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Abstract. In this paper we compare three variants of the graph Lapla-
cian smoothing. The first is the standard synchronous implementation,
corresponding to multiplication by the graph Laplacian matrix. The sec-
ond is a voter process inspired asynchronous implementation, assuming
that every vertex is equipped with an independent exponential clock. The
third is in-between the first two, with the vertices updated according to
a random permutation of them. We review some well-known results on
spectral graph theory and on voter processes, and we show that while the
convergence of the synchronous Laplacian is graph dependent and, gener-
ally, does not converge on bipartite graphs, the asynchronous converges
with high probability on all graphs. The differences in the properties
of these three approaches are illustrated with examples including both
regular grids and irregular meshes.
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1 Introduction

Laplacian smoothing is used in a variety of applications as a simple yet effective
method for data denoising. Assuming that each data point has a well-defined
neighborhood, each iterative Laplacian smoothing step updates the data points
by weighted averages of their neighborhoods. Since neighborhood relations are
naturally described by graphs with their edges connecting neighboring points,
Laplacian smoothing is often described as an operator acting on graphs, smooth-
ing the values of a function defined over the graph’s vertices.

In graphics applications, Laplacian smoothing, applied either globally or lo-
cally, is often used for smoothing discrete surfaces, especially triangle meshes.
In cases of global mesh smoothing in particular, higher quality results are ob-
tained by using more sophisticated variants of the fundamental technique, such
as the HC-Laplacian smoothing [18], the curvature flow smoothing [5], or the
Taubin smoothing [15]. The latter, which will be used in our experiments, is
based on the alteration between a smoothing step with a positive weight w1 and
an anti-smoothing step with a negative weight w2.
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Since Laplacian smoothing is simple, general and well-understood, it is often
the technique of choice when a smoothing or noise suppression algorithm needs
to be incorporated into a general mesh processing framework [10], or into a
more complex algorithm, as for example the machine learning algorithm for sur-
face reconstruction in [1], or the Boundary Element Method based evolutionary
structural optimization in [17].

In image processing applications, weighted neighborhood averaging, usually
referred as Gaussian smoothing, is a fundamental technique at the heart of classic
edge detection algorithms, or more sophisticated variants of them such as the
bilateral edge preserving smoothing in [16], a technique which has been extended
to triangle meshes [7]. Bilateral filtering has been studied through the spectrum
of the graph Laplacian in [8].

Several curve and surface subdivision algorithms can defined as combined
operators with at least one Laplacian smoothing component. The classic Lane-
Riesenfield algorithms [11] apply Laplacian smoothing on a very simple graph,
i.e. a graph with the connectivity of a polygon, while in some recent generaliza-
tions the smoothing step corresponds to the Laplacians of more dense graphs
[3].

In this paper we compare three implementations of Laplacian smoothing,
depending on the order in which vertices are updated. In the first implementation
we consider, Lsync, each step updates all graph vertices synchronously. This
implementation, which is ubiquitous in practical applications, has the major
advantage that we do not have to define a specific order in which the vertices
are updated, thus do not have to arbitrarily impose such an order.

In the second implementation, Lexp, every vertex carries an independent ex-
ponential clock and is updated when that clock rings. Lexp has several similarities
with the discrete operators called voter processes, which are a major modeling
and simulation tool. They have been traditionally employed on regular grid set-
tings [4] to model physical phenomena, and recently on irregular graph settings
to model social interactions, e.g. spread of influences on social media, or con-
sumer behavior [12, 19]. In the latter cases, the basic voter processes are usually
augmented with special features that allow them to capture the complexity of
social interactions. As an advantage of the Lexp operator, we note that it is more
natural than Lsync in the sense that it does not assume instant interaction be-
tween the parts of the system, here the vertices of the graph, and as a result it
can avoid the problem of non-convergence which appears when Lsync is applied
on bipartite graphs. Moreover, it has a trivial memory efficient implementation
since, unlike Lsync, it does not require to retain the existing values of the func-
tion until the end of the current iteration. One potential disadvantage is that
the outcome in non-deterministic, something that in several applications can be
unacceptable.

