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Abstract—In order to alleviate the effects of greenhouse gas 
emissions, the environmental and economic dispatch (EED) is 
formulated as multiobjective problem (MOP) solved by 
multiobjective immune algorithm (MOIA). Building on this 
model, the virtual power plant (VPP) is proposed involving 
distributed generation (DG), interruptible load (IL), and energy 
storage (ES) to participate in joint energy and reserve markets. 
The uncertainties of load prediction, DG, and IL are treated as 
interval-based optimization in this study. The static and real-
time simulations are conducted to demonstrate the validity of 
proposed stochastic EED model through the IEEE 30-bus test 
system. 
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I.  INTRODUCTION  

Greenhouse gas emissions have detrimental effects on 
sustainable development. It is particularly for the power 
generation sector which accounts for around 40% of carbon 
emissions [1]. Conventionally, the economic dispatch is 
responsible for allocating the optimal generation with the 
objective of minimizing total operation costs while being 
subject to system constraints [2]. In addition to the classic 
economic dispatch, the environmental dispatch, on the 
contrary, seeks to minimize the total pollutant emissions 
irrespective of costs [3]. Nevertheless, costs and emissions do 
not share the same dimension, which presents a challenge to 
propose a more dedicated dispatch approach coordinating and 
optimizing balanced operational points reasonably from 
economic and environmental aspects. 

Existing studies aim to solve environmental and economic 
dispatch (EED) simultaneously. F. Z. Gherbi et al. [4] 
considered carbon emissions as an additional constraint to 
optimize the generation costs. The emissions and costs were 
also optimized separately as a single objective function, 
before weighted evaluating for each objective [5], [6]. 
Nonetheless, it would be more useful to apply multiobjective 
problem (MOP) into EED for the purpose of fairly and 
effectively evaluating the interests of both costs and carbon 
emissions. To solve the EED problem, this paper employs 
multiobjective immune algorithm (MOIA) because it is able 
to obtain the optimal solution without sacrificing the interest 
of any objective [7]. Therefore, a balanced operating point for 
each generator can be obtained. 

Moreover, the generation dispatch can be classified into 
deterministic approach and stochastic approach in terms of 
optimization features. A majority of studies have investigated 
deterministic dispatch problem [8], [9]. However, due to the 
system uncertainties caused by distributed energy sources and 
load predictions, there are opportunities in applying the 
stochastic approach to cope with system uncertainties. H. Wu 
et al. [10] proposed stochastic programming methods for 
security constrained unit commitment to deal with 
uncertainties in renewable energy. The uncertainties of system 
intermittency and incidents were investigated by using 
frequency-constrained stochastic optimization model in [11]. 
The stochastic approach requires the probability distribution 
function (PDF) of the stochastic variables, which is difficult 
to be obtained in practical operations of power systems. By 
contrast, it is easier to establish the interval-based dispatch 
model to describe the range of uncertain variables. The 
interval-based optimization was noted in [12]. This paper 
adopts the interval-based stochastic approach involving the 
uncertainties of distributed generation (DG), energy storage 
(ES), and interruptible load (IL). 

Additionally, increasing penetrations of DG promotes 
replacement of grid structures, which economically and 
technically attributes to these resources through offering 
energy and reserve services [13]. Meanwhile, the 
requirements of demand response, system reliability, and 
security of electricity supplies during these services enable the 
virtual power plant (VPP) to be a necessary control 
infrastructure to coordinate each component inside [14]. The 
VPP is capable of dispatching and optimizing the DG to 
support power system regulations through using the rapid and 
flexible characteristics of distributed resources. The carbon 
emissions issue and uncertainties of distributed resources in 
the VPP, however, have barely been studied.  

Compared with the existing work, contributions of this 
paper are: 1) We aim to propose an EED model to consider 
both operation costs and carbon emissions as objectives of 
MOP; 2) We extend the scope of current research in the field 
of VPP through considering uncertainties and carbon 
emissions into the MOP. The uncertainties of  load predictions, 
DG, and IL are evaluated by interval-based approach. 

