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Abstract—This paper proposes a novel unit commitment
(UC) model under smart grid (SG) environment, which intends
to strike a balance pursuing minimum carbon emissions for
policy maker, minimum costs for generators and minimum
payment bills for consumers. This leads to a multiobjective
optimization problem (MOP) which can be solved through the
multiobjective immune algorithm (MOIA). Therefore, the energy
market scheduling problem considering low carbon smart grid
environment can be analysed. The case studies are conducted to
demonstrate the proposed model and present the allocation of
power generations as well as the daily energy market scheduling
results. It has been proved that the penetration of SG contributes
to the mitigation of carbon emissions during the peak demand
time by around 500 ton/h. It is also suggested that if the policy
maker can provide appropriate monetary compensation for the
deployment of SG technologies, generators will be encouraged to
participate in the SG deployment.

Index Terms—Smart grid (SG), unit commitment (UC), multi-
objective optimization (MOP), virtual power plant (VPP), electric
vehicle (EV), demand response (DR).

I. INTRODUCTION

The power sector is a major contributor to the greenhouse
gas emissions. Since it is closely tied to economic activities,
power generation plays a significant role in our everyday life
[1]. Additionally, the SG plays a significant role in increasing
penetration of distributed resources in demand side. This
resources include Distributed generation (DG), electric vehicle
(EV), and flexible demand under demand response (DR)
programme. Thus, it is necessary to design a virtual power
plant to aggregate the capacity of many diverse distributed
energy resources and flexible demands [2]. The operation of
energy system can be subsequently scheduled balancing supply
and demand in real time [3]. This trends requires a more
dedicated unit commitment (UC) model to coordinate and
optimise the use of distributed resources in both supply and
demand sides considering the objective of mitigating of carbon
emissions.

With respect to SG technologies, existing studies confirmed
the feasibility and significance of DG in managing the balance
between supply and demand [4]–[6]. Besides, the SG supports
the bidirectional communication between consumers and grids
via smart metering systems. It is essential for the deployment
of DR, because customers can respond to grids in almost real
time. The DR has been noted in studies for supply-demand
scheduling [7]–[9]. The EV which is considered as a mobile
load is also an important part of SG, because it has the
potential to reducing carbon emissions in the transport sector.

The cost and carbon emission of EV were investigated in [10],
[11] through the use of UC model. Nevertheless, the effects of
SG technologies on both generation and consumption levels
have barely been studied.

Furthermore, the increasing distributed resources and DR
services cause some issues in power systems. These issues
include reliability and security of supplies. Virtual Power
Plant (VPP) is a powerful platform of aggregating distributed
resources, and operating them as a virtual large power plant
enabling active participation of distributed resources in the
energy market [3].

The SG technologies can encourage the use of the low-
carbon resources to replace the conventional power genera-
tions. The UC offers an optimal operation point to schedule the
energy markets. Normally, the UC model simply focuses on
the generation side of power systems [12], [13]. In practice, the
policy maker seeks to evaluate the carbon emissions of power
systems and make corresponding policies for the minimization
of carbon emissions. Considering the emission restrictions,
generators seek to minimize their operation costs through
the SG technologies. In the meantime, consumers respond to
incentive signal and price signal by using SG technologies
to minimize their payment bills. Transferring objectives to
be constraints [14] and weighted evaluation of each objective
[15] are typical approaches to cope with this problem with
various dimensions. Nonetheless, it would be more useful to
apply multiobjective optimization problem (MOP) into the UC
model for the purpose of fairly and reasonably evaluating the
interests of both generators and consumers as well as carbon
reduction targets. In the UK energy market, for instance,
the Department for Business, Energy and Industrial Strategy
is responsible for making policies to mitigate the carbon
emissions [16]. The Office of Gas and Electricity Markets
(Ofgem) concentrates on the aggregated interests of consumers
as a whole, including their green house reduction interests
[17]. The Big Six Energy Suppliers (British Gas, EDF Energy,
E. ON UK, Npower, Scottish Power, SSE) purchase power
from wholesale market, before billing consumers for their
electricity consumption [18].

Compared with the existing work, this paper has contribu-
tions as follows:

• We propose a novel UC model considering not only
conventional generation side but also DR as a part of
VPP for effectively aggregating distributed resources,
thus enabling their participation in the energy market;



• We formulate a MOP by involving policy maker, gen-
erators, and consumers, so that the reduction of carbon
emissions can be considered into daily energy market
scheduling.