In between Lsync and Lexp, we also consider an operator Lperm, which up-
dates the vertices one by one as in Lexp, but following a random permutation of
the vertex set rather than using independent exponential clocks. In Lperm, no
vertex will be updated twice before all vertices have been updated once, allow-
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ing for a clear distinction between the iterative steps of the smoothing process,
similarly to Lsync. This is particularly convenient when Taubin smoothing is
applied and thus, we alternate between two distinct Laplacian smoothing steps.
Nevertheless, Lperm seems to be less interesting than Lsync and Lperm from a
theoretical point of view and here will only be studied experimentally.
Contribution and Limitations: The main contribution of the paper is the
demonstration of theoretical and practical shortcomings of the synchronous im-
plementation of the Laplacian smoothing, which have been largely overlooked
in the relevant literature. As the main limitation of the paper we note that
given the theoretical and practical shortcomings of the two randomized imple-
mentations we tested, a conclusive case for their use instead of the ubiquitous
synchronous implementation can only be made in the context of a specific appli-
cation scenario, as for example a specific mesh processing pipeline or a specific
grid simulation. The latter however is beyond the scope of this paper.
Overview: In Section 2, we describe the three implementations of Laplacian
smoothing in detail, and review the theoretical properties of Lsync and Lexp.
In Section 3, we test all three implementations on regular height maps and 3D
triangle meshes, using Laplacian smoothing or Taubin smoothing as appropriate.
We briefly conclude in Section 4.

2 Theoretical properties of Lsync and Lexp

First, we review the convergence properties of the usual synchronous Laplacian
smoothing. While the convergence or not of Lsync is a direct consequence of well-
known spectral properties of the Laplacian matrix, to the best of our knowledge,
bipartite graphs have not been identified in the relevant literature as the class
of graphs where Lsync, generally, does not converge.

Let G = (V,E) be a connected graph with N vertices and let fn be a real
function defined over the vertex set V , which can also be written as a vector

fn = (fn(v0), fn(v1), . . . , fn(vN−1))T . (1)

One iterative step of the synchronous Laplacian smoothing Lsync updates fn by

fn+1 = L · fn (2)

where the Laplacian matrix L, indexed by the vertices of G, is given by

L = L(i, j) =

{
1/di if (vi, vj) ∈ E,

0 otherwise
(3)

where di is the valence of the vertex vi. Regarding the spectral properties of L,
see for example [2], its eigenvalues satisfy

1 = λ0 > λ1 ≥ · · · ≥ λN−1 ≥ −1, (4)

that is, all the eigenvalues are in the interval [1,-1] and the largest is equal to
1 and has multiplicity one. Moreover, λN−1 = −1 if and only if G is bipartite,
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that is, when its vertices can be split into two subsets, let say the white and the
black vertices, such that only vertices in different subsets are connected with an
edge. In that case, the spectrum of L is symmetric about the origin and thus
λN−1 also has multiplicity one [2].

Let vi for i = 0, . . . , N − 1 be an orthonormal basis of RN consisting of
eigenvectors of L. The initial function f0 of vertex values can be written in that
basis as

f0 = a0v0 + · · ·+ aN−1vN−1 (5)

giving

fn = Lnf0 = a0λ
n
0v0 + · · ·+ aN−1λ

n
N−1vN−1 (6)

which, on bipartite graphs, for large number of iterations n converges to

a0v0 + aN−1(−1)nvN−1. (7)

From Eq. 7 we see that Lsync does not converge if the graph G is bipartite and
aN−1 6= 0, i.e., the initial vertex values f0 contain a non-zero component of vN−1.
The eigenvector vN−1 of bipartite graphs has a quite simple form, namely, it has
values +1 on white vertices and -1 on black. On the other hand, for any graph
G, bipartite or not, we have

v0 = (1, . . . , 1)T . (8)

and simple computations show that if fn converges to a function f then

f = a0v0 (9)

where a0 is the coefficient of the eigenvector v0 when we write f0 in the basis of
the eigenvectors of L.
Relevance: Bipartite graphs appear often in practice. Open polygons are bipar-
tite, as well as regular quadrilateral grids and regular cubic grids. While triangle
meshes are not bipartite, regular hexagonal meshes are bipartite. Regarding gen-
eral polygonal meshes, the graph with vertex set the vertices and the faces of
the mesh, and edges from the vertex-vertices to the incident face-vertices and
the face-vertices to the incident vertex-faces, is bipartite. Thus, if we smooth
attributes defined on both vertices and faces, e.g. normals, colors or material
properties, by updating the vertices by the mean of the incident faces and the
faces by the mean of the incident vertices, then the process would generally not
converge.