The rest of this paper is organized as follows. Section Ⅱ 
introduces the EED model considering the uncertainties of 
load predictions, DG, and IL. The interval-based stochastic 
model is subsequently described to cope with the uncertainties. 



Section Ⅲ illustrates the transformation from stochastic 
model to deterministic optimization problem.  Case studies are 
conducted in Section Ⅳ to demonstrate the proposed model. 
Finally, Section Ⅴ comes to the conclusion. 

II. STOCHASTIC EDD MODEL 

This section proposes the EED model through establishing 
objectives and constraints during power system operations. 
The uncertainties of load prediction, DG, and IL are 
considered by an interval-based stochastic approach. 

A. Objective Functions 

The economic dispatch of Conventional Power Plant (CPP) 
seeks to minimize the operation costs satisfying the total 
demand: 

 
                         C(PGi

t) = aiPGi
t

2  + biPGi
t  + ci

 
where C(PGi

t) is the generation cost of ith CPP at hour t, PGi
t  

is the power generated by ith generator for spot energy market, 
ai, bi, and ci are cost coefficients of generator i. 

Similarly, the economic dispatch of VPP is formulated to 
minimize the costs of each component inside. In this paper, 
the conventional model of VPP is considered including DG, 
ES, and IL. The cost objective of  DG can be described as [15]: 
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t
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where C(PDGj

t) is generation cost function of jth DG unit at 

hour t, PDGj
t  is power generated by jth DG unit, and dj, ej, and 

fj are cost coefficients of jth DG unit. 
As another fundamental component of VPP, the behaviour 

of storages in ES can be modelled as [15]: 
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where PESj
t  is charged/discharged capacity of jth ES at hour t, 

PESj
t

min and  PESj
t

maxare minimum and maximum capacities of jth 

ES, respectively, SoCj
t is state of charge of jth ES, and Rch and 

RDch  are maximum charge and discharge rates of jth ES. 
Hence, the cost function of ES can be modelled as [15]: 
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where C (PESj

t) is operation cost function of jth ES, and  

and  are cost coefficients of jth ES. Furthermore, the cost 
function of IL can be described as [15]: 
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t
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where C(PILj
t) is generation cost function of jth IL unit, PILj

t is 

power generated by jth IL unit at hour t, and dIL,j, eIL,j, and  
fIL,j are cost coefficients of jth IL unit. Therefore, the objective 

function of economic dispatch is minimization of the total cost 
in CPP and VPP. 
Cost objective of economic dispatch: 
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where RDGj

t  and  RILj
t  are power generated by DG and IL for 

reserve market, and r is probability of reserve delivery. 
By contrast, the environmental dispatch minimizes the 

total carbon emissions, which means that the generator with 
the lowest carbon emission will be triggered first [16]. The 
carbon emissions of CPP can be modelled using second order 
polynomial functions [17]. 
Emission objective of environmental dispatch: 
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t
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Where  αi, βi, and  ζi are coefficients of carbon emissions. 

Carbon emissions in VPP are not taken into consideration 
of MOP problem, because these emissions are irrelevant to 
the operational process. The carbon emissions in VPP will be 
evaluated through carbon emissions factors based on the life 
cycle analysis [18]. 

B. Constraints 

1) Power Balance Constraint: 
 

PGi
t  + (PDGj

t  +  RDGj
t  ) + 

No. of DG

j=1

No. of CPP

i=1

(Pchj
t-ηP chj

t) +

No. of ES

j=1

(PILj
t  + RILj

t ) = [ , ]                (10)

No. of IL

j=1

 

 
where Pchj

t  and P chj
t  are power charged and discharged into 

jth ES at hour t, η is the efficiency of ES, [ , ] is the 
interval of load predictions. 

2) Power Output Constraints:  
The power output constraint for the CPP is: 
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where PGi

t
min and PGi

t
max are minimum and maximum power 

generations of CPP.  