The rest of this paper is organized as follows. Section II
introduces the model of SG environment in the form of VPP.
The UC model and corresponding algorithm are subsequently
proposed in Section III. Section IV presents the results of case
studies for daily energy market scheduling. Finally, Section V
draws the conclusion.

II. SYSTEM MODEL

This Section describes the deployment of SG, in which DR,
DG, and EV are regarded as elemental components of SG. The
demand aggregator is a medium facilitating communication
between system operators and consumers [19]. This is because
the scattered consumers have limited negotiation power in the
energy market. The system operator also faces the challenge
of managing the DR, DG, and EV.

A. Demand Response

The advance of smart meter enables bidirectional commu-
nication between consumers and grids [20]. Building on this,
the DR can be realised through incentive signal and price
signal [21]. The demand aggregator is capable of gathering
scattered DR resources through contracts with operators. As a
consequence, DR can be conceptualised to a single unit. The
cost of DR can be modelled to be a quadratic function [22]:

C(DRt) = aDRDR
2
t + bDRDRt + cDR (1)

where C(DRt) is the total cost of DR at time t, DRt is the
aggregated power of DR at time t, and aDR, bDR, and cDR

are cost coefficients of DR unit. Considering the interests of
consumers, there is a constraint for maximal level of DR:

DRt ≤ DRmax
t (2)

where DRmax
t is the power limit of DR.

Meanwhile, the deployment of DR may cause inconvenience
of consumers due to the deviation from the original con-
sumption, which can be modelled by a dissatisfaction function
V (DRt) [23]:

V (DRt) = d ·DR2
t , d ≥ 0 (3)

where d is the inelasticity parameter of payment bills. Through
this dissatisfaction function, the inconvenience caused by
DR can be transferred to the increases of payment bills for
customers.

B. Distributed Generation

Similarly, the aggregator is also responsible for gathering
DGs and selling extra power of grid-connected DG back to
grids. This paper focuses on the dispatchable DG which can
be sold back to grids. The cost function of dispatchable DG
is:

C(DGt) = aDGDG
2
t + bDGDGt + cDG (4)

where C(DGt) is the total cost function of DG at time t,
DGt is the power of DG which will be sold back to grids
by consumers at time t, and aDG, bDG, and cDG are cost
coefficients of DG unit. There exists a limit of DG output:

DGt ≤ DGmax
t (5)

where DGmax
t is the power limit of DG.

C. Electric Vehicle

SG supports a fundamental platform for the interactions
between power systems and EV users [24]. The EV can be
directly charged through power grids. It is possible to treat
the charging of EV batteries as an additional load [25], so
that it will be included into the electricity demand paid by
consumers. The extra electricity of EV can be sold back to
grids through the aggregator by signing contract with system
operators. The cost function of EV can be modelled as (6),
since the marginal cost increases when EVs draw more power
from the power grid [26].

C(EVt) = aEV EV
2
t + bEV EVt + cEV (6)

where C(EVt) is the total cost function of EV at time t, EVt is
the EV power which will be sold back to grids, and aEV , bEV ,
and cEV are cost coefficients of EV units. The constraints of
EV include:

EVt ≤ EV max
t (7)

where EV max
t is the upper limit of EV power which can be

sold back to grids considering the safe operation.

D. Virtual Power Plant

The aforementioned DR, DG, and EV can be conceptualised
as a VPP which is a necessary infrastructure to coordinate each
element inside [27]. The VPP can dispatch and optimise these
resources to support power system operations. In addition
to DR, DG, and EV, the Energy Storage (ES) is another
instrumental component of VPP. The behaviour of storages
can be modelled as:

−(ESmin
t − SoCt−1) ≤ ESt ≤ ESmax

t − SoCt−1 (8)

SoCt−1 − SoCt ≤ RDch (9)

SoCt − SoCt−1 ≤ Rch (10)

where ESt is charged/discharged capacity of ES at hour t,
ESmin

t and ESmax
t are minimum and maximum capacities

of ES, respectively, SoCt is state of charge of ES at hour t,
and Rch and RDch are maximum charge and discharge rates
of ES. Hence, the cost function of ES can be modelled as:

C(ESt) = A · |ESt|+B (11)

where C(PESt) is operation cost function of ES, and A and
B are cost coefficients of ES.



III. MULTIOBJECTIVE PROBLEM FRAMEWORK

A. Objective of Generators

The optimization problem of generation cost is described as
operation cost for power generation presented in (12) [15] with
additional costs caused by the deployment of SG presented in
(1), (4), and (6).

