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Abstract
Clique-width is an important graph parameter due to its algorithmic and structural properties.
A graph class is hereditary if it can be characterized by a (not necessarily finite) set H of
forbidden induced subgraphs. We initiate a systematic study into the boundedness of clique-
width of hereditary graph classes closed under complementation. First, we extend the known
classification for the |H| = 1 case by classifying the boundedness of clique-width for every set H
of self-complementary graphs. We then completely settle the |H| = 2 case. In particular, we
determine one new class of (H,H)-free graphs of bounded clique-width (as a side effect, this
leaves only six classes of (H1, H2)-free graphs, for which it is not known whether their clique-
width is bounded). Once we have obtained the classification of the |H| = 2 case, we research the
effect of forbidding self-complementary graphs on the boundedness of clique-width. Surprisingly,
we show that for a set F of self-complementary graphs on at least five vertices, the classification
of the boundedness of clique-width for ({H,H} ∪ F)-free graphs coincides with the one for the
|H| = 2 case if and only if F does not include the bull (the only non-empty self-complementary
graphs on fewer than five vertices are P1 and P4, and P4-free graphs have clique-width at most 2).
Finally, we discuss the consequences of our results for Colouring.
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1 Introduction

Many graph-theoretic problems that are computationally hard for general graphs may still be
solvable in polynomial time if the input graph can be decomposed into large parts of “similarly
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behaving” vertices. Such decompositions may lead to an algorithmic speed up and are often
defined via some type of graph construction. One particular type is to use vertex labels and to
allow certain graph operations, which ensure that vertices labelled alike will always keep the
same label and thus behave identically. The clique-width cw(G) of a graph G is the minimum
number of different labels needed to construct G using four such operations (see Section 2
for details). Clique-width has been studied extensively both in algorithmic and structural
graph theory. The main reason for its popularity is that, indeed, many well-known NP-hard
problems [14, 25, 35, 40], such as Colouring and Hamilton Cycle, become polynomial-
time solvable on any graph class G of bounded clique-width, that is, for which there exists a
constant c, such that every graph in G has clique-width at most c. Graph Isomorphism
is also polynomial-time solvable on such graph classes [30]. Having bounded clique-width
is equivalent to having bounded rank-width [39] and having bounded NLC-width [33], two
other well-known width-parameters. However, despite these close relationships, clique-width
is a notoriously difficult graph parameter, and our understanding of it is still very limited.
For instance, no polynomial-time algorithms are known for computing the clique-width of
very restricted graph classes, such as unit interval graphs, or for deciding whether a graph
has clique-width at most 4.1 In order to get a better understanding of clique-width and to
identify new “islands of tractability” for central NP-hard problems, many graph classes of
bounded and unbounded clique-width have been identified; see, for instance, the Information
System on Graph Classes and their Inclusions [24], which keeps a record of such graph classes.
In this paper we study the following research question:
What kinds of properties of a graph class ensure that its clique-width is bounded?
We refer to the surveys [31, 34] for examples of such properties. Here, we consider graph
complements. The complement G of a graph G is the graph with vertex set VG and edge
set {uv | uv /∈ E(G)} and has clique-width cw(G) ≤ 2 cw(G) [15]. This result implies that a
graph class G has bounded clique-width if and only if the class consisting of all complements
of graphs in G has bounded clique-width. Due to this, we initiate a systematic study of the
boundedness of clique-width for graph classes G closed under complementation, that is, for
every graph G ∈ G, its complement G also belongs to G.

To get a handle on graph classes closed under complementation, we restrict ourselves to
graph classes that are not only closed under complementation but also under vertex deletion.
This is a natural assumption, as deleting a vertex does not increase the clique-width of
a graph. A graph class closed under vertex deletion is said to be hereditary and can be
characterized by a (not necessarily finite) set H of forbidden induced subgraphs. Over the
years many results on the (un)boundedness of clique-width of hereditary graph classes have
appeared. We briefly survey some of these results below.

A hereditary graph class of graphs is monogenic or H-free if it can be characterized by
one forbidden induced subgraph H, and bigenic or (H1, H2)-free if it can be characterized
by two forbidden induced subgraphs H1 and H2. It is well known (see [23]) that a class of
H-free graphs has bounded clique-width if and only if H is an induced subgraph of P4.2 By
combining known results [3, 5, 7, 8, 9, 10, 11, 17, 18, 21, 38] with new results for bigenic
graph classes, Dabrowski and Paulusma [23] classified the (un)boundedness of clique-width of
(H1, H2)-free graphs for all but 13 pairs (H1, H2) (up to an equivalence relation). Afterwards,
five new classes of (H1, H2)-free graphs were identified by Dross et al. [16] and recently,

1 It is known that computing clique-width is NP-hard in general [27] and that deciding whether a graph
has clique-width at most 3 is polynomial-time solvable [13].

