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Abstract—Adequate performance evaluation of different short
term reliability management approaches and criteria is crucial
in order to convince transmission system operators to substitute
or complement the currently used N-1 criterion with more effi-
cient, alternative approaches. This paper qualitatively compares
existing evaluation techniques. These techniques are also applied
in other contexts, such as reliability assessment, which have
similarities with performance evaluation, but differ in some
crucial aspects. Evaluation techniques typically make a trade-off
between accuracy, complexity and computational burden. Easy-
to-use, non-sequential, analytical state enumeration techniques
can be useful to obtain indicative results. More computationally
intensive, sequential simulation techniques are on the other hand
better suited for in depth analysis, as they allow to take into
account the dynamic character of the decision making process
under evaluation. Emulation seems promising from a theoretical
perspective, but handling the complex, multi-dimensional nature
of short term reliability management is a challenge.

Index Terms—Power system operation, Power system reliabil-
ity management, Performance evaluation techniques

I. INTRODUCTION

Evolutions in power systems, such as increased uncertainty
due to an increase of renewable energy sources, challenge
currently used deterministic reliability criteria. More advanced
reliability management approaches and criteria (RMACs) to
overcome those challenges are under development [1]–[3].
These alternative RMACs are typically probabilistic in nature
and can have different requirements compared to traditional
deterministic approaches, for instance in terms of data and
flexibility. Smart grids will provide a framework to exploit the
full potential of alternative reliability management strategies.
An example of this is given by Ovaere et al., who have
indicated that for a basic short term probabilistic reliability
management strategy, using a more detailed representation
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Fig. 1. Overview of the procedure for selecting an RMAC

of value of lost load (VOLL) data has a high potential for
efficiency improvements [4]. In existing power systems, it is
practically impossible to differentiate between consumers in
load curtailment, but this becomes an option when smart grids
will have been deployed in the future.

In order to convince power system stakeholders to move
towards an alternative RMAC, it is important to have an
accurate and reliable performance evaluation. The overall
decision making process of selecting an appropriate RMAC is
influenced by long term and short term uncertainties, as shown
in Fig. 1. In order to assess the long term impact of using
alternative RMACs, similar uncertainties need to be considered
as in transmission expansion planning [5]. The performance
of short term reliability management is also influenced by
several short term uncertainties, such as contingencies, load
and renewable energy sources, behaviour of corrective control,
behaviour of exogenous actors and unforeseeable events. The
focus of this paper is on the performance evaluation of
short term reliability management impacted by short term
uncertainties, as included in the dashed box in Fig. 1.

Techniques for evaluating performance of short term relia-
bility management have similarities with reliability assessment
techniques. Reliability assessment can be considered as part of
the performance evaluation. A major and important difference
between reliability assessment and performance evaluation
is that reliability assessment mainly focuses on the final
system state, while in order to obtain a complete and reliable978-1-5386-1953-7/17/$31.00 c©2017 IEEE



performance evaluation, both the final system state resulting
from reliability management and the trajectory followed while
executing reliability management should be evaluated [6], [7].
Another important difference is that especially failure states
are of interest for reliability assessment, while performance
evaluation also has to evaluate the performance of relia-
bility management in normal states. Complete performance
evaluation of RMACs, considering both the decision making
trajectory and the final system states, has not been specifically
covered in literature so far. Nevertheless, a decent and com-
plete performance evaluation of different RMACs is crucial,
given the importance for society of an adequate reliability
level.

Performance evaluation of different short term reliability
management approaches and criteria is an offline process and
consists of four main steps:

1) Selection of a performance evaluation technique and
appropriate sampling technique

2) Simulation of decision making behaviour for different
short term RMACs

3) Selection and calculation of performance indicators
4) Post processing of results and comparison of perfor-

mance of different RMACs
The focus of this paper will be on the first point, while points
2 to 4 are introduced for sake of completeness. The paper
gives an overview of different techniques that are used in other
contexts, but are also applicable to evaluate the performance of
short term power system reliability management. Advantages
and shortcomings of the different techniques are discussed in
order to guide the selection or development of an appropriate
performance evaluation technique. Furthermore, the authors
bring together the pieces required in order to analyse and
evaluate different reliability management approaches and cri-
teria and combine them in an analytical formulation, which
facilitates the comparison between evaluation techniques.

Section II introduces the simulation of the dynamic process
of short term reliability management, the performance evalu-
ation based on performance indicators and the comparison of
the performance. Section III describes different performance
evaluation techniques. Section IV discusses the advantages and
shortcomings of the techniques and the characteristics of an
ideal performance evaluation technique. Section V concludes
the paper.