C(Pi,t) = aiP
2
i,t + biPi,t + ci (12)

where C(Pi,t) is the generation cost of ith power generator at
time t, Pi,t is the power output of ith generator, and ai, bi, and
ci are cost coefficients of generator i. Therefore, the generation
costs optimization problem can be modelled as follow.
Objective of generators (min costs) :

min
Pi,t,DRt,DGt,EVt,ESt

{
n∑

i=1

[C(Pi,t) + SUCi + SDCi]+

C(DRt) + C(DGt)+

C(EVt) + C(ESt)}

(13)

where SUCi and SDCi are start up and shut down costs of
ith power plant.

B. Objective of Policy Maker

The carbon emissions of conventional power plant can be
modelled using second order polynomial function [28]:

E(Pi,t) = αiP
2
i,t + βiPi,t + γi (14)

With the objective of minimizing the total carbon emissions,
the optimization problem of policy maker can be described as
follow.
Objective of policy maker (min carbon emissions) :

min
Pi,t

{
n∑

i=1

E(Pi,t)} (15)

It is worth mentioning that the carbon emissions in VPP are
not taken into consideration during the optimisation process,
since these emissions are irrelevant to the operational process.
The carbon emissions in VPP will be evaluated through carbon
emission factors [29], based on the life cycle analysis.

C. Objective of Consumers

The objective of customers is described as the payment of
electricity consumption with incurred dissatisfaction due to the
DR subtracting monetary compensation of carbon reduction
from policy maker. Since a higher level of DR contributes to
a more significant effect of carbon emissions reduction, the
variations of monetary compensation M with the effects of
carbon reduction due to DR E(DRt) can be modelled as a
linear increasing function since the amount of compensation
increases as the effect of carbon reduction increases.

M(DRt) = δ · E(DRt) (16)

where δ is the carbon compensation rate. E(DRt) can
be calculated according to (14). Considering the dissat-
isfaction function of DR presented in (3), the optimiza-
tion problem of consumers can be described as follow.
Objective of consumers (min payment bills) :

min
Pi,t,DRt,DGt,EVt,ESt

{(Dt −DRt −DGt − EVt)pe

−M(DRt) + V (DRt)}
(17)

where Dt is the original load demand at time t, and pe is the
average electricity price.

D. Constraints

In addition to the aforementioned constraints in (2), (5), and
(7), there are three common constraints in the UC model in-
cluding power balance constraint, limitations of power output,
and ramp rate constraint [30].

1) Power Balance Constraint:
n∑

i=1

Pi,t + Pcht
− ηPDcht

= Dt −DRt −DGt − EVt (18)

where Pcht and PDcht are power charged and discharged into
ES at hour t, and η is efficiency of ES.

2) Power Output Constraint:

Pmin
i,t ≤ Pi,t ≤ Pmax

i,t (19)

where Pmin
i,t and Pmax

i,t are the minimum and maximum power
generations of generator i.

3) Ramp Rate Constraint:

−Rdown
i ≤ Pi,t − Pi,t−1 ≤ Rup

i (20)

where Rdown
i and Rup

i denote the ramp-down and ramp-up
rates of ith generator.

E. Algorithm

The proposed objectives of generators, consumers, and pol-
icy maker form a MOP. The multiobjective immune algorithm
(MOIA) [31] is adopted to solve this problem for the purpose
of obtaining Pareto front (PF). MOIA (See Algorithm1)is a
global searching algorithm with robust computational capa-
bility. The PF is the image of the Pareto optimal set which
contains the set of all Pareto optimal solutions. A point in the
decision variable space is a Pareto optimal (PO) solution if it
is feasible and no other points dominate it [31]. Examples of
PF and PO are shown in Fig. 1. Therefore, the terminology
antibody is selected to illustrate a point in the decision variable
space.

IV. CASE STUDIES

In order to demonstrate the performance of the proposed
UC model, case studies have been conducted on the IEEE
30-bus system by replacing the original system data with the
scaled down UK daily power generation and consumption in
proportion. The IEEE 30-bus system consists of 6 generators,
41 branches, and 21 nodes carrying loads [32]. The cost
and emission coefficients of generators are obtained from



Algorithm 1
Input: Objective functions: (13), (15), and (17); initial solu-

tion size n; maximum iteration time: tmax.
1: Generate a group of antibodies as initial population to

represent the power dispatch over constraints (2), (5), (7),
(18), (19), and (20):
A(0) = {Pi,t, DRt, DGt, EVt, ESt}

2: Remove dominated antibodies and remain nondominated
antibodies.

