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Abstract
In the classical binary search in a path the aim is to detect an unknown target by asking as
few queries as possible, where each query reveals the direction to the target. This binary search
algorithm has been recently extended by [Emamjomeh-Zadeh et al., STOC, 2016] to the problem
of detecting a target in an arbitrary graph. Similarly to the classical case in the path, the
algorithm of Emamjomeh-Zadeh et al. maintains a candidates’ set for the target, while each
query asks an appropriately chosen vertex– the “median”–which minimises a potential Φ among
the vertices of the candidates’ set. In this paper we address three open questions posed by
Emamjomeh-Zadeh et al., namely (a) detecting a target when the query response is a direction
to an approximately shortest path to the target, (b) detecting a target when querying a vertex
that is an approximate median of the current candidates’ set (instead of an exact one), and
(c) detecting multiple targets, for which to the best of our knowledge no progress has been made
so far. We resolve questions (a) and (b) by providing appropriate upper and lower bounds, as well
as a new potential Γ that guarantees efficient target detection even by querying an approximate
median each time. With respect to (c), we initiate a systematic study for detecting two targets
in graphs and we identify sufficient conditions on the queries that allow for strong (linear) lower
bounds and strong (polylogarithmic) upper bounds for the number of queries. All of our positive
results can be derived using our new potential Γ that allows querying approximate medians.
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1 Introduction

The classical binary search algorithm detects an unknown target (or “treasure”) t on a path
with n vertices by asking at most logn queries to an oracle which always returns the direction
from the queried vertex to t. To achieve this upper bound on the number of queries, the
algorithm maintains a set of candidates for the place of t; this set is always a sub-path, and
initially it is the whole path. Then, at every iteration, the algorithm queries the middle
vertex (“median”) of this candidates’ set and, using the response of the query, it excludes
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20:2 Binary Search in Graphs Revisited

either the left or the right half of the set. This way of searching for a target in a path can
be naturally extended to the case where t lies on an n-vertex tree, again by asking at most
logn queries that reveal the direction in the (unique) path to t [22]. The principle of the
binary search algorithm on trees is based on the same idea as in the case of a path: for every
tree there exists a separator vertex such that each of its subtrees contains at most half of the
vertices of the tree [14], which can be also efficiently computed.

Due to its prevalent nature in numerous applications, the problem of detecting an unknown
target in an arbitrary graph or, more generally in a search space, has attracted many research
attempts from different viewpoints. Only recently the binary search algorithm with logn
direction queries has been extended to arbitrary graphs by Emamjomeh-Zadeh et al. [10]. In
this case there may exist multiple paths, or even multiple shortest paths form the queried
vertex to t. The direction query considered in [10] either returns that the queried vertex q is
the sought target t, or it returns an arbitrary direction from q to t, i.e. an arbitrary edge
incident to q which lies on a shortest path from q to t. The main idea of this algorithm
follows again the same principle as for paths and trees: it always queries a vertex that is the
“median” of the current candidates’ set and any response to the query is enough to shrink
the size of the candidates’ set by a factor of at least 2. Defining what the “median” is in the
case of general graphs now becomes more tricky: Emamjomeh-Zadeh et al. [10] define the
median of a set S as the vertex q that minimizes a potential function Φ, namely the sum of
the distances from q to all vertices of S.

Apart from searching for upper bounds on the number of queries needed to detect a
target t in graphs, another point of interest is to derive algorithms which, given a graph G,
compute the optimal number of queries needed to detect an unknown target in G (in the
worst case). This line of research was initiated in [18] where the authors studied directed
acyclic graphs (DAGs). Although computing a query-optimal algorithm is known to be
NP-hard on general graphs [4,8,16], there exist efficient algorithms for trees; after a sequence
of papers [1, 13, 17, 19, 26], linear time algorithms were found in [19, 22]. Different models
with queries of non-uniform costs or with a probability distribution over the target locations
were studied in [5–7,15].

A different line of research is to search for upper bounds and information-theoretic
bounds on the number of queries needed to detect a target t, assuming that the queries
incorporate some degree of “noise”. In one of the variations of this model [2, 10, 11], each
query independently returns with probability p > 1

2 a direction to a shortest path from
the queried vertex q to the target, and with probability 1− p an arbitrary edge (possibly
adversarially chosen) incident to q. The study of this problem was initiated in [11], where
Ω(logn) and O(logn) bounds on the number of queries were established for a path with n
vertices. This information-theoretic lower bound of [11] was matched by an improved upper
bound in [2]. The same matching bound was extended to general graphs in [10].

In a further “noisy” variation of binary search, every vertex v of the graph is assigned a
fixed edge incident to v (also called the “advice” at v). Then, for a fraction p > 1

2 of the
vertices, the advice directs to a shortest path towards t, while for the rest of the vertices
the advice is arbitrary, i.e. potentially misleading or adversarially chosen [3]. This problem
setting is motivated by the situation of a tourist driving a car in an unknown country that
was hit by a hurricane which resulted in some fraction of road-signs being turned in an
arbitrary and unrecognizable way. The question now becomes whether it is still possible to
navigate through such a disturbed and misleading environment and to detect the unknown
target by asking only few queries (i.e. taking advice only from a few road-signs). It turns out
that, apart from its obvious relevance to data structure search, this problem also appears in
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artificial intelligence as it can model searching using unreliable heuristics [3,20,23]. Moreover
this problem also finds applications outside computer science, such as in navigation issues in
the context of collaborative transport by ants [12].