2 We refer to Section 2 for all the notation used in this section.
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K1,3 K1,3 P1 + P4 P1 + P4 2P1 + P3 2P1 + P3 sP1 sP1

Figure 1 Graphs H for which the clique-width of (H, H)-free graphs is bounded (s = 5 is shown).

another one was identified by Dabrowski et al. [19]. This means that only seven cases
(H1, H2) remained open. Other systematic studies were performed for H-free weakly chordal
graphs [5], H-free chordal graphs [5] (two open cases), H-free triangle-free graphs [19] (two
open cases), H-free bipartite graphs [22], H-free split graphs [4] (two open cases), and H-free
graphs where H is any set of 1-vertex extensions of the P4 [6] or any set of graphs on at most
four vertices [7]. Clique-width results or techniques for these graph classes impacted upon
each other and could also be used for obtaining new results for bigenic graph classes.

Our Contribution Recall that we investigate the clique-width of hereditary graph classes
closed under complementation. A graph that contains no induced subgraph isomorphic to a
graph in a set H is said to be H-free. We first consider the |H| = 1 case. The class of H-free
graphs is closed under complementation if and only if H is a self-complementary graph, that
is, H = H. Self-complementary graphs have been extensively studied; see [26] for a survey.
From the aforementioned result for P4-free graphs, we find that the only self-complementary
graphs H for which the class of H-free graphs has bounded clique-width are H = P1 and
H = P4. In Section 3 we prove the following generalization of this result.

I Theorem 1. Let H be a set of non-empty self-complementary graphs. Then the class of
H-free graphs has bounded clique-width if and only if either P1 ∈ H or P4 ∈ H.

We now consider the |H| = 2 case. Let H = {H1, H2}. Due to Theorem 1 we may assume
H2 = H1 and H1 is not self-complementary. The class of (2P1 + P3, 2P1 + P3)-free graphs
was one of the seven remaining bigenic graph classes, and the only bigenic graph class closed
under complementation, for which boundedness of clique-width was open. We settle this case
by proving in Section 4 that the clique-width of this class is bounded. In the same section we
combine this new result with known results to prove the following theorem, which, together
with Theorem 1, shows to what extent the property of being closed under complementation
helps with bounding the clique-width for bigenic graph classes (see also Figure 1).

I Theorem 2. For a graph H, the class of (H,H)-free graphs has bounded clique-width if
and only if H or H is an induced subgraph of K1,3, P1 +P4, 2P1 +P3 or sP1 for some s ≥ 1.

For the |H| = 3 case, where {H1, H2, H3} = H, we observe that a class of (H1, H2, H3)-free
graphs is closed under complementation if and only if either every Hi is self-complementary,
or one Hi is self-complementary and the other two graphs Hj and Hk are complements of
each other. By Theorem 1, we only need to consider (H1, H1, H2)-free graphs, where H1
is not self-complementary, H2 is self-complementary, and neither H1 nor H2 is an induced
subgraph of P4. The next two smallest self-complementary graphs H2 are the C5 and the
bull (see also Figure 2). Observe that any self-complementary graph on n vertices must
contain 1

2
(

n
2
)
edges and this number must be an integer, so n = 4q or n = 4q + 1 for some

integer q ≥ 0. There are exactly ten non-isomorphic self-complementary graphs on eight
vertices [41] and we depict these in Figure 3.

MFCS 2017
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P1 P4 C5 bull

Figure 2 The four non-empty self-complementary graphs on less than eight vertices [41].

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

Figure 3 The ten self-complementary graphs on eight vertices [41].

It is known that split graphs, or equivalently, (2P2, 2P2, C5)-free graphs have unbounded
clique-width [38]. In Section 5 we determine three new hereditary graph classes of unbounded
clique-width, which imply that the class of (H,H,C5)-free graphs has unbounded clique-width
if H ∈ {K1,3 +P1, 2P2, 3P1 +P2, S1,1,2}. By combining this with known results, we discovered
that the classification of boundedness of clique-width for (H,H,C5)-free graphs coincides
with the one of Theorem 2. This raised the question of whether the same is true for other sets
of self-complementary graphs F 6= {C5}. If F contains the bull, then the answer is negative:
by Theorem 2, the class of (S1,1,2, S1,1,2)-free graphs and the class of (2P2, C4)-free graphs
both have unbounded clique-width, but both the class of (S1,1,2, S1,1,2, bull)-free graphs and
even the class of (P5, P5,bull)-free graphs have bounded clique-width [6]. However, also in
Section 5, we prove that the bull is the only exception (apart from the trivial cases when
H ′ ∈ {P1, P4} which yield bounded clique-width of (H,H,H ′)-free graphs for any graph H).

I Theorem 3. Let F be a set of self-complementary graphs on at least five vertices not equal
to the bull. For a graph H, the class of ({H,H} ∪ F)-free graphs has bounded clique-width if
and only if H or H is an induced subgraph of K1,3, P1 +P4, 2P1 +P3 or sP1 for some s ≥ 1.

Consequences Due to our result for (2P1 + P3, 2P1 + P3)-free graphs, we can update the
summary of [19] for the clique-width of bigenic graph classes and reduce the number of open
cases from seven to six.

