohsen Ghaffari and Merav Parter. 2016. A Polylogarithmic Gossip Algorithm

for Plurality Consensus. In Proc. PODC ’16. 117–126.
[4] Damon Mosk-Aoyama and Devavrat Shah. 2008. Fast Distributed Algorithms for

Computing Seperable Functions. IEEE Transactions on Information Theory 54, 7

(2008), 2997–3007.


	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Synchronous Consensus
	3 Towards Asynchronous Consensus
	3.1 The Asynchronous Protocol
	3.2 The Endgame

	4 Discussion
	References