3: Perform mutation operation over the remaining nondomi-
nated antibodies to produce a set of antibodies.

4: repeat
5: Remove dominated antibodies.
6: Evaluate the remaining antibodies through satisfying the

constraints and remove infeasible antibodies.
7: if The population size is larger than the nominal size

then
8: Update to normalize the antibodies
9: end if

10: until The maximum iteration time is reached.
Output: A solution which is able to maximize the minimum

improvement in all dimensions is selected.

[14]. The cost coefficients of SG technologies are obtained
from [22]. The percentage of DG is set according to the UK
present DG penetration rate [33]. The upper limit of DR is
assumed 5% of demand in each hour. The emissions of DG
and DR are assessed through life cycle analysis [29]. The
carbon compensation rate 18 £/ton is selected according to
the UK current value [34]. The parameters in simulation of
ES behaviours are based on [35].

The optimization results at 4h is selected as an example
(See Fig. 1) to illustrate the interactions among three objectives
during the process of evaluating the optimal solution. It is clear
that the PO is located in the centre of the PF geographically,
which indicates that the adopted MOIA is able to obtain a
fair scheduling solution without sacrificing the interest of any
objective.

Fig. 2 presents the allocation of scheduling power for
generators by solving the MOP in each hour. The total
contributions of SG technologies including DR, DG, and EV
are also presented in the reduction of total demand. It can
be seen that the deployment of SG technologies results in
the reduction of total demand by around 10 MW through
selling back to grids or DR, which contributes to the supply-
demand balance in SG environment. Furthermore, the SG in
the form of VPP can support the total demand economically
and environmental friendly due to zero or near-zero emissions
during the operational process. It is especially for the peak-
time, when the marginal cost of power generation increases
dramatically.

The allocated power of SG technologies in the form of VPP
is shown in Fig. 3. The 5% DR contributes to a majority
portion of total power output in VPP. Nevertheless, due to the
increasing penetrations of DG and EV, they are expected to
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Fig. 1. Example of possible scheduling solutions at 4 h.
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Fig. 2. Optimized power allocation on supply side.

play significant roles in demand side management. Besides,
from this significant amount of VPP output, it is worth
mentioning that SG environment provides great opportunities
for aggregators to gather the scattered consumers, EV users,
and DG serving on negotiation between system operator and
consumers.

Fig. 4 presents the comparison of optimized objectives for
generators, policy maker, and consumers between PO and
partial optimal solution in PF which only considers their
own objective during the process of evaluating the optimized
solution. Through compromising with other two objectives, the
optimal results of payment bills for consumers keep almost
unchanged, whereas the carbon emissions and operation costs
for generators show slight increases considering the interests
of other objectives. Moreover, the peak-time (from 8h to 18h)
shows obvious increases in three objectives. It is particularly
for the carbon emissions, for which the amount in peak time
decreases by around 500 ton/h. This is because the peak-
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time demand is the primary driving factor for total emissions.
Therefore, it indicates the necessary to deploy low carbon SG
to replace the conventional generations.

Additionally, the economic dispatch is a classic generation
dispatch approach, in which the generators with the lowest cost
will be triggered first [36]. The interests of carbon emissions
and payment bills for consumers are also not considered in
economic dispatch. Compared with conventional economic
dispatch without the penetration of SG, it is noted that the
carbon emissions in peak time will be dramatically reduced
with the UC scheduling. The Payment bills will also decrease
because of the carbon compensations and the power sold back
to grids in SG environment. The operation costs slightly in-
crease by around 100 £/h for the purpose of SG deployment,
which means that the generators sacrifice their own interests to

contribute to the carbon reduction and SG deployment. If this
scarification can be compensated by policy maker, there will be
an incentive for generators to involve in the SG environment.

V. CONCLUSION

This paper develops a UC model for SG technologies
including DR, DG, and EV in the form of VPP. The UC
optimization problem fairly schedules the energy market con-
sidering carbon emissions, operation costs, and payment bills
which do not share the same dimension in energy markets.
This MOP is subsequently solved by MOIA.

Case studies demonstrate that the proposed model is capable
of scheduling daily optimized energy market. The penetration
of SG contributes to the balance between supply and demand.
Under the circumstances of SG, carbon emissions during peak-
time can be reduced by replacing the conventional generations
with demand-side resources. If further policy is able to com-
pensate the costs of generators, this UC will be a promising
model for energy market scheduling.
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