I Open Problem 1. Have (H1, H2)-free graphs bounded or unbounded clique-width when:
(i) H1 = 3P1 and H2 ∈ {P1 + S1,1,3, S1,2,3};
(ii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
(iii) H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3}.
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Another consequence of our result for (2P1 + P3, 2P1 + P3)-free graphs is that Colouring
is polynomial-time solvable for this graph class. This result was used by Blanché et al. [2]:

I Theorem 4 ([2]). Let H,H /∈ {(s + 1)P1 + P3, sP1 + P4 | s ≥ 2}. Then Colouring is
polynomial-time solvable for (H,H)-free graphs if H or H is an induced subgraph of K1,3,
P1 +P4, 2P1 +P3, P2 +P3, P5, or sP1 +P2 for some s ≥ 0 and it is NP-complete otherwise.

Comparing Theorems 2 and 4 shows that there are graph classes of unbounded clique-
width closed under complementation for which Colouring is polynomial-time solvable.
Nevertheless, on many graph classes, polynomial-time solvability of NP-hard problems stems
from the underlying property of having bounded clique-width. The present paper illustrates
this for the Colouring problem, since Theorem 19 implies that Colouring is solvable in
polynomial time on (2P1 + P3, 2P1 + P3)-free graphs. By updating the summary of [16] (see
also [29]), we find that there are twelve classes of (H1, H2)-free graphs, for which Colouring
could still potentially be solved in polynomial time by showing that their clique-width is
bounded.

Future Work Apart from settling the classification of boundedness of clique-width for
(H1, H2)-free graphs by addressing Open Problem 1, we aim to continue our study of
boundedness of clique-width for graph classes closed under complementation. In particular,
to complete the classification for H-free graphs when |H| = 3, we still need to determine
those graphs H for which (H,H, bull)-free graphs have bounded clique-width (there are
several cases left).

2 Preliminaries

The disjoint union (V (G) ∪ V (H), E(G) ∪ E(H)) of two vertex-disjoint graphs G and H is
denoted by G+H and the disjoint union of r copies of a graph G is denoted by rG. For a
subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S. If S = {s1, . . . , sr}
then, to simplify notation, we may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We
write G \ S = G[V (G) \ S]; if S = {v}, we may write G \ v instead. We write G′ ⊆i G to
indicate that G′ is an induced subgraph of G. The graphs Cr, Kr, K1,r−1 and Pr denote the
cycle, complete graph, star and path on r vertices, respectively. The graphs K3 and K1,3 are
also called the triangle and claw. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided
claw, that is, the tree with only one vertex x of degree 3 and exactly three leaves, which are
of distance h, i and j from x, respectively. Observe S1,1,1 = K1,3. We let S be the class of
graphs each connected component of which is either a subdivided claw or a path.

For a set of graphs H, a graph G is H-free (or (H)-free) if it has no induced subgraph
isomorphic to a graph in H. If H = {H1, . . . ,Hp} for some integer p, then we may write
(H1, . . . ,Hp)-free instead of ({H1, . . . ,Hp})-free, or, if p = 1, we may simply write H1-free.
For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the neighbourhood of
u ∈ V . A graph is bipartite if its vertex set can be partitioned into two (possibly empty)
independent sets. A graph is split if its vertex set can be partitioned into a (possibly empty)
independent set and a (possibly empty) clique. Split graphs have been characterized as
follows.

I Lemma 5 ([28]). A graph G is split if and only if it is (2P2, C4, C5)-free.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \X is complete to X
if it is adjacent to every vertex of X and anti-complete to X if it is non-adjacent to every
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vertex of X. Similarly, a set of vertices Y ⊆ V \X is complete (resp. anti-complete) to X if
every vertex in Y is complete (resp. anti-complete) to X. We say that the edges between
two disjoint sets of vertices X and Y form a matching (resp. co-matching) if each vertex
in X has at most one neighbour (resp. non-neighbour) in Y and vice versa (if each vertex
has exactly one such neighbour, we say that the matching is perfect). A vertex y ∈ V \X
distinguishes X if y has both a neighbour and a non-neighbour in X. The set X is a module
of G if no vertex in V \ X distinguishes X. A module X is non-trivial if 1 < |X| < |V |,
otherwise it is trivial. A graph is prime if it has only trivial modules.

To help reduce the amount of case analysis needed to prove Theorems 2 and 3, we will
use the following lemma (proof omitted).

I Lemma 6. Let H ∈ S. Then H is (K1,3 + P1, 2P2, 3P1 + P2, S1,1,2)-free if and only if H
is an induced subgraph of K1,3, P1 + P4, 2P1 + P3 or sP1 for some s ≥ 1.