2.1 Lexp smoothing and voter processes

Since Lexp is a probabilistic process we cannot study it through the spectral
properties of the Laplacian matrix. Instead, we will study it through its rela-
tion to voter processes, which can be seen as the discrete counterparts of Lexp.
While voter processes are well-understood and have already found numerous
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applications, to the best of our knowledge their connection with the Lexp im-
plementation of the Laplacian smoothing has not been studied. Next we will
make this connection explicit, essentially formalizing the following simple intu-
itive argument; under Lexp smoothing, the values of the function f on the graph
vertices correspond to opinion expectations in a voter process.

The Lexp smoothing process: Following the standard terminology on voter
processes, each vertex of G carries an independent exponential clock of rate 1.
Each time a clock rings the value on its vertex is updated, becoming the mean
of the values of its 1-ring neighborhood. In matrix notation, this is equivalent to
multiplication by the matrix Lk derived from the identity matrix by substituting
its k-th row with the k-th row of the Laplacian matrix. That is,

fm+1 = Lk · fm (10)

where

Lk = Lk(i, j) =


L(i, j) if i = k

1 if i = j 6= k

0 otherwise

(11)

Let t0, t1, ...., tn be the sequence of vertex indices in the order they rang
during the smoothing process. We have

fn+1 = Ltn · · ·Lt0f0 (12)

which, by writing f0 in the natural base becomes

fn+1 =

N−1∑
i=0

f i0 · Ltn · . . . · Lt0 · ei (13)

where f i0 is i-th coordinate of f0 and ei is the vector with 0’s everywhere and 1
at the i-th coordinate. From Eq. 13 we see that for large values of n the behavior
of Lexp depends on the limit of

Ltn · . . . · Lt0 · ei. (14)

The corresponding voter process: In its standard form, a voter process is
defined on a graph whose vertices carry a value from the set {0, 1}, commonly
called the opinion. Each vertex carries an independent exponential clock and
upon ringing that vertex will choose with uniform random probability one of
its neighbors and adopt its opinion. To each vertex i we associate the binary
random variable Xi with

Xi(0) = 0, Xi(1) = 1 (15)

and the set of vertices V is associated to the vector of binary random variables

X = (X0, . . . , XN−1)T . (16)
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Let the vector of the probability distributions of the opinions at step n be

Yn = (Y n
0 , . . . , Y

n
N−1). (17)

From Eq. 13, it suffices to study the behaviour of the process for initial opinion
vector ei, in which case we have{

p(Y 0
i = 0) = 0 p(Y 0

i = 1) = 1

p(Y 0
j = 0) = 1 p(Y j

i = 1) = 0 for i 6= j
(18)

and the initial expectation vector is E(X) = ei. Assuming that the clocks at the
vertices of the graph ring in the order t0, t1, . . . , tn, we have

Yn = Ltn · . . . · Lt0 ·Y0 (19)

and by linearity, the expectation vector at step n is

E(X) = Ltn · . . . · Lt0 · ei. (20)

For any graph, including bipartite graphs, the above voter process reaches con-
sensus with high probability [6]. That is, for any ε > 0, after a sufficiently large
number of steps, all the vertices will have the same opinion with probability at
least 1 − ε. Moreover, the probability for the consensus being at opinion 1 is
equal to the sum of the valences of the vertices with initial opinion 1 divided by
the sum of all valences, which is twice the number of edges |E|. For the initial
opinions corresponding to the basis vector ei, the expectation vector under the
condition that consensus has been reached is

Ei
cns =

di
2|E|

(1, 1, . . . , 1)T . (21)

Remark: [9] studies a voter process where all vertices update simultaneously,
i.e., in the fashion of Lsync rather than Lexp. The main result is that consensus is
reached with high probability for all non-bipartite graphs. In [13], these two voter
processes are compared and the main result is that the asynchronous process
reaches consensus faster than the synchronous. The latter result is reflected in
our experiments regarding the speed of the smoothing processes in Section 3.