II. SIMULATION, EVALUATION AND COMPARISON OF
SHORT TERM RELIABILITY MANAGEMENT

In order to frame the performance evaluation techniques,
the simulation of short term reliability management and its
characteristics are introduced together with the evaluation
procedure.

A. Simulation of short term reliability management
The decision making process of short term reliability man-

agement based on a particular reliability criterion j is a
dynamic process:

Xj(t) = fj(Xj(t− 1), Y (t)) (1)
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Fig. 2. Multi-stage procedure of the decision making process of short term
reliability management

where Xj(t) is the state vector at time t according to criterion
j, consisting of generator active power set points, phase shift-
ing transformer tap settings, switch positions, voltage/reactive
power set points, etc., Xj(0) is the initial state of the system
and Y (t) is the vector of external forcing inputs at time t,
containing forecast values of net demand and wind generation
(aggregated or per node), net demand and wind generation
realizations per node, status of system components, failure
data, etc. Some input parameters are non-stationary, e.g. due to
daily cycles, which should be handled appropriately in order
to obtain a decent performance evaluation. The function fj
is a deterministic function representing the decision making
behaviour of a system operator in short term reliability man-
agement based on a particular reliability criterion j. Short
term reliability management typically ranges from a few days
ahead of real time up to real time and consists of multiple
stages, as illustrated for a two stage decision making process,
consisting of operational planning and real time operation, in
Fig. 2. This multi-stage decision making process represented
by fj is typically simulated using consecutive multi-stage opti-
mizations, also denoted as security constrained optimal power
flows (SCOPF). The exact, non-linear AC-SCOPF typically
has convergence issues, bringing alternative, approximate,
linear and convex implementations in the picture, such as DC-
SCOPF or LPAC [8], [9]. The computational burden of these
optimizations is a challenge due to the many binary variables
that is introduced in the formulation, especially in real systems
with thousands of nodes.

Different reliability criteria imply different security con-
straints in the optimization formulations, leading to different
functions fj . Differences exist in terms of which and how
system states are considered in the decision stages ahead of



real time. Moreover, the way costs at different stages are
considered can differ and additional thresholds can be imposed
on reliability indicators, such as energy not supplied or power
not supplied, either aggregated or separated per contingency,
node or consumer.

B. Performance evaluation and comparison

Evaluation of short term reliability management based on
criterion j requires the calculation of quantitative performance
indicators Qij based on the state vectors Xj(t):

Qij,traj.(t) = gi(Xj(t)) (2)

Qij =

T∑
t=1

Qij,traj.(t) ·∆t (3)

where gi is a deterministic function translating the state
space vectors Xj(t) into a performance indicator Qij,traj.(t).
Performance indicators Qij,traj.(t) can be system related, such
as over- or undervoltage or line overloading, consumer related,
such as energy not supplied or outage cost, or can consider
aspects of both, such as total system cost.1 The value of
the performance indicator at time t implicitly depends on
the previous state and the external forcing inputs at time t.
For this reason, the performance indicators follow a trajectory
over time that depends on the applied RMAC. This trajectory,
taking into account the dependence on the previous system
state, should be evaluated in an ideal performance evaluation.

The objective of the performance evaluation is to ver-
ify whether one criterion performs significantly better than
another one in terms of particular quantitative performance
indicators Qi. In order to obtain reliable conclusions about the
relative performance of different reliability criteria, stationary
distributions of the performance indicators Qij should be used.

III. PERFORMANCE EVALUATION TECHNIQUES

Performance evaluation techniques can be classified in sim-
ulation techniques and analytical approaches. A distinction
can be made between sequential and non-sequential tech-
niques. Sequential techniques allow evaluation of the complete
dynamic behaviour of decision making, taking into account
temporal correlation in the input and state variables. Non-
sequential techniques on the other hand ignore the time
dependency of the external forcing inputs Y and the time
correlations.

Simulation techniques, such as Monte Carlo simulation,
simulate the actual process and random behaviour of the
system. The uncertainty in terms of external forcing inputs
Y is included in the sampling process, as values with a
higher probability occur more frequently in the sample [10].
Simulation techniques allow to make conclusions about the
distribution of the output variables and propagate the uncer-
tainty from the input to the output variables.

1Next to the quantitative indicators, qualitative aspects need to be consid-
ered in a complete performance evaluation, such as data issues, ease of use
and social acceptance, resulting in a multifaceted analysis.

Analytical techniques are typically based on a mathematical
model resulting in a specific solution for a given input.
Uncertainties can be included using stochastic models.