The clique-width cw(G) of a graph G is the minimum number of labels needed to construct G
by using the following four operations: 1. creating a new graph consisting of a single vertex v
with label i; 2. taking the disjoint union of two labelled graphs G1 and G2; 3. joining each
vertex with label i to each vertex with label j (i 6= j); 4. renaming label i to j. For an
induced subgraph G′ (or vertex set X ⊆ V (G)) of a graph G, the subgraph complementation
operation replaces every edge present in G′ (resp. G[X]) by a non-edge, and vice versa. For
two disjoint vertex subsets S and T in G, the bipartite complementation operation replaces
every edge with one end-vertex in S and the other one in T by a non-edge and vice versa.
Let k ≥ 0 be a constant and let γ be some graph operation. A class G′ is (k, γ)-obtained from
a class G if: 1. every graph in G′ is obtained from a graph in G by performing γ at most k
times, and 2. for every G ∈ G there exists at least one graph in G′ that is obtained from G

by performing γ at most k times. We say that γ preserves boundedness of clique-width if
for any finite constant k and any graph class G, any graph class G′ that is (k, γ)-obtained
from G has bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [36].
Fact 2. Subgraph complementation preserves boundedness of clique-width [34].
Fact 3. Bipartite complementation preserves boundedness of clique-width [34].

We need the following lemmas on clique-width, the first one of which is easy to show.

I Lemma 7. The clique-width of a graph of maximum degree at most 2 is at most 4.

I Lemma 8 ([23]). Let H be a graph. The class of H-free graphs has bounded clique-width
if and only if H ⊆i P4.

I Lemma 9 ([37]). Let {H1, . . . ,Hp} be a finite set of graphs. If Hi /∈ S for all i ∈ {1, . . . , p}
then the class of (H1, . . . ,Hp)-free graphs has unbounded clique-width.

I Lemma 10 ([15]). Let G be a graph and let P be the set of all induced subgraphs of G that
are prime. Then cw(G) = maxH∈P cw(H).

3 The Proof of Theorem 1

We use the following lemma (proof omitted), which we also need for Theorem 3.

I Lemma 11. If G is a (C4, C5,K4)-free self-complementary graph, then G ⊆i bull.
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We are now ready to prove Theorem 1. Note that this theorem also holds if H is infinite.

I Theorem 1 (restated). Let H be a set of non-empty self-complementary graphs. Then
the class of H-free graphs has bounded clique-width if and only if either P1 ∈ H or P4 ∈ H.

Proof. Suppose there is a graph H ∈ H ∩ {P1, P4}. Then the class of H-free graphs is
a subclass of the class of P4-free graphs, which have bounded clique-width by Lemma 8.
Now suppose that H ∩ {P1, P4} = ∅. The only non-empty self-complementary graphs on at
most five vertices that are not equal to P1 and P4 are the bull and the C5 (see Figure 2).
By Lemma 11, it follows that every graph in H contains an induced subgraph isomorphic
to the bull, C4, C5 or K4. Therefore the class of H-free graphs contains the class of
(bull, C4, C5,K4)-free graphs, which has unbounded clique-width by Lemma 9. J

4 The Proof of Theorem 2

In this section we prove Theorem 2 by combining known results with the new result that
(2P1 + P3, 2P1 + P3)-free graphs have bounded clique-width. We prove this result in the
following way. We first prove two useful structural lemmas, namely Lemmas 12 and 13,
which we will use repeatedly throughout the proof. Next, we prove Lemmas 14 and 15, which
state that if a (2P1 + P3, 2P1 + P3)-free graph G contains an induced C5 or C6, respectively,
then G has bounded clique-width. We do this by partitioning the vertices outside this cycle
into sets, depending on their neighbourhood in the cycle. We then analyse the edges within
these sets and between pairs of such sets. After a lengthy case analysis, we find that G has
bounded clique-width in both these cases. By Fact 2 it only remains to analyse (2P1 + P3,

2P1 + P3)-free graphs that are also (C5, C6, C6)-free. Next, in Lemma 16, we show that if
such graphs are prime, then they are either K7-free or K7-free. In Lemma 18 we use the fact
that (2P1 + P3, 2P1 + P3)-free graphs are χ-bounded to deal with the case where a graph in
the class is K7-free. Finally, we combine all these results together to obtain the new result
(Theorem 19). We omit the proofs of Lemmas 12–15.

I Lemma 12. Let G be a (2P1 +P3, 2P1 + P3)-free graph whose vertex set can be partitioned
into two sets X and Y , each of which is a clique or an independent set. Then by deleting at
most one vertex from each of X and Y , it is possible to obtain subsets such that the edges
between them form a matching or a co-matching.

I Lemma 13. Let G be a (2P1 +P3, 2P1 + P3)-free graph whose vertex set can be partitioned
into a clique X and an independent set Y . Then by deleting at most three vertices from each
of X and Y , it is possible to obtain subsets that are either complete or anti-complete to each
other.

I Lemma 14. The class of (2P1 + P3, 2P1 + P3)-free graphs containing an induced C5 has
bounded clique-width.

I Lemma 15. The class of (2P1 + P3, 2P1 + P3)-free graphs containing an induced C6 has
bounded clique-width.

I Lemma 16. Every prime (2P1 + P3, 2P1 + P3, C6, C6)-free graph is K7-free or K7-free.

Proof. Let G be a prime (2P1 +P3, 2P1 + P3, C6, C6)-free graph. Suppose, for contradiction,
that G contains an induced K7 and an induced K7. We will show that in this case the
graph G is not prime. Note that any induced K7 and induced K7 in G can share at most
one vertex. We may therefore assume that G contains a clique C on at least six vertices and
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a vertex-disjoint independent set I on at least six vertices. Furthermore, we may assume
that C is a maximum clique in G \ I and I is a maximum independent set in G \ C (if not,
then replace C or I with a bigger clique or independent set, respectively).