Another way of incorporating some “noise” in the query responses, while trying to detect
a target, is to have multiple targets hidden in the graph. Even if there exist only two unknown
targets t1 and t2, the response of each query is potentially confusing even if every query
correctly directs to a shortest path from the queried vertex to one of the targets. The reason
of confusion is that now a detecting algorithm does not know to which of the hidden targets
each query directs. In the context of the above example of a tourist driving a car in an
unknown country, imagine there are two main football teams, each having its own stadium.
A fraction 0 < p1 < 1 of the population supports the first team and a fraction p2 = 1−p1 the
second one, while the supporters of each team are evenly distributed across the country. The
driver can now ask questions of the type “where is the football stadium?” to random local
people along the way, in an attempt to visit both stadiums. Although every response will
be honest, the driver can never be sure which of the two stadiums the local person meant.
Can the tourist still detect both stadiums quickly enough? To the best of our knowledge the
problem of detecting multiple targets in graphs has not been studied so far; this is one of the
main topics of the present paper.

The problem of detecting a target within a graph can be seen as a special case of a
two-player game introduced by Renyi [25] and rediscovered by Ulam [27]. This game does not
necessarily involve graphs: the first player seeks to detect an element known to the second
player in some search space with n elements. To this end, the first player may ask arbitrary
yes/no questions and the second player replies to them honestly or not (according to the
details of each specific model). Pelc [24] gives a detailed taxonomy for this kind of games.
Group testing is a sub-category of these games, where the aim is to detect all unknown
objects in a search space (not necessarily a graph) [9]. Thus, group testing is related to the
problem of detecting multiple targets in graphs, which we study in this paper.

1.1 Our contribution
In this paper we systematically investigate the problem of detecting one or multiple hidden
targets in a graph. Our work is driven by the open questions posed by the recent paper
of Emamjomeh-Zadeh et al. [10] which dealt with the detection of a single target with
and without “noise”. More specifically, Emamjomeh-Zadeh et al. [10] asked for further
fundamental generalizations of the model which would be of interest, namely (a) detecting
a single target when the query response is a direction to an approximately shortest path,
(b) detecting a single target when querying a vertex that is an approximate median of the
current candidates’ set S (instead of an exact one), and (c) detecting multiple targets, for
which to the best of our knowledge no progress has been made so far.

We resolve question (a) in Section 2.1 by proving that any algorithm requires Ω(n) queries
to detect a single target t, assuming that a query directs to a path with an approximately
shortest length to t. Our results hold essentially for any approximation guarantee, i.e. for
1-additive and for (1 + ε)-multiplicative approximations.

Regarding question (b), we first prove in Section 2.2 that, for any constant 0 < ε < 1,
the algorithm of [10] requires at least Ω(

√
n) queries when we query each time an (1 + ε)-

approximate median (i.e. an (1 + ε)-approximate minimizer of the potential Φ over the
candidates’ set S). Second, to resolve this lower bound, we introduce in Section 2.3 a new
potential Γ. This new potential can be efficiently computed and, in addition, guarantees
that, for any constant 0 ≤ ε < 1, the target t can be detected in O(logn) queries even when
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an (1 + ε)-approximate median (with respect to Γ) is queried each time.
Regarding question (c), we initiate in Section 3 the study for detecting multiple targets

on graphs by focusing mainly to the case of two targets t1 and t2. We assume throughout
that every query provides a correct answer, in the sense that it always returns a direction to
a shortest path from the queried vertex either to t1 or to t2. The “noise” in this case is that
the algorithm does not know whether a query is returning a direction to t1 or to t2. Initially
we observe in Section 3 that any algorithm requires n

2 − 1 (resp. n− 2) queries in the worst
case to detect one target (resp. both targets) if each query directs adversarially to one of the
two targets. Hence, in the remainder of Section 3, we consider the case where each query
independently directs to the first target t1 with a constant probability p1 and to the second
target t2 with probability p2 = 1− p1. For the case of trees, we prove in Section 3 that both
targets can be detected with high probability within O(logn) queries.

For general graphs, we distinguish between biased queries (p1 > p2) in Section 3.1 and
unbiased queries (p1 = p2 = 1

2 ) in Section 3.2. For biased queries, we observe that we can
utilize the algorithm of Emamjomeh-Zadeh et al. [10] to detect the first target t1 with high
probability in O(logn) queries; this can be done by considering the queries that direct to t2
as “noise”. Thus our objective becomes to detect the target t2 in a polylogarithmic number of
queries. Notice here that we cannot apply the “noisy” framework of [10] to detect the second
target t2 , since now the “noise” is larger than 1

2 . We derive a probabilistic algorithm that
overcomes this problem and detects the target t2 with high probability in O(∆ log2 n) queries,
where ∆ is the maximum degree of a vertex in the graph. Thus, whenever ∆ = O(poly logn),
a polylogarithmic number of queries suffices to detect t2. In contrast, we prove in Section 3.2
that, for unbiased queries, any deterministic (possibly adaptive) algorithm that detects
at least one of the targets requires at least n

2 − 1 queries, even in an unweighted cycle.
Extending this lower bound for two targets, we prove that, assuming 2c ≥ 2 different targets
and unbiased queries, any deterministic (possibly adaptive) algorithm requires at least n

2 − c
queries to detect one of the targets.