A. Sequential simulation

Sequential simulations allow to make conclusions about
the distribution of performance indicators for time periods
of length T , e.g. a year. A sample of Y (0), . . . , Y (T ) with
N realizations is generated, which is denoted by yn(t). For
each realization, xjn(t) = fj(xjn(t− 1), yn(t)) is recursively
calculated with xjn(0) = x0. Performance indicators qijn can
be evaluated per time period n of length T in the sample
following equations 2 and 3. In order to obtain stationary
distributions of the performance indicators, the first few it-
erations of the simulations including the transient behaviour
of the dynamic decision making process should be dropped.

A sample should represent the variation between different
time periods of length T in terms of uncertainties regarding
load and wind forecasts and realizations and availabilities of
system components. A sample can be generated based on
historical time series of forecasts and realizations of load and
wind and system component statuses or based on statistical
models of load, wind power and failure and repair of system
components [11]. However, the former is challenging due
to non stationarities in the time series, while the latter is
challenging due to correlations between the parameters in the
multi-dimensional input parameter space.

The mean of the performance indicator and its confidence
interval can be approximated as:

E[Qij ] ≈
1

N

N∑
n=1

qijn ± tα ·
sD√
N

(4)

where sD =
√

1
N−1

∑N
n=1(qijn − q̄ij)2 is the sample stan-

dard deviation, q̄ij = 1
N

∑N
n=1 qijn, and tα is the α-percentile

of the t-distribution.2 Moreover, the (joint) marginal distribu-
tion of performance indicators Qij,traj.(t) can be determined
based on the simulations, which allows to verify whether a
particular criterion performs better than another one at each
time instant t in the period T .

B. Non-sequential simulation

Non-sequential simulation techniques allow to make conclu-
sions about the (relative) performance of different reliability
criteria at an average point in time and the uncertainty on this
value. Evaluations are made for random snapshots. For each
snapshot, the different decision stages in short term reliability
management are simulated. Non-sequential simulations of
short term reliability management can be represented as:

xj = fj(x0, yn) ∀n ∈ N (5)

2Alternatively, bootstrapping can be used in order to obtain asymmetric
confidence intervals taking into account the asymmetry of the distribution of
the performance indicators. However, uncertainty is typically underestimated
with bootstrapping techniques.



where yn is a realization of external forcing inputs in the sam-
ple and x0 the initial conditions. Time dependence is omitted
in these simulations. Mean and variance of the performance
indicators Qij can be calculated similarly to Eq. 4.

The sample of N system states should represent the correla-
tion between the input parameters and the distributions of the
external forcing inputs. The latter is graphically illustrated in
Fig. 3(a) and 3(d) for an example with a one dimensional exter-
nal forcing input Y and constant initial conditions. The sample
of external forcing inputs can be generated based on stochastic
models, but this is challenging due to correlations between the
parameters of the input space. Alternatively, samples can be
randomly drawn from (historical) time series of the different
parameters in the external forcing input space, however, non-
stationarities in the time series make this challenging.

Each realization yn in the sample has an equal probability
1
N , if random sampling is applied. However, the performance
of short term reliability management strategies might be
strongly affected by a set of high impact contingencies that
only occur with a low probability. The effect of these contin-
gencies only becomes visible in the result after a large number
of simulations. In order to reduce the number of simulations,
importance sampling can be applied. By sampling based on
a different distribution than the distribution of interest, highly
impacting states of the external forcing input space appear
more often in the sample. However, finding such an alternative
distribution is typically challenging [12].

C. Emulation

An emulator is a statistical representation of a simulator
and is typically developed using a Gaussian process or anal-
ogous Bayes linear theory based on a reduced number of
simulations [13], [14]. It allows to determine uncertainties in
model outputs arising from numerous sources of uncertainty,
e.g. parametric uncertainty, condition uncertainty, functional
uncertainty, stochastic uncertainty, etc. [15] Emulation is ap-
plied in other application contexts requiring highly complex
models that are computationally intensive to simulate, such
as transmission expansion planning [16], system generation
planning [17], climate models or to predict the behaviour of
nuclear power reactors [14].

The single step function fj , representing the simulator of
short term reliability management according to criterion j,
is a deterministic function, which can be approximated by a
function f̃j :

Xj(t) = f̃j(Xj(t− 1), Y (t)) (6)

The function f̃j is determined based on simulations for a train-
ing sample of external forcing inputs and system states (xj , y).
The training sample is a subspace of the input region of interest
of the single step function fj . Moreover, prior beliefs about the
simulator, i.e. before the training data are considered, are taken
into account. These prior beliefs are represented by the mean
and covariance structures of the Gaussian process [14]. The
emulation of a one-dimensional function based on a reduced
number of simulations is graphically illustrated in Fig. 3(c).