By Lemma 13, there exist sets R1 ⊂ C and R2 ⊂ I each of size at most 3 such that
C ′ = C \R1 is either complete or anti-complete to I ′ = I \R2. Without loss of generality, we
may assume that R1 and R2 are minimal, in the sense that the above property does not hold if
we remove any vertex from R1 or R2. Note that the class of prime (2P1+P3, 2P1 + P3, C6, C6)-
free graphs containing an induced K7 and an induced K7 is closed under complementation.
Therefore, complementing G if necessary (in which case the sets I and C will be swapped,
and the sets R1 and R2 will be swapped), we may assume that C ′ is anti-complete to I ′.

Claim 1. |R1| ≤ 1 and |R2| ≤ 1.
By construction, R1 and R2 each contain at most three vertices and I ′ and C ′ each contain
at least three vertices. Since R1 (resp. R2) is minimal, every vertex of R1 (resp. R2) has at
least one neighbour in I ′ (resp. C ′).

Choose i1, i2 ∈ I ′ arbitrarily and suppose, for contradiction, that y ∈ R2 is not complete
to C ′. Then y must have a neighbour c1 ∈ C ′ and a non-neighbour c2 ∈ C ′, soG[i1, i2, y, c1, c2]
is a 2P1 +P3, a contradiction. Therefore R2 is complete to C ′. If y, y′ ∈ R2 then for arbitrary
c1 ∈ C ′, the graph G[i1, i2, y, c1, y

′] is a 2P1 + P3, a contradiction. It follows that |R2| ≤ 1.
Choose c1, c2 ∈ C ′ arbitrarily. Suppose, for contradiction, that x ∈ R1 has two non-

neighbours i1, i2 ∈ I ′. Recall that x must have a neighbour i3 ∈ I ′, so G[i1, i2, i3, x, c1] is a
2P1 + P3, a contradiction. Therefore every vertex of R1 has at most one non-neighbour in I ′.
Suppose, for contradiction, that x, x′ ∈ R1. Since I ′ contains at least three vertices, there
must be a vertex i1 ∈ I ′ that is a common neighbour of x and x′. Now G[x, x′, c1, i1, c2] is a
2P1 + P3, a contradiction. It follows that |R1| ≤ 1. This completes the proof of Claim 1.

Note that Claim 1 implies that |C ′| ≥ 5 and |I ′| ≥ 5. Let A be the set of vertices in V \(C∪I)
that are complete to C ′. If x ∈ A is adjacent to y ∈ R1 then by Claim 1 C ∪ {x} is a
bigger clique than C, contradicting the maximality of C. It follows that A is anti-complete
to R1. If x, y ∈ A are adjacent then by Claim 1, (C ∪ {x, y}) \R1 is a bigger clique than C,
contradicting the maximality of C. It follows that A is an independent set. Furthermore, by
the maximality of I and the definition of A, every vertex in V \ (C ∪ I ∪A) has a neighbour
in I and non-neighbour in C ′.

Claim 2. Let x be a vertex in V \ (C ∪ I ∪ A). Then either x is complete to I ′, or x has
exactly one neighbour in I.
Suppose, for contradiction, that x has a non-neighbour z in I ′, and two neighbours y, y′ ∈ I.
Now x cannot have another non-neighbour z′ ∈ I \ {z}, otherwise G[z, z′, y, x, y′] would be
a 2P1 + P3. Therefore x must be complete to I \ {z}. In particular, since |I ′| ≥ 5, this
means that x has two neighbours in I ′, say y1 and y2 (not necessarily distinct from y and y′).
Recall that x must have a non-neighbour c1 ∈ C ′. Now G[c1, z, y1, x, y2] is a 2P1 + P3. This
contradiction completes the proof of Claim 2.

By Claim 2 we can partition the vertex set V \ (C ∪ I ∪A) into subsets VI′ and Vx for every
x ∈ I, where VI′ is the set of vertices that are complete to I ′, and Vx is the set of vertices
whose unique neighbour in I is x. Let Ux = Vx ∪ {x}.

Claim 3. For all x ∈ I ′, Ux is anti-complete to C ′.
Suppose x ∈ I ′. Clearly x is anti-complete to C ′. Suppose, for contradiction, that y ∈
Ux \ {x} = Vx has a neighbour z ∈ C ′ and choose u, v ∈ I ′ \ {x}. Then G[u, v, x, y, z] is a
2P1 + P3. This contradiction completes the proof of Claim 3.
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Claim 4. For every x ∈ I, the set Ux is a clique.
Note that x ∈ I is adjacent to all other vertices of Ux, by definition. If y, z ∈ Vx are non-
adjacent then (I \ {x}) ∪ {y, z} would be a bigger independent set than I, a contradiction.