Regarding power output of  VPP, uncertainties of DG and 
IL are described as intervals. For the dispatchable DG units, 
due to the intermittency of renewable resources, the 
predictions of DG units tend to be inaccurate, which can be 
reflected by an upper and lower bound of output for energy 
and reserve markets, respectively. Thus, in addition to the 
deterministic inner constrain P

DGj
t

min,U ≤ (PDGj
t+RDGj

t) ≤ P
DGj

t
max,L  , 

an outer constraint P
DGj

t
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t+RDGj
t) ≤ P

DGj
t

max,Uis adopted to 

represent maximal regulation capacity. Hence, the constraint 
for DG in energy and reserve market is: 
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where [P

DGj
t

min,L,P
DGj

t
min,U]  and [P

DGj
t

max,L,P
DGj

t
max,U]  denote lower and 

upper bounds of power output of jth DG in the energy market. 
The inner and outer constraints reflect the conservative and 
optimistic uncertain levels and risks afforded by decision 
makers. 

3) IL Constraint:  
Similarly, the uncertainties of IL due to the variations of 

load curtailments are reflected as an interval: 
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t
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t
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where [PILj

t
max,L,PILj

t
max,U] is the upper bound of IL. 

4) Ramp Rate Constraints:  
 
                        -Ri

down ≤ PGi
t- PGi

t-1  ≤Ri
up

 
where Ri

down  and Ri
up  denote the ramp-down and ramp-up 

rates of ith CPP. The ramp rate of the DG is faster than CPP 
due to rapid regulation capacities. Thus, the ramp rate 
constraint of VPP is not taken into consideration. 

III. STOCHASTIC MODEL TRANSFORMATION 

      This section illustrates the conception of probability 
degree, so that the stochastic EED can be transferred into 
deterministic MOP. The MOIA algorithm to solve the MOP 
is also presented. 

A. Probability Degree 

The probability degree [19] is employed to solve the 
interval-based MOP. The probability degree can represent the 
risk levels which decision makers are willing to take based on 
corresponding degree of intervals. The conception of 
probability degree describes a comparison between a real 
number a and an interval B = [b,b] , so that the position 
relationships as shown in Fig. 1 and corresponding probability 
degree can be defined as: 
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1,          

,       

 0,          




where  P(a ≤ B  represents the probability degree of a ≤ B . 
The variable within B is assumed to obey the uniform 
distribution. 
 

 
Figure 1.  Relationship between a real number and an interval. 

Furthermore, depending on the risk tolerance of decision 
makers, the probability degree λ Є [0,1] can be defined as a 
threshold on the condition of a ≤ B. Therefore, P (a ≤ B) ≥ λ 
can be transferred into: 

 
                                   a ≤ bλ + b(1 - λ)

 
According to Eq (16), when λ = 0, the interval constraint 

a ≤ [b,b] becomes to be a ≤ b, which means that the decision 
maker is optimistic to focus on upper bound of the interval. 
By contrast, when λ = 1, the interval constraint becomes to be 
a ≤ b . Hence, the decision maker is pessimistic to reduce 
uncertainties. Thus, a higher probability degree represents a 
lower risk level would be afforded by decision maker. 

B. Transformation of Stochastic Model 

Building on the aforementioned probability degree, the 
stochastic interval-based constraints in Eq (10), Eq (12), and 
Eq (13) can be transferred into deterministic constraints: 
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where λL, λDG, and λIL are the assigned probability degree of 
load, DG, and IL constraints, respectively.  

C. Methodology: 

The MOP is solved by MOIA (See TABLE Ⅰ) for the 
purpose of obtaining pareto front (PF) [7]. The PF is the 
image of all nondominated solutions as shown in Fig. 2. If a 
point is able to provide better performance to at least one 
objective without sacrificing other objectives, it becomes the 
pareto optimal (PO) [7].  

IV. CASE STUDIES 

In order to demonstrate the proposed model, case studies 
have been conducted using the IEEE 30-bus system which 
consists of 6 generators [20]. The generators from G1 to G5 
are CPPs, and the G6 is replaced by a VPP. The static 



simulation uses system original data to compare the results 
between deterministic approach and stochastic approach. 
Moreover, the real-time simulation uses the scaled-down UK 
daily generation and consumption data in proportion to 
present the results of daily power dispatch in CPP and VPP as 
well as corresponding carbon emissions. The coefficients are 
selected based on practical experience and [15]. 