Departing from the fact that our best upper bound on the number of biased queries in
Section 3.1 is not polylogarithmic when the maximum degree ∆ is not polylogarithmic, we
investigate in Section 4 several variations of queries that provide more informative responses.
In Section 4.1 we turn our attention to “direction-distance” biased queries which return with
probability pi both the direction to a shortest path to ti and the distance between the queried
vertex and ti. In Section 4.2 we consider another type of a biased query which combines the
classical “direction” query and an edge-variation of it. For both query types of Sections 4.1
and 4.2 we prove that the second target t2 can be detected with high probability in O(log3 n)
queries. Furthermore, in Sections 4.3 and 4.4 we investigate two further generalizations of
the “direction” query which make the target detection problem trivially hard and trivially
easy to solve, respectively.

Due to lack of space, the full paper with all proofs is included in a clearly marked
Appendix, to be read at the discretion of the Program Committee.

1.2 Our Model and Notation
We consider connected, simple, and undirected graphs. A graph G = (V,E), where |V | = n,
is given along with a weight function w : E → R+ on its edges; if w(e) = 1 for every e ∈ E
then G is unweighted. An edge between two vertices v and u of G is denoted by vu, and in
this case v and u are said to be adjacent. The distance d(v, u) between vertices v and u is
the length of a shortest path between v and u with respect to the weight function w. Since
the graphs we consider are undirected, d(u, v) = d(v, u) for every pair of vertices v, u. Unless
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specified otherwise, all logarithms are taken with base 2. Whenever an event happens with
probability at least 1− 1

nα for some α > 0, we say that it happens with high probability.
The neighborhood of a vertex v ∈ V is the set N(v) = {u ∈ V : vu ∈ E} of its adjacent

vertices. The cardinality of N(v) is the degree deg(v) of v. The maximum degree among
all vertices in G is denoted by ∆(G), i.e. ∆(G) = max{deg(v) : v ∈ V }. For two vertices
v and u ∈ N(v) we denote by N(v, u) = {x ∈ V : d(v, x) = w(vu) + d(u, x)} the set of
vertices x ∈ V for which there exists a shortest path from v to x, starting with the edge vu.
Note that, in general, N(u, v) 6= N(v, u). Let T = {t1, t2, · · · , t|T |} ⊆ V be a set of (initially
unknown) target vertices. A direction query (or simply query) at vertex v ∈ V returns with
probability pi a neighbor u ∈ N(v) such that ti ∈ N(u, v), where

∑|T |
i=1 pi = 1. If there exist

more than one such vertices u ∈ N(v) leading to ti via a shortest path, the direction query
returns an arbitrary one among them, i.e. possibly chosen adversarially, unless specified
otherwise. Moreover, if the queried vertex v is equal to one of the targets ti ∈ T , this is
revealed by the query with probability pi.

2 Detecting a Unique Target

In this section we consider the case where there is only one unknown target t = t1, i.e. T = {t}.
In this case the direction query at vertex v always returns a neighbor u ∈ N(v) such that
t ∈ N(u, v). For this problem setting, Emamjomeh-Zadeh et al. [10] provided a polynomial-
time algorithm which detects the target t in at most logn direction queries. During its
execution, the algorithm of [10] maintains a “candidates’ set” S ⊆ V such that always t ∈ S,
where initially S = V . At every iteration the algorithm computes in polynomial time a vertex
v (called the median of S) which minimizes a potential ΦS(v) among all vertices of the current
set S. Then it queries a median v of S and it reduces the candidates’ set S to S ∩N(v, u),
where u is the vertex returned by the direction query at v. The upper bound logn of the
number of queries in this algorithm follows by the fact that always |S ∩ N(v, u)| ≤ |S|

2 ,
whenever v is the median of S.

2.1 Bounds for Approximately Shortest Paths
We provide lower bounds for both additive and multiplicative approximation queries. A
c-additive approximation query at vertex v ∈ V returns a neighbor u ∈ N(v) such that
w(vu) + d(u, t) ≤ d(v, t) + c. Similarly, an (1 + ε)-multiplicative approximation query at
vertex v ∈ V returns a neighbor u ∈ N(v) such that w(vu) + d(u, t) ≤ (1 + ε) · d(v, t).

It is not hard to see that in the unweighted clique with n vertices any algorithm requires
in worst case n− 1 1-additive approximation queries to detect the target t. Indeed, in this
case d(v, t) = 1 for every vertex v 6= t, while every vertex u /∈ {v, t} is a valid response of an
1-additive approximation query at v. Since in the case of the unweighted clique an additive
1-approximation is the same as a multiplicative 2-approximation of the shortest path, it
remains unclear whether 1-additive approximation queries allow more efficient algorithms for
graphs with large diameter. In the next theorem we strengthen this result to graphs with
unbounded diameter.