Claim 5. If x, y ∈ I are distinct, then Ux is anti-complete to Uy.
Clearly x is anti-complete to Uy and y is anti-complete to Ux. Suppose, for contradiction,
that x′ ∈ Ux \{x} is adjacent to y′ ∈ Uy \{y}. Choose u, v ∈ I \{x, y}. Then G[u, v, x, x′, y′]
is a 2P1 + P3. This contradiction completes the proof of Claim 5.

Claim 6. For every x ∈ I ′, the set Ux is complete to VI′ .
By definition, x is complete to VI′ . Suppose, for contradiction that x′ ∈ Ux \ {x} is non-
adjacent to y ∈ VI′ . As y /∈ A, the vertex y must have a non-neighbour c1 ∈ C ′ and note
that x′ is non-adjacent to c1 by Claim 3. Choose u, v ∈ I ′ \ {x}. Then G[c1, x

′, u, y, v] is a
2P1 + P3. This contradiction proves Claim 6.

Suppose x ∈ I ′. Claim 4 implies that Ux is a clique, Claim 3 that Ux is anti-complete to C ′
and Claim 6 that Ux is complete to VI′ . Furthermore for all y ∈ I \ {x}, Claim 5 implies
that Ux is anti-complete to Uy. We conclude that given any two vertices x, y ∈ I ′, no vertex
in V \ (A ∪R1 ∪Ux ∪Uy) can distinguish the set Ux ∪Uy. In the remainder of the proof, we
will show there exist x, y ∈ I ′ such that no vertex of A ∪R1 distinguishes the set Ux ∪ Uy,
meaning that Ux ∪ Uy is a non-trivial module, contradicting the assumption that G is prime.

Claim 7. If u ∈ A ∪ R1 then either u is anti-complete to Ux for all x ∈ I ′ or else u is
complete to Ux for all but at most one x ∈ I ′.
Suppose, for contradiction, that the claim does not hold for a vertex u ∈ A ∪ R1. Then u
must have a neighbour x′ ∈ Ux for some x ∈ I ′ and must have non-neighbours y′ ∈ Uy and
z′ ∈ Uz for some y, z ∈ I ′ with y 6= z. Since |I ′| ≥ 5, we may also assume that x /∈ {y, z}.
Choose c1 ∈ C ′ arbitrarily. By Claim 3, c1 is non-adjacent to x′, y′ and z′. It follows that
G[y′, z′, c1, u, x

′] is a 2P1 + P3. This contradiction completes the proof of Claim 7.

Let A∗ denote the set of vertices in A ∪R1 that have a neighbour in Ux for some x ∈ I ′.

Claim 8. The set A∗ is complete to all, except possibly two, sets Ux, x ∈ I ′.
Suppose, for contradiction, that there are three different vertices x, y, z ∈ I ′ such that A∗
is complete to none of the sets Ux, Uy, and Uz. By Claim 7 and the definition of A∗, every
vertex in A∗ is complete to at least two of the sets Ux, Uy, Uz. Therefore there exist three
vertices u, v, w ∈ A∗ such that:

u is not adjacent to some vertex x′ ∈ Ux, but is complete to Uy and Uz;
v is not adjacent to some vertex y′ ∈ Uy, but is complete to Ux and Uz;
w is not adjacent to some vertex z′ ∈ Uz, but is complete to Ux and Uy.

Therefore G[u, y′, w, x′, v, z′] is a C6. This contradiction completes the proof of Claim 8.

Now, as |I ′| ≥ 5, Claims 7 and 8 imply there exist two distinct vertices x, y ∈ I ′ such that
every vertex of A ∪R1 is either complete or anti-complete to Ux ∪ Uy. Hence Ux ∪ Uy is a
non-trivial module in G, contradicting the fact that G is prime. This completes the proof. J

The chromatic number χ(G) of a graph G is the minimum positive integer k such that G
is k-colourable. The clique number ω(G) of G is the size of a largest clique in G. A class C
of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for all G ∈ C.

I Lemma 17 ([32]). For every natural number k the class of Pk-free graphs is χ-bounded.

I Lemma 18. For k ≥ 1, (Kk, 2P1 + P3, 2P1 + P3)-free graphs have bounded clique-width.
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Proof. Fix a constant k ≥ 1 and let G be a (Kk, 2P1 + P3, 2P1 + P3)-free graph. By
Lemma 15, we may assume that G is C6-free. Since G is (2P1 + P3)-free, it is P7-free, so
by Lemma 17 it has chromatic number at most ` for some constant `. This means that we
can partition the vertices of G into ` independent sets V1, . . . , V` (some of which may be
empty). By Lemma 12, deleting finitely many vertices (which we may do by Fact 2), we may
assume that for all distinct i, j ∈ {1, . . . , `}, the edges between Vi and Vj form a matching
or a co-matching. Since G is C6-free, if the vertices between Vi and Vj form co-matching,
this co-matching can contain at most two non-edges. Therefore, by deleting finitely many
vertices (which we may do by Fact 2), we may assume that the edges between Vi and Vj

form a matching or Vi and Vj are complete to each other. By deleting finitely many vertices
(which we may do by Fact 2), we may assume that each set Vi is either empty or contains at
least five vertices.