Instead of simulating the exact function fj for different
external forcing inputs y and different previous system states
xj , the function f̃j can be evaluated directly in terms of y
and xj . This results in an approximate value of the non-
sequential performance indicator Q̃ij . The expected value of
the approximate indicator can be calculated directly if the
multivariate distribution Π(xj , y) is known, however this is
rarely the case in practice as the multivariate distribution of
the system states is hard to determine:

E[Q̃ij ] =

∫
Xj

∫
Y

Π(xj , y) · gi(f̃j(xj , y))dXjdY (7)

Alternatively, direct evaluations of the approximate function
f̃j for a sample of external forcing inputs and system states
that represents the multivariate distribution Π(xj , y) can be
used.

Eq. 6 corresponds to the emulation of the single step
function xj(t) = fj(xj(t − 1), y(t)). The emulation of this
single step function can be used to construct an emulator
for the dynamic simulator of the decision making process
(xj(1), . . . , xj(T )) = fj(x0, y(1), . . . , y(T )). In this case, the
full simulator output (xj(1), . . . , xj(T )) is approximated by
iteratively applying xj(t) = f̃j(xj(t − 1), y(t)), with f̃j the
single step function in Eq. 6 for different time series of external
forcing inputs and initial system states (x0, y(1), . . . , y(T ))
within the input region of interest of the full simulator. The
distribution of the sampled trajectories (xj(1), . . . , xj(T ))
needs to be verified in order to determine whether the applied
training data for the single step emulator are adequate. If not,
further runs of the single step function are required and the
procedure needs to be repeated [14].

If an emulator of the dynamic simulator can be obtained, the
calculation time can significantly be reduced compared to the
sequential simulation approach, as time consuming simulations
are replaced by analytical function evaluations. However, a
challenge of emulation is the sampling of an appropriate
training set. Short term reliability management is subject to
a complex, highly dimensional parameter space of external
forcing inputs, which might be hard to process in an emula-
tion technique. A sufficiently high number of simulations is
required in order to obtain a satisfactory approximation f̃j , if
the function fj is highly variable. This aspect is difficult to
verify without knowing the exact behaviour of the function.
Moreover, high impact low probability events might not be
well represented in the emulator if only a small number of
system states is simulated. Therefore, it is important that the
emulator is also trained to extreme events.

D. Analytical state enumeration

Analytical state enumeration (ASE) considers a prescribed
set of combinations of external forcing inputs and initial
conditions with probabilities assigned to them. The fact that
the probability distribution of the initial state x0 is not known
analytically and is hard to determine in practice leads to a
similar challenge as in non-sequential simulation. Therefore,
initial conditions are typically assumed to be constant. The
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Fig. 3. Differences between non-sequential performance evaluation techniques
and the applied probability density function for a one dimensional space of
external forcing inputs Y and constant initial conditions x0.

state space of external forcing inputs Y is divided in intervals
∆ym for which the function fj is simulated at one point ym in
the interval. The function fj is approximated by assigning the
same function value fj(x0, ym) to all y within the interval
∆ym. The approach is graphically illustrated for a one-
dimensional set Y and fixed initial conditions x0 in Fig. 3(b).
The accuracy of the results strongly depends on the number
of intervals M and the sizing of the intervals ∆ym, which can
be improved using appropriate snapshot selection techniques.

The probability of occurrence of a state in the interval ∆ym
is calculated as:

Π(x0,∆ym) =

∫
∆ym

Π(x0, y)dy (8)

The expected value of the performance indicator can be
approximated as:

E[Qij ] ≈
M∑
m=1

Π(x0,∆ym) · fj(x0, ym) (9)

Applying state enumeration in a sequential context is chal-
lenging and would require the simulation of a prescribed set
of time series of external forcing inputs. However, the set of
all possible time series is hard to approximate with a reduced
set of time series due to the many possible combinations of
external forcing inputs at different time instants. Also the
probability of occurrence of a certain time series is hard to
obtain.

IV. COMPARISON AND DISCUSSION

An ideal performance evaluation technique should exploit
the advantages of the existing techniques and overcome their

drawbacks. A qualitative comparison of the different tech-
niques for different aspects is summarized in table I.