The Lperm smoothing process: In-between Lsync and Lexp we define a third
process Lperm where the graph vertices are updated one by one, according to a
random permutation of them. Since there is no much literature on the theoretical
properties of Lperm, we will only study it experimentally, generally expecting a
behavior similar to Lexp.

The motivation for including Lperm in our investigations is two-fold. Firstly,
as Lexp is different from Lexp in that all vertices are updated the same number
of times, a comparison between the two methods can reveal the affect on Lexp

of the fact that some vertices may be updated significantly fewer times than
the average. Secondly, Lperm is similar to Lsync in that a single iteration of the
process is clearly defined, i.e. when all vertices have been updated once. This is
particularly convenient when we alternate between different steps of Laplacian
smoothing, as for example in the case of Taubin smoothing.
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3 Experimental results

In our examples we use two graph types. First, graphs with the connectivity of
a regular 2D grid and a real-valued function f : V → R defined over its vertices.
Secondly, irregular graphs with a vector valued function f : V → R3 defined on
the vertex set. In the first case, f would typically be a spatially regular sample of
measurements of a physical quantity and will often be visualized as a 2.5D height
map. In the second case, f would typically represent the spatial coordinates of
the vertices of a polygonal mesh embedded in 3D and the Laplacian smoothing
process will be applied on each coordinate separately.

In Fig. 1 we applied the three Laplacian operators on a 50× 50 regular grid
with values

f(x, y) = sin(2πx) + sin(2πy). (22)

Random uniform noise from the interval [-1,1] was added on the interior vertices.
In all three cases the boundary of the grid is fixed and we apply the smoothing
operators on the interior vertices only. After 50 iterations of the Lsync, the
artifact related to the non-convergence of the operator on bipartite graphs is
clearly visible, even though the fixed boundary means that eventually the result
will be smooth as the boundary values slowly propagate towards the interior.
Next, we applied the operator Lexp until one vertex had been updated for 50
times and as expected, the result was smooth. Notice that applying Lexp until
one vertex has been updated for 50 times means that all other vertices are
updated fewer than 50 times. However, as Lexp updates vertices on the fly, it
mixes vertex values faster than Lsync. Finally, we notice that, as expected, Lperm

yielded results similar to Lexp.
The next figures show results on triangle meshes. The Fandisk model was

chosen for its flat areas and sharp edges, while the Eight model was chosen for the
absence of sharp edges and its non-trivial topology. The subdivided Dipyramid
was chosen for its rotational symmetry and its highly regular connectivity which
produce artifacts when Laplacian smoothing is applied.

Fig. 2 shows the results of applying Lexp on noisy Fandisk and Eight models.
We notice that while most of the noise has been removed from both models, the
edges of the Fandisk have not been preserved and there is more residual noise
compared to Lsync and Lperm, see Figs. 3 and 4. The smoothed Eight model
exhibits again some residual noise, but avoids the medium frequency artifacts
created by Lsync and Lperm for the given edge preserving choice of parameters
w1 and w2, see Fig. 3. We note that the larger amount of residual noise in Lexp

is due to the fact that some mesh vertices are smoothed a few times only and
that it can be a serious limitation in certain graphics applications.

Fig. 3 compares Lperm and Lsync on Taubin smoothing. We notice that while
Lsync and Lperm can produce results that visually are very similar to each other,
the values of certain algorithmic variables such as the number of iterations, or
the weights of the Taubin smoothing, are not directly comparable. In particular,
for given Taubin smoothing weights, Lperm requires fewer iterations than Lsync.
That was expected since Lperm updates the mesh vertices on the fly and thus,
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Fig. 1. Top to bottom: noisy grid data, 50 iterations of Lsync, Lexp and Lperm

smoothing.
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Fig. 2. The noisy Fandisk and Eight model smoothed with Lexp. The process termi-
nates when one of the mesh vertices reaches 50 iterations.