Suppose the edges from Vi to Vj and the edges from Vi to Vk form a matching and that
there is a vertex x ∈ Vi that has a neighbour y ∈ Vj and a neighbour z ∈ Vk. Then y

must be adjacent to z, otherwise for x′, x′′ ∈ Vi \ {x} the graph G[x′, x′′, y, x, z] would be
a 2P1 + P3, a contradiction. If Vj is complete to Vk then for y′, y′′ ∈ Vj , z′ ∈ Vk and
x′, x′′ ∈ Vi \ (N(y′) ∪N(y′′) ∪N(z′)) (such vertices exist since each of y′, y′′ and z′ have at
most one neighbour in Vi and Vi contains at least five vertices) we have G[x′, x′′, y′, z′, y′′] is
a 2P1 + P3, a contradiction. Therefore the edges between Vj and Vk form a matching.

Now for each i, j ∈ {1, . . . , `} with i < j, if Vi is complete to Vj , then by Fact 2 we may
apply a bipartite complementation between Vi and Vj . Let G′ be the resulting graph. The
previous paragraph implies if x has two neighbours y and z in G′ then y is adjacent to z in G,
so G′ is P3-free. So G′ is a disjoint union of cliques, and thus has clique-width at most 2. J

We are now ready to prove our main result.

I Theorem 19. The class of (2P1 + P3, 2P1 + P3)-free graphs has bounded clique-width.

Proof. Let G be a (2P1 + P3, 2P1 + P3)-free graph. By Lemma 10, we may assume that G
is prime. If G contains an induced C6 then we are done by Lemma 15. If G contains an
induced C6 then we are done by Lemma 15 and Fact 2. We may therefore assume that G is
also (C6, C6)-free. By Lemma 16, we may assume that G is either K7-free or K7-free. By
Fact 2, we may assume that G is K7-free. Lemma 18 completes the proof. J

Combining Theorem 19 with the current state-of-the-art for classifying the boundedness
of clique-width for (H1, H2)-free graphs (see [20]) yields Theorem 2 (proof omitted).

I Theorem 2 (restated). For a graph H, the class of (H,H)-free graphs has bounded
clique-width if and only if H or H is an induced subgraph of K1,3, P1 + P4, 2P1 + P3 or sP1
for some s ≥ 1.

5 New Classes of Unbounded Clique-Width and Proof of Theorem 3

In this section we first identify three new graph classes of unbounded clique-width. To do so,
we need the notion of a wall. Figure 4 shows three walls of different height (see e.g. [12] for a
formal definition). The class of walls is well known to have unbounded clique-width; see for
example [34]. A k-subdivided wall is the graph obtained from a wall after subdividing each
edge exactly k times for some constant k ≥ 0. The following lemma is well known.

I Lemma 20 ([37]). Let k ≥ 0. The class of k-subdivided walls has unbounded clique-width.
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Figure 4 Walls of height 2, 3 and 4, respectively.

Dabrowski et al. [17] showed that (4P1, 3P1 + P2)-free graphs have unbounded clique-
width. However, their construction was not C5-free. We give an alternative construction that
neither contains an induced C5 nor an induced copy of any larger self-complementary graph.
Namely, we first consider a graph H ′ that is a 1-subdivided wall. By Lemma 20, such graphs
have unbounded clique-width. Let V1 be the set of vertices in H ′ that are also present in H.
Let V2 be the set of vertices obtained from subdividing vertical edges in H, and let V3 be
the set of vertices obtained from subdividing horizontal edges. Note that V1, V2 and V3 are
independent sets. Furthermore, every vertex in V1 has at most one neighbour in V2 and at
most two neighbours in V3, while every vertex in V2 ∪ V3 has at most two neighbours, each
of which is in V1. Let H ′′ be the graph obtained from H ′ by applying complementations
on V1, V2 and V3. By Fact 2, such graphs have unbounded clique-width. We claim that H ′′
is ({4P1, 3P1 + P2} ∪ F)-free, where F is the set of all self-complementary graphs on at
least five vertices that are not equal to the bull (proof omitted). This leads to the following
theorem.

I Theorem 21. Let F be the set of all self-complementary graphs on at least five vertices
that are not equal to the bull. The class of ({4P1, 3P1 + P2} ∪ F)-free graphs has unbounded
clique-width.

By Lemma 11, any self-complementary graph on at least five vertices not equal to
the bull has an induced subgraph isomorphic to C4, C5 or K4, so such graphs are au-
tomatically excluded from the class specified in our next theorem. Its proof, which we
omitted, is based on observing that the construction of Brandstädt et al. [7] for proving that
(C4,K1,3,K4, 2P1 + P2)-free graphs have unbounded clique-width is, in fact, also C5-free.

I Theorem 22. (C4, C5,K1,3,K4, 2P1 + P2)-free graphs have unbounded clique-width.

For our third result we need two lemmas. Given natural numbers k, `, let Rb(k, `) denote
the smallest number such that if every edge of a KRb(k,`),Rb(k,`) is coloured red or blue then
it will contain a monochromatic Kk,`. It is known that Rb(k, `) always exists [1].