I Theorem 1. Assuming 1-additive approximation queries, any algorithm requires at least
n− 1 queries to detect the target t, even in graphs with unbounded diameter.

In the next theorem we extend Theorem 1 by showing a lower bound of n · ε
4 queries

when we assume (1 + ε)-multiplicative approximation queries.

MFCS 2017
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I Theorem 2. Let ε > 0. Assuming (1 + ε)-multiplicative approximation queries, any
algorithm requires at least at least n · ε

4 queries to detect the target t.

2.2 Lower Bound for querying the Approximate Median
The potential ΦS : V → R+ of [10], where S ⊆ V , is defined as follows. For any set S ⊆ V
and any vertex v ∈ V , the potential of v is ΦS(v) =

∑
u∈S d(v, u). A vertex x ∈ V is an

(1 + ε)-approximate minimizer for the potential Φ over a set S (i.e. an (1 + ε)-median of S)
if ΦS(x) ≤ (1 + ε) minv∈V ΦS(v), where ε > 0. We prove that an algorithm querying at each
iteration always an (1 + ε)-median of the current candidates’ set S needs Ω(

√
n) queries.

I Theorem 3. Let ε > 0. If the algorithm of [10] queries at each iteration an (1 + ε)-median
for the potential function Φ, then at least Ω(

√
n) queries are required to detect the target t in

a graph G with n vertices, even if the graph G is a tree.

2.3 Upper Bound for querying the Approximate Median
In this section we introduce a new potential function ΓS : V → N for every S ⊆ V , which
overcomes the problem occured in Section 2.2. This new potential guarantees efficient
detection of t in at most O(logn) queries, even when we always query an (1 + ε)-median
of the current candidates’ set S (with respect to the new potential Γ), for any constant
0 < ε < 1. Our algorithm is based on the approach of [10], however we now query an
approximate median of the current set S with respect to Γ (instead of an exact median with
respect to Φ of [10]).

I Definition 4 ( Potential Γ ). Let S ⊆ V and v ∈ V . Then ΓS(v) = max{|N(v, u) ∩ S| :
u ∈ N(v)}.

I Theorem 5. Let 0 ≤ ε < 1. There exists an efficient adaptive algorithm which detects the
target t in at most log n

1−log(1+ε) queries, by querying at each iteration an (1 + ε)-median for the
potential function Γ.

Proof. Our proof closely follows the proof of Theorem 3 of [10]. Let S ⊆ V be an arbitrary
set of vertices of G such that t ∈ S. We will show that there exists a vertex v ∈ V such
that ΓS(v) ≤ |S|

2 . First recall the potential ΦS(v) =
∑

x∈S d(v, x). Let now v0 ∈ V be a
vertex such that ΦS(v0) is minimized, i.e. ΦS(v0) ≤ ΦS(v) for every v ∈ V . Let u ∈ N(v0)
be an arbitrary vertex adjacent to v0. We will prove that |N(v0, u) ∩ S| ≤ |S|

2 . Denote
S+ = N(v0, u) ∩ S and S− = S \ S+. By definition, for every x ∈ S+, the edge v0u lies
on a shortest path from v0 to x, and thus d(u, x) = d(v0, x)− w(v0u). On the other hand,
trivially d(u, x) ≤ d(v0, x) +w(v0u) for every x ∈ S, and thus in particular for every x ∈ S−.
Therefore ΦS(v0) ≤ ΦS(u) ≤ ΦS(v0) + (|S−| − |S+|) · w(v0u), and thus |S+| ≤ |S−|. That
is, |N(v0, u) ∩ S| = |S+| ≤ |S|

2 , since S− = S \ S+. Therefore which then implies that
ΓS(v0) ≤ |S|2 as the choice of the vertex u ∈ N(v0) is arbitrary.

Let vm ∈ V be an exact median of S with respect to Γ. That is, ΓS(vm) ≤ ΓS(v) for
every v ∈ V . Note that ΓS(vm) ≤ ΓS(v0) ≤ |S|2 . Now let 0 ≤ ε < 1 and let va ∈ V be an
(1 + ε)-median of S with respect to Γ. Then ΓS(va) ≤ (1 + ε)ΓS(vm) ≤ 1+ε

2 |S|. Our adaptive
algorithm proceeds as follows. Similarly to the algorithm of [10] (see Theorem 3 of [10]), our
adaptive algorithm maintains a candidates’ set S, where initially S = V . At every iteration
our algorithm queries an arbitrary (1+ε)-median vm ∈ V of the current set S with respect to
the potential Γ. Let u ∈ N(vm) be the vertex returned by this query; the algorithm updates
S with the set N(v, u) ∩ S. Since ΓS(va) ≤ 1+ε

2 |S| as we proved above, it follows that the
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updated candidates’ set has cardinality at most 1+ε
2 |S|. Thus, since initially |S| = n, our

algorithm detects the target t after at most log( 2
1+ε ) n = log n

1−log(1+ε) queries. J

Notice in the statement of Theorem 5 that for ε = 0 (i.e. when we always query an exact
median) we get an upper bound of logn queries, as in this case the size of the candidates’
set decreases by a factor of at least 2. Furthermore notice that the reason that the algorithm
of [10] is not query-efficient when querying an (1 + ε)-median is that the potential ΦS(v)
of [10] can become quadratic in |S|, while on the other hand the value of our potential ΓS(v)
can be at most |S| by Definition 4, for every S ⊆ V and every v ∈ V . Furthermore notice
that, knowing only the value ΦS(v) for some vertex v ∈ V is not sufficient to provide a
guarantee for the proportional reduction of the set S when querying v. In contrast, just
knowing the value ΓS(v) directly provides a guarantee that, if we query vertex v the set S
will be reduced by a proportion of ΓS(v)

|S| , regardless of the response of the query. Therefore,
in practical applications, we may not need to necessarily compute an (exact or approximate)
median of S to make significant progress.