TABLE I.  MOIA ALGORITHM 

Input: Objective functions: Eq (8), (9); initial solution size n; maximum 
iteration time. 

1: Generate a group of antibodies as initial population to represent the 
power dispatch over constraints Eq. (11), (14), (17), (18), (19), and (20): 
2: Remove dominated antibodies and remain nondominated antibodies. 
3: Perform mutation operation over the remaining nondominated 
antibodies to produce a set of antibodies. 
Repeat 
4: Remove dominated antibodies. 
5: Evaluating the remaining antibodies through satisfying the 
constraints and removing infeasible antibodies. 

6: if The population size is larger than the nominal size then 
7: Update to normalize the antibodies 
end if 

Until The maximum iteration time is reached. 
Output: A solution which is able to maximize the minimum improvement 
in all dimensions. 

A. Static Simulation 

TABLE II.  TOTAL COST AND EMISSION OF SYSTEM 

Approach Case λL λDG λIL Cost 
[£/h] 

Emission 
[ton/h] 

 
 
 
 

Stochastic 

1 0 1 1 537.8525 206.5426 

2 0.5 1 1 527.5326 198.4871 

3 1 1 1 508.8145 193.7966 

4 1 0.5 0.5 508.2081 192.8227 

5 1 0 0 511.8148 190.4036 

6 0.8 0.7 0.6 536.0419 202.1907 

Deterministic - - - - 528.2506 197.2691 

 
The uncertainties of load predictions, DG, and IL are 

reflected in the probability degrees for quantifying uncertain 
intervals under six conditions. TABLE Ⅱ shows the 
comparison between deterministic and six conditions of 
stochastic results in EED. The corresponding PFs of MOP are 
shown in Fig. 2. It can be seen that the highest cost and 
emission reach 537.835 £/h and 206.543 ton/h respectively in 
case 1, whereas the relatively lower cost and the lowest 
emission drop to 511.815 £/h and 202.191 ton/h respectively 
in case 5. This is because a lower probability degree of load 
uncertainty (λL) indicates a higher load level, whereas higher 
probability degrees of DG (λDG ) and IL (λIL ) in the VPP 
indicate a lower output, which causes the highest cost and 
emission. Additionally, the deterministic results are closer to 
case 2 with medium load uncertainty and lower VPP output. 

B. Real-time Simulation 

The aforementioned condition in case 6 is selected as an 
example for real-time simulation with the scaled down UK 
generation and demand data [21]. The daily MOP results of 

EED for CPPs and VPP in both energy and reserve markets 
are shown in Fig. 3 and Fig. 4, respectively. The power curve 
of CPP is closer to the lower-bound of load interval, because 
the selected probability degree of load uncertainty is relatively 
high (λL =0.8). The total daily generated power of VPP is 
presented in Fig. 5. It is clear that the dispatching VPP output 
falls into the uncertain interval during the periods from 12h to 
14h and from 16h to 18h, which means that the EED is 
confronted with risks due to those uncertainties. Furthermore, 
Fig. 6 shows the daily EED. There is the same trend of 
variation between daily costs and emissions, but the costs 
during the peak-time (8h to 18h) present a more dramatic 
increase than carbon emissions. 
 

 
Figure 2.  The comparison of EED between determistic and stochastic 

approaches. 

 
Figure 3.  EED power curves of CPPs. 

V. CONCLUSION 

This paper proposes a stochastic EED model in power 
systems considering the VPP in both energy and reserve 
markets. The generation dispatch problem is considered as a 
MOP solved by the MOIA. The uncertainties of load 
prediction, DG and IL are taken into consideration as 
uncertain intervals, so that the stochastic optimization 
problem can be converted into deterministic optimization. The 



static simulation demonstrates the various optimization results 
considering different levels of probability degrees. Moreover, 
the results indicate that the EED is confronted with risks 
caused by uncertainties. 

 
Figure 4.  EED power curves of VPP. 

 
Figure 5.  Total generated power curves of VPP. 

 
Figure 6.  Daily EDD  results of cost and emission. 
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