TABLE I
QUALITATIVE COMPARISON OF DIFFERENT PERFORMANCE EVALUATION

TECHNIQUES

(1) (2) (3) (4) (5) (6)

Seq. simulation - - - ++ + ++ - -
Non-seq. simulation - - - ++ - -
Seq. emulation + + + - - + +
Non-seq. emulation ++ ++ - - - - +
Analytical state enumeration - + - - ++ - - +

1: Time per simulation 4: Simplicity
2: Number of simulations 5: Suitability short term evaluation
3: Accuracy 6: Suitability long term evaluation
- -: very bad -: bad +: good ++: very good

Simulation techniques require a sufficiently large sample
size in order to obtain a representative solution. Especially
sequential techniques are challenged by this aspect, because
parallellization is possible in sequential simulations in terms of
the sample size N , but within the simulation of a time period
of length T possibilities for parallel simulations are limited.
Non-sequential simulation techniques allow for parallel simu-
lations of single time instances rather than time periods, which
reduces the computation time significantly, especially if a lot
of computational power is available. Studies in the context
of power system reliability assessment have already shown
that similar results can be obtained in terms of energy not
supplied and load curtailment if non-sequential simulations are
used compared to sequential simulations [18]–[20]. However,
the major drawback of non-sequential simulation techniques is
that the dynamic characteristics of short term reliability man-
agement and time correlations are ignored. Pseudo-sequential
approaches are developed that allow to determine interruption
duration and interruption frequency indicators in a traditional
reliability assessment [21]–[23], but the main problem with
these techniques in the context of performance evaluation of
short term reliability management is that they mainly focus
on the final system states, while omitting the decision making
trajectory.

Emulation and analytical state enumeration can give an
indication of the change in performance based on a limited
number of simulations. This makes them more applicable to
assess the long term impact of using alternative reliability
criteria, because detailed simulations of short term reliability
management for multiple years are not suitable from a compu-
tational perspective. Emulation has an advantage compared to
analytical state enumeration, namely that it allows to quantify
uncertainty for all points which have not been evaluated [16],
while state enumeration typically focuses on expected values
of performance indicators [10]. ASE is easy to use on the other
hand, but results are sensitive to the set of selected system
states. A major drawback of analytical techniques is that
simplifying assumptions and approximations need to be made
due to the complex nature of short term reliability management
[10]. This makes them hard to apply in highly-dimensional



systems with a lot of uncertain parameters. Principal com-
ponent analysis in a preprocessing step, which analyses the
importance of different parameters in the parameter space, can
(partly) overcome this issue. It allows to reduce the dimensions
of the parameter space and to focus on the most influential
parameters. Furthermore, it is challenging to consider the
trajectory of reliability management in analytical approaches.
Therefore, analytical techniques are less suitable than sequen-
tial simulation techniques to provide accurate conclusions in
short term performance evaluation of RMACs.

A major challenge in the performance evaluation techniques
is the appropriate choice of the initial state x0. The initial state
x0 impacts the state vector xj that is obtained and therefore
the performance of the reliability management strategy. The
multi-variate stationary distribution of the initial system con-
ditions x0 is unknown analytically and is hard to estimate in
practice. Moreover, it might differ across reliability criteria. In
practice, the initial state x0 is typically assumed to be constant,
however, an additional sensitivity analysis might be useful in
order to verify the impact of the state x0 on the performance
evaluation.

V. CONCLUSION

Two types of techniques to evaluate performance of reli-
ability management approaches and criteria can typically be
distinguished: analytical techniques and simulation techniques,
which can be sequential or non-sequential in nature. In or-
der to accurately quantify the short term impact of using
alternative short term reliability management approaches and
criteria, the dynamic characteristics of the decision making
behaviour of short term reliability management should be
considered in the evaluation. Sequential simulations allow to
evaluate both the final system states and the decision making
trajectory, but purely sequential simulations are impractical
from a computational perspective, especially in real systems
with thousands of nodes. The reduced computation time of
analytical techniques, such as emulation or state enumeration,
comes with an increased complexity or a reduced accuracy.

Future work should focus on obtaining an accurate and
computationally tractable performance evaluation technique.
This is important, because an adequate performance evaluation
is crucial to convince transmission system operators to move
towards alternative approaches. Emulation looks promising
from a theoretical point of view, but more in depth research
is required in order to fully grasp the possibilities of this
technique in the context of assessing the short term impact of
alternative reliability criteria given the complex and dynamic
simulation and its multi-dimensional input parameter space.
Alternatively, looking for (pseudo)-sequential evaluation tech-
niques that combine the accuracy of sequential simulations
and the parallellization options of non-sequential techniques
might be promising in order to move a step forward.
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