3 Detecting Two Targets

In this section we consider the case where there are two unknown targets t1 and t2, i.e. T =
{t1, t2}. In this case the direction query at vertex v returns with probability p1 (resp. with
probability p2 = 1 − p1) a neighbor u ∈ N(v) such that t1 ∈ N(v, u) (resp. t2 ∈ N(v, u)).
Detecting more than one unknown targets has been raised as an open question by Emamjomeh-
Zadeh et al. [10], while to the best of our knowledge no progress has been made so far in
this direction. Here we deal with both problems of detecting at least one of the targets and
detecting both targets. We study several different settings and derive both positive and
negative results for them. Each setting differs from the other ones on the “freedom” the
adversary has on responding to queries, or on the power of the queries themselves. We will
say that the response to a query directs to ti, where i ∈ {1, 2}, if the vertex returned by the
query lies on a shortest path between the queried vertex and ti.

It is worth mentioning here that, if an adversary would be free to arbitrarily choose
which ti each query directs to (i.e. instead of directing to ti with probability pi), then any
algorithm would require at least bn

2 c (resp. n− 2) queries to detect at least one of the targets
(resp. both targets), even when the graph is a path. Indeed, consider a path v1, . . . , vn where
t1 ∈ {v1, . . . , vbn2 c} and t2 ∈ {vbn2 c+1, . . . , vn}. Then, for every i ∈ {1, . . . , bn

2 c}, the query
at vi would return vi+1, i.e. it would direct to t2. Similarly, for every i ∈ {bn

2 c+ 1, . . . , n},
the query at vi would return vi−1, i.e. it would direct to t1. It is not hard to verify that in
this case the adversary could “hide” the target t1 at any of the first bn

2 c vertices which is not
queried by the algorithm and the target t2 on any of the last n− bn

2 c vertices which is not
queried. Hence, at least bn

2 c queries (resp. n− 2 queries) would be required to detect one of
the targets (resp. both targets) in the worst case.

As a warm-up, we provide in the next theorem an efficient algorithm that detects with
high probability both targets in a tree using O(log2 n) queries.

I Theorem 6. For any constant 0 < p1 < 1, we can detect with probability at least(
1− log n

n

)2
both targets in a tree with n vertices using O(log2 n) queries.

Since in a tree both targets t1, t2 can be detected with high probability in O(log2 n)
queries by Theorem 6, we consider in the remainder of the section arbitrary graphs instead
of trees. First we consider in Section 3.1 biased queries, i.e. queries with p1 >

1
2 . Second we

consider in Section 3.2 unbiased queries, i.e. queries with p1 = p2 = 1
2 .
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3.1 Upper Bounds for Biased Queries
In this section we consider biased queries which direct to t1 with probability p1 >

1
2 and to t2

with probability p2 = 1− p1 <
1
2 . As we can detect in this case the first target t1 with high

probability in O(logn) queries by using the “noisy” framework of [10], our aim becomes to
detect the second target t2 with the fewest possible queries, once we have already detected t1.

For every vertex v and every i ∈ {1, 2}, denote by Eti(v) = {u ∈ N(v) : ti ∈ N(v, u)}
the set of neighbors of v such that the edge uv lies on a shortest path from v to ti. Note
that the sets Et1(v) and Et2(v) can be computed in polynomial time, e.g. using Dijkstra’s
algorithm. We assume that, once a query at vertex v has chosen which target ti it directs
to, it returns each vertex of Eti(v) equiprobably and independently from all other queries.
Therefore, each of the vertices of Et1(v)\Et2(v) is returned by the query at v with probability

p1
|Et1 (v)| , each vertex of Et2(v) \ Et1(v) is returned with probability 1−p1

|Et2 (v)| , and each vertex
of Et1(v) ∩ Et2(v) is returned with probability p1

|Et1 (v)| + 1−p1
|Et2 (v)| . We will show in Theorem

8 that, under these assumptions, we detect the second target t2 with high probability in
O(∆ log2 n) queries where ∆ is the maximum degree of the graph.