I Lemma 23 ([1]). Rb(2, 2) = 5.

Let G = (V,E) be a split graph. By definition, G has a split partition, that is, a partition
of V into two (possibly empty) sets C and I, where C is a clique and I is an independent
set. A split graph G may have multiple split partitions. For self-complementary split graphs
we can show the following (proof omitted).

I Lemma 24. Let G be a self-complementary split graph on n vertices. If n is even, then G
has a unique split partition and in this partition the clique and independent set are of equal
size. If n is odd, then there exists a vertex v such that G \ v is also a self-complementary
split graph.

I Theorem 25. Let F be the set of all self-complementary graphs on at least five vertices that
are not equal to the bull. The class of ({C4, 2P2}∪F)-free graphs has unbounded clique-width.
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Proof. First note that the only self-complementary graph on five vertices apart from the
bull is the C5. Since C5 ∈ F , by Lemma 5, we may remove all graphs that are not split
from F , apart from C5; in particular, this means that we remove X4, . . . , X10 from F (see
also Figure 3). By Lemma 24, if G ∈ F has an odd number of vertices, but is not equal
to C5, then G \ v ∈ F for some vertex v ∈ V (G). Let F ′ be the set of self-complementary
split graphs on at least eight vertices that have an even number of vertices. It follows that
the class of F ′-free split graphs is equal to the class of ({C4, 2P2} ∪ F)-free graphs.

Consider a 2-subdivided wall H and note that it is (C4, C8)-free; recall that 2-subdivided
walls have unbounded clique-width by Lemma 20. Note that H is a bipartite graph, and fix a
bipartition (A,B) of H. Let H ′ be the graph obtained from H by applying a complementation
to A and note that H ′ is a split graph. In H ′, every vertex in B has a non-neighbour in A
and every vertex in A has a neighbour in B, so (A,B) is the unique split partition of H ′. By
Fact 2, the family of graphs H ′ produced in this way also has unbounded clique-width. It
remains to show that H ′ is F ′-free.

First note that X1 (see also Figure 3) is the graph obtained from the bipartite graph C8
by complementing one of the independent sets in the bipartition. Since H is C8-free and X1
has a unique split partition (by Lemma 24), it follows that H ′ is X1-free. Note that H is
C4-free and so H ′ does not contain two vertices x, x′ in the clique A and two vertices y, y′ in
the independent set B such that {x, x′} is complete to {y, y′}. Now suppose G ∈ F ′ \ {X1}.
Recall that by Lemma 24, G has a unique split partition (C, I), and this partition has the
property that |C| = |I|. Therefore, if we can show that G contains two vertices x, x′ ∈ C
and two vertices y, y′ ∈ I with {x, x′} complete to {y, y′} then H ′ must be G-free and the
proof is complete. It is easy to verify that this is the case if G ∈ {X2, X3} (see also Figure 3
and recall that X4, . . . , X10 /∈ F ′). Otherwise, G has at least ten vertices so |C|, |I| ≥ 5. By
Lemma 23, there must be two vertices x, x′ ∈ C and two vertices y, y′ ∈ I with {x, x′} either
complete or anti-complete to {y, y′}. In the first case we are done. In the second case we
note that complementing G will swap the sets C and I and make {x, x′} complete to {y, y′},
returning us to the previous case. We conclude that H ′ is indeed F ′-free. J

We are now ready to prove Theorem 3. Note that this theorem holds even if F is infinite.

I Theorem 3 (restated). Let F be a set of self-complementary graphs on at least five
vertices not equal to the bull. For a graph H, the class of ({H,H} ∪ F)-free graphs has
bounded clique-width if and only if H or H is an induced subgraph of K1,3, P1 +P4, 2P1 +P3
or sP1 for some s ≥ 1.

Proof. Let H be a graph. By Theorem 2, if H or H is an induced subgraph of K1,3,
P1 + P4, 2P1 + P3 or sP1 for some s ≥ 1, then the class of ({H,H} ∪ F)-free graphs has
bounded clique-width. Consider a graph F ∈ F . Since F contains at least five vertices
and is not isomorphic to the bull, Lemma 11 implies that F contains an induced subgraph
isomorphic to C4, C5 or K4, and so F /∈ S. Therefore the class of ({H,H} ∪ F)-free graphs
contains the class of (H,H,C4, C5,K4)-free graphs. If H /∈ S and H /∈ S, then the class of
(H,H,C4, C5,K4)-free graphs has unbounded clique-width by Lemma 9. By Fact 2, we may
therefore assume that H ∈ S. By Lemma 6, we may assume H contains K1,3 + P1, 2P2,
3P1 + P2 or S1,1,2 as an induced subgraph, otherwise we are done. In this case, the class of
({H,H} ∪ F)-free graphs contains the class of (K1,3,K4, C4, C5)-free, ({2P2, C4} ∪ F)-free,
({4P1, 3P1 + P2} ∪ F)-free or (K1,3, 2P1 + P2, C4, C5,K4)-free graphs, respectively. These
classes have unbounded clique-width by Theorems 22, 25, 21 and 22, respectively. This
completes the proof. J
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