Fig. 3. Smoothing of the noisy meshes in Fig. 2 with Lperm and Lsync. Left to right:
50 iterations of Lperm, 50 iterations of Lsync and 100 iterations of Lsync. In all cases
the Taubin smoothing weights are w1 = 0.25 and w2 = −0.20.
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the new value of a vertex starts propagating immediately, rather than after the
iteration is complete. We also note that in our basic Matlab implementation,
a single iteration of Lperm runs faster than a single iteration of Lsync. This is
because Lsync stores the updated vertex values in a temporary array which has
to be copied at the end of each iteration.

Fig. 4 compares Lperm and Lsync on the range of acceptable Taubin smooth-
ing weights. We notice that the Lperm accepts a wider range of weights than
Lsync and in particular, the anti-smoothing weight w2 can be significantly larger
in absolute value than the smoothing weight w1.

Fig. 4. Smoothing of the noisy meshes in Fig. 2 with 200 iterations of Lperm (left)
and Lsync (right). Top: Taubin weights w1 = 0.25 and w2 = 0.25. Bottom: Taubin
weights w1 = 0.25 and w2 = 0.3.

Finally, in Fig. 5 we apply the three processes on a linearly subdivided dipyra-
mid. We notice that surface artifacts, as have been studied in [14], appear in all
three cases and are very similar to subdivision artifacts. A possible explanation
for this is that several subdivision schemes can be described as a combination a
linear subdivision step followed by a weighted Laplacian smoothing step.
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Fig. 5. From left to right: (a) The original mesh. (b) 200 iterations of Lsync with weight
w = 0.1. (c) 200 iterations of Lperm Taubin smoothing with w1 = 0.25 and w2 = 0.20.
(d) 200 iterations of Lsync Taubin smoothing with w1 = 0.25 and w2 = 0.20.

4 Conclusions

We compared three different implementations of Laplacian smoothing, depend-
ing on the order in which the graph vertices are updated. We reviewed their the-
oretical properties, focusing on their different behaviors over bipartite graphs.
Our tests showed that these theoretical differences are visually significant when
Laplacian smoothing is applied on regular grids.

As we noticed in the literature review in Section 1, Laplacian smoothing
is most often applied in the form of several consecutive iterations of weighted
Laplacian smoothing, rather than as direct application of the Laplacian matrix
in Eq. 3. Moreover, it is often applied locally rather than globally and it is often
just one step of a more complex mesh processing algorithm. In such settings,
the results in Section 3 do not provide any compelling evidence against current
practice of using Lsync as the default implementation of Laplacian smoothing. In
the future, we plan to compare these three different implementations of Lapla-
cian smoothing in the context of a specific 3D modeling problem, in particular,
machine learning based surface reconstruction as, for example, in [1].
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of irregular meshes using diffusion and curvature flow. In SIGGRAPH, pages 317–
324, 1999.

6. Peter Donnelly and Dominic Welsh. Finite particle systems and infection models.
Mathematical Proceedings of the Cambridge Philosophical Society, 94(01):167–182,
1983.



12 Ying Yang et al.

7. Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. Bilateral mesh denoising.
ACM Trans. Graph., 22(3):950–953, 2003.

8. Akshay Gadde, Sunil K. Narang, and Antonio Ortega. Bilateral filter: Graph
spectral interpretation and extensions. In 2013 IEEE International Conference on
Image Processing, pages 1222–1226. IEEE, 2013.

9. Yehuda Hassin and David Peleg. Distributed probabilistic polling and applications
to proportionate agreement. Information and Computation, 171(2):248–268, 2001.

10. Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Interactive
multi-resolution modeling on arbitrary meshes. In SIGGRAPH, pages 105–114.
ACM, 1998.

11. Jeffrey M. Lane and Richard F. Riesenfeld. A theoretical development for the com-
puter generation and display of piecewise polynomial surfaces. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2(1):35, 1980.

12. Yanhua Li, Wei Chen, Yajun Wang, and Zhi-Li Zhang. Influence diffusion dynamics
and influence maximization in social networks with friend and foe relationships.
In Proceedings of the sixth ACM international conference on Web search and data
mining, pages 657–666. ACM, 2013.

13. Toshio Nakata, Hiroshi Imahayashi, and Masafumi Yamashita. A probabilistic
local majority polling game on weighted directed graphs with an application to
the distributed agreement problem. Networks, 35(4):266–273, 2000.
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