The high level description of our algorithm (Algorithm 1) is as follows. Throughout
the algorithm we maintain a candidates’ set S of vertices in which t2 belongs with high
probability. Initially S = V . In each iteration we first compute an (exact or approximate)
median v of S with respect to the potential Γ (see Section 2.3). Then we compute the
set Et1(v) (this can be done as t1 has already been detected) and we query c∆ logn times
vertex v, where c = 7(1+p1)2

p1(1−p1)2 is a constant. Denote by Q(v) the multiset of size c∆ logn
that contains the vertices returned by these queries at v. If at least one of these O(∆ logn)
queries at v returns a vertex u /∈ Et1(v), then we can conclude that u ∈ Et2(v), and thus we
update the set S by S ∩N(v, u). Assume otherwise that all O(∆ logn) queries at v return
vertices of Et1(v). Then we pick a vertex u0 ∈ N(v) that has been returned most frequently
among the O(∆ logn) queries at v, and we update the set S by S ∩N(v, u0). As it turns out,
u0 ∈ Et2(v) with high probability. Since we always query an (exact or approximate) median
v of the current candidates’ set S with respect to the potential Γ, the size of S decreases by
a constant factor each time. Therefore, after O(logn) updates we obtain |S| = 1. It turns
out that, with high probability, each update of the candidates’ set was correct, i.e. S = {t2}.
Since for each update of S we perform O(∆ logn) queries, we detect t2 with high probability
in O(∆ log2 n) queries in total.

Algorithm 1 Given t1, detect t2 with high probability with O(∆ log2 n) queries

1: S ← V ; c← 7(1+p1)2

p1(1−p1)2

2: while |S| > 1 do
3: Compute an (approximate) median v of S with respect to potential Γ; Compute

Et1(v)
4: Query c∆ logn times vertex v; Compute the multiset Q(v) of these query responses
5: if Q(v) \ Et1(v) 6= ∅ then
6: Pick a vertex u ∈ Q(v) \ Et1(v) and set S ← S ∩N(v, u)
7: else
8: Pick a most frequent vertex u ∈ Q(v) and set S ← S ∩N(v, u)

9: return the unique vertex in S

Recall that every query at v returns a vertex u ∈ Et1(v) with probability p1 and a vertex
u ∈ Et2(v) with probability 1− p1. Therefore, for every v ∈ V the multiset Q(v) contains at
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least one vertex u ∈ Et2(v) with probability at least 1− p|Q(v)|
1 = 1− p|c∆ log n|

1 . In the next
lemma we prove that, every time we update S using Step 8, the updated set contains t2 with
high probability.

I Lemma 7. Let S ⊆ V such that t2 ∈ S and let S′ = S ∩ N(v, u) be the updated set at
Step 8 of Algorithm 1. Then t2 ∈ S′ with probability at least 1− 2

n .

Proof. Let δ = 1−p1
1+p1

and c = 7(1+p1)2

p1(1−p1)2 be two constants. Recall that each of the vertices
of Et1(v) \ Et2(v) is returned by the query at v with probability p1

|Et1 (v)| , each vertex of
Et2(v) \ Et1(v) is returned with probability 1−p1

|Et2 (v)| , and each vertex of Et1(v) ∩ Et2(v) is
returned with probability p1

|Et1 (v)| +
1−p1
|Et2 (v)| . Observe that these probabilities are the expected

frequencies for these vertices in Q(v). Recall that Step 8 is executed only in the case where
Q(v) ⊆ Et1(v). To prove the lemma it suffices to show that, whenever Q(v) ⊆ Et1(v), the
most frequent element of Q(v) belongs to Et1(v) ∩ Et2(v) with high probability.

First note that, for the chosen value of δ,

(1 + δ) p1

|Et1(v)| < (1− δ)
(

p1

|Et1(v)| + 1− p1

|Et2(v)|

)
(1)

Let u ∈ Et1(v)\Et2(v), i.e. the query at v directs to t1 but not to t2. We define the random
variable Zi(u), such that Zi(u) = 1 if u is returned by the i-th query at v and Zi(u) = 0
otherwise. Furthermore define Z(u) =

∑c∆ log n
i=1 Zi(u). Since Pr(Zi(u) = 1) = p1

|Et1 (v)| ,
it follows that E(Z(u)) = c∆ logn p1

|Et1 (v)| by the linearity of expectation. Then, using
Chernoff’s bounds we can prove that

Pr(Z(u) ≥ (1 + δ)E(Z(u))) ≤ 1
n2 . (2)

Thus (2) implies that the probability that there exists at least one u ∈ Et1(v) \ Et2(v) such
that Z(u) ≥ (1 + δ)E(Z(u)) is

Pr
(
∃u ∈ Et1(v) \ Et2(v) : Z(u) ≥ (1 + δ) p1

|Et1(v)|

)
< (∆− 1) 1

n2 <
1
n
. (3)

Now let u′ ∈ Et1(v) ∩ Et2(v). Similarly to the above we define the random variable
Z ′i(u′), such that Z ′i(u′) = 1 if u′ is returned by the i-th query at v and Z ′i(u′) = 0 otherwise.
Furthermore define Z ′(u′) =

∑c∆ log n
i=1 Z ′i(u′). Since Pr(Z ′i(u′) = 1) = p1

|Et1 (v)| + 1−p1
|Et2 (v)| , it

follows that E(Z(u)) = c∆ logn
(

p1
|Et1 (v)| + 1−p1

|Et2 (v)|

)
by the linearity of expectation. Then

we obtain similarly to (2) that

Pr(Z ′(u′) ≤ (1− δ)E(Z ′(u′))) < 1
n2 (4)

Thus, it follows by the union bound and by (1), (3), and (4) that

Pr(∃u ∈ Et1(v) \ Et2(v) : Z(u) ≥ Z ′(u′)) ≤ 2
n
. (5)

That is, the most frequent element of Q(v) belongs to Et1(v)∩Et2(v) with probability at
least 1− 2

n . This completes the proof of the lemma. J

With Lemma 7 in hand we can now prove the main theorem of the section.

I Theorem 8. Given t1, Algorithm 1 detects t2 in O(∆ log2 n) queries with probability at
least (1− 2

n )O(log n).
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Note by Theorem 8 that, whenever ∆ = O(poly logn) we can detect both targets t1 and
t2 in O(poly logn) queries. However, for graphs with larger maximum degree ∆, the value of
the maximum degree dominates any polylogarithmic factor in the number of queries. The
intuitive reason behind this is that, for an (exact or approximate) median v of the current
set S, whenever deg(v) and Et1(v) are large and Et2(v) ⊆ Et1(v), we can not discriminate
with a polylogarithmic number of queries between the vertices of Et2(v) and the vertices of
Et1(v) \ Et2(v) with large enough probability. Although this argument does not give any
lower bound for the number of queries in the general case (i.e. when ∆ is unbounded), it
seems that more informative queries are needed to detect both targets with polylogarithmic
queries in general graphs. We explore such more informative queries in Section 4.

3.2 Lower Bounds for Unbiased Queries
In this section we consider unbiased queries, i.e. queries which direct to each of the targets
t1, t2 with equal probability p1 = p2 = 1

2 . In this setting every query is indifferent between
the two targets, and thus the “noisy” framework of [10] cannot be applied for detecting
any of the two targets. In particular we prove in the next theorem that any deterministic
(possibly adaptive) algorithm needs at least n

2 − 1 queries to detect one of the two targets.

I Theorem 9. Let p1 = p2 = 1
2 . Then any deterministic (possibly adaptive) algorithm needs

at least n
2 − 1 queries to detect one of the two targets, even in an unweighted cycle.

In the next theorem we generalize the lower bound of Theorem 9 to the case of 2c ≥ 2
different targets T = {t1, t2, . . . , t2c} and the query to any vertex v /∈ T is unbiased, i.e. pi = 1

2c

for every i ∈ {1, 2, . . . , 2c}.

I Theorem 10. Suppose that there are 2c targets in the graph and let pi = 1
2c for every

i ∈ {1, 2, . . . , 2c}. Then, any deterministic (possibly adaptive) algorithm requires at least
n
2 − c queries to locate at least one target, even in an unweighted cycle.

4 More Informative Queries for Two Targets

A natural alternative to obtain query-efficient algorithms for multiple targets, instead of
restricting the maximum degree ∆ of the graph (see Section 3.1), is to consider queries
that provide more informative responses in general graphs. As we have already observed in
Section 3.1, it is not clear whether it is possible to detect multiple targets with O(poly logn)
direction queries in an arbitrary graph. In this section we investigate natural variations and
extensions of the direction query for multiple targets which we studied in Section 3.

4.1 Direction-Distance Biased Queries
In this section we strengthen the direction query in a way that it also returns the value of
the distance between the queried vertex and one of the targets. More formally, a direction-
distance query at vertex v ∈ V returns with probability pi a pair (u, `), where u ∈ N(v) such
that ti ∈ N(u, v) and d(v, ti) = `. Note that here we impose again that all pi’s are constant
and that

∑|T |
i=1 pi = 1, where T = {t1, t2, . . . , t|T |} is the set of targets. We will say that

the response (u, `) to a direction-distance query at vertex v directs to ti if ti ∈ N(v, u) and
` = d(v, ti). Similarly to our assumptions on the direction query, whenever there exist more
than one such vertices u ∈ N(v) leading to ti via a shortest path, the direction-distance
query returns an arbitrary vertex u among them (possibly chosen adversarially). Moreover,
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if the queried vertex v is equal to one of the targets ti ∈ T , this is revealed by the query with
probability pi. These direction-distance queries have also been used in [10] for detecting one
single target in directed graphs.

Here we consider the case of two targets and biased queries, i.e. T = {t1, t2} where p1 > p2.
Similarly to Section 3.1, initially we can detect the first target t1 with high probability in
O(logn) queries using the “noisy” model of [10]. Thus, in what follows we assume that t1
has already been detected. We will show that the second target t2 can be detected with high
probability with O(log3 n) additional direction-distance queries using Algorithm 2. The high
level description of our algorithm is the following. We maintain a candidates’ set S such
that at every iteration t2 ∈ S with high probability. Each time we update the set S, its size
decreases by a constant factor. Thus we need to shrink the set S at most logn times. In
order to shrink S one time, we first compute an (1 + ε)-median v of the current set S and we
query logn times this vertex v. Denote by Q(v) the set of all different responses of these
logn direction-distance queries at v. As it turns out, the responses in Q(v) might not always
be enough to shrink S such that it still contains t2 with high probability. For this reason we
also query logn times each of the logn neighbors u ∈ N(v), such that (u, `) ∈ Q(v) for some
` ∈ N. After these log2 n queries at v and its neighbors, we can safely shrink S by a constant
factor, thus detecting the target t2 with high probability in log3 n queries.

For the description of our algorithm (see Algorithm 2) recall that, for every vertex v, the
set Et1(v) = {u ∈ N(v) : t1 ∈ N(v, u)} contains all neighbors of v such that the edge uv lies
on a shortest path from v to t1.

Algorithm 2 Given t1, detect t2 with high probability with O(log3 n) direction-distance
queries

1: S ← V

2: while |S| > 1 do
3: Compute an (approximate) median v of S with respect to potential Γ; Compute

Et1(v)
4: Query logn times vertex v; Compute the set Q(v) of different query responses
5: if there exists a pair (u, `) ∈ Q(v) such that u /∈ Et1(v) or ` 6= d(v, t1) then
6: S ← S ∩N(v, u)
7: else
8: for every (u, `) ∈ Q(v) do
9: Query logn times vertex u; Compute the set Q(u) of different query responses

10: if for every (z, `′) ∈ Q(u) we have `′ = `− w(vu) then
11: S ← S ∩N(v, u); Goto line 2

12: return the unique vertex of S

I Theorem 11. Given t1, Algorithm 2 detects t2 in at most O(log3 n) queries with probability
at least 1−O

(
logn · plog n

1

)
.

4.2 Vertex-Direction and Edge-Direction Biased Queries
An alternative natural variation of the direction query is to query an edge instead of querying
a vertex. More specifically, the direction query (as defined in Section 1.2) queries a vertex
v ∈ V and returns with probability pi a neighbor u ∈ N(v) such that ti ∈ N(u, v). Thus, as
this query always queries a vertex, it can be also referred to as a vertex-direction query. Now

MFCS 2017
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we define the edge-direction query as follows: it queries an ordered pair of adjacent vertices
(v, u) and it returns with probability pi YES (resp. NO) if ti ∈ N(v, u) (resp. if ti /∈ N(v, u)).
Similarly to our notation in the case of vertex-direction queries, we will say that the response
YES (resp. NO) to an edge-direction query at the vertex pair (v, u) refers to ti if ti ∈ N(v, u)
(resp. if ti /∈ N(v, u)). Similar but different edge queries for detecting one single target on
trees have been investigated in [10,13,21,26].

Here we consider the case where both vertex-direction and edge-direction queries are
available to the algorithm, and we focus again to the case of two targets and biased queries,
i.e. T = {t1, t2} where p1 > p2. Similarly to Sections 3.1 and 4.1, we initially detect t1 with
high probability in O(logn) vertex-direction queries using the “noisy” model of [10]. Thus,
in the following we assume that t1 has already been detected.

I Theorem 12. Given t1, it is possible to detect t2 in at most O(log2 n) vertex-direction
queries and O(log3 n) edge–direction queries with probability at least 1−O(logn · plog n

1 ).

4.3 Two-Direction Queries
In this section we consider another variation of the direction query that was defined in
Section 1.2 (or “vertex-direction query” in the terminology of Section 4.2), which we call
two-direction query. Formally, a two-direction query at vertex v returns an unordered pair of
(not necessarily distinct) vertices {u, u′} such that t1 ∈ N(v, u) and t2 ∈ N(v, u′). Note here
that, as {u, u′} is an unordered pair, the response of the two-direction query does not clarify
which of the two targets belongs to N(v, u) and which to N(v, u′).

Although this type of query may seem at first to be more informative than the standard
direction query studied in Section 3, we show that this is not the case. Intuitively, this type
of query resembles the unbiased direction query of Section 3.2. To see this, consider e.g. the
unweighted cycle where the two targets are placed at two anti-diametrical vertices; then,
applying many times the unbiased direction query of Section 3.2 at any specific vertex v
reveals with high probability the same information as applying a single two-direction query at
v. Based on this intuition the next theorem can be proved with exactly the same arguments
as Theorem 9 of Section 3.2.

I Theorem 13. Any deterministic (possibly adaptive) algorithm needs at least n
2 − 1 two-

direction queries to detect one of the two targets, even in an unweighted cycle.

4.4 Restricted Set Queries
The last type of queries we consider is when the query is applied not only to a vertex v of
the graph, but also to a subset S ⊆ V of the vertices, and the response of the query is a
vertex u ∈ N(v) such that t ∈ N(v, u) for at least one of the targets t that belong to the set
S. Formally, let T be the set of targets. The restricted-set query at the pair (v, S), where
v ∈ V and S ⊆ V such that T ∩ S 6= ∅, returns a vertex u ∈ N(v) such that t ∈ N(v, u)
for at least one target t ∈ T ∩ S. If there exist multiple such vertices u ∈ N(v), the query
returns one of them adversarially. Finally, if we query a pair (v, S) such that T ∩S = ∅, then
the query returns adversarially an arbitrary vertex u ∈ N(v), regardless of whether the edge
vu leads to a shortest path from v to any target in T . That is, the response of the query can
be considered in this case as “noise”. In the next theorem we prove that this query is very
powerful, as |T | · logn restricted-set queries suffice to detect all targets of the set T .

I Theorem 14. Let T be the set of targets. There exists an adaptive deterministic algorithm
that detects all targets of T with at most |T | · logn restricted-set queries.
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