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Abstract—To reduce the burden on data communication in
smart girds, household level distributed energy management
systems have become increasingly vital due to their capability
of distributed intelligence and scheduling devices. This paper
studies the optimal management of storage and electric vehicles
at a household level when subject to financial constraints. A
model using a real-time pricing structure is used to minimise the
final consumer cost, whilst responding to power consumption
limits set by the supplier. Implementation of the limits and
pricing structure allow the supplier to better balance changes
and discrepancies in both demand values and generation values.
Using real data, models for solar generation, household load
demand, and the pricing structure are proposed and integrated
into the overall model for the household system. The model for
the household system optimises the power taken from the grid
and the power stored for the lowest end cost to the user. A series
of laboratory evaluations are run to compare the effects of the
electric vehicle, solar generation and limits on the household,
and considerations are made to the financial and practical
implications of these effects. Evaluation results show important
benefits from soft limiting household consumption. This allows a
more robust and efficient smart grid system that creates better
communication between the supplier and the consumer.

I. INTRODUCTION

The smart grid (SG) is an intelligent grid system that

uses information and communications technology to monitor

and actively control generation and demand for providing

a more reliable and cost effective electricity system from

generators to homes, business and industry [1]. The huge

amount of data (including metering data, renewable energy

data, energy storage data, control data, etc.) and the growing

needs of highly frequent data exchange have posed a sig-

nificant challenge on the scalability and reliability of smart

grid communication systems. There are two perspectives to

address this challenge: One perspective is to implement a

scalable distributed communication infrastructure in order to

improve the system throughput and communication reliability,

so that more data communication demands can be supported,

as discussed in [2], [3]. Another way is to use distributed

decision-making scheme, i.e., enable distributed intelligence

and localized goal setting. This could not only reduce the

amount of data to be delivered through SG communication

networks, but also facilitate more local SG services and engage

more SG stakeholders.

Household level Distributed Energy Management Systems

(HDEMSs) allow consumers to participate in the optimal

management of energy storage, renewable energy, and electric

vehicles (EVs) whilst satisfying the limits or constraints set by

the distribution network operators. By scheduling appliances

in the home for the most efficient use, HDEMS improves

demand side response, and is a key part of the smart grid. This

scheduling allows for the movement of the peak consumption

times, as well as ensuring that the grid generation is able

to balance with demand. Most existing works of HDEMSs

focus on the algorithmic approach: Fuzzy learning algorithms

are proposed to schedule appliances in [4]; further work on

appliance scheduling to meet consumer preferences with aim

to minimise user discomfort can be seen in [5] and [6] .

One key aspect in HDEMSs is the integration of storage.

Distributed energy storage systems (DESS) and/or EVs can

be used to provide energy storage. The integration of DESSs

into the smart grid is complex due to the levels of control

required at the micro grid level, meaning complex topologies

and control systems are required [7]. The integration of EVs

into storage systems is another challenging issue. In [5] EVs

are modelled as simple consumers, and in [8], a bidirectional

model is implemented where the EV is used as a storage device

which can also discharge if required by HDEMS.

Different from existing research, this paper investigates the

integration of bi-directional charging of EVs and DESSs in

the same household. This is to be done with variable demand

limits and a real-time pricing (RTP) scheme based on existing

data, as well as introducing financial disincentives for large

demand levels. This paper creates a model to suitably predict

the charge and discharge levels of both storage devices and

EVs for home use, to allow for the most efficient use of

electricity and to allow for responses to varying grid demand

and generation. Additionally, the paper implements a soft limit

penalty scheme, and shows the effects and benefits of a scaled

penalty factor on power consumption from the grid for both

the consumer and the supplier.



The rest of this paper is organized as follows. Section

II specifies the system model. The optimal management of

storage and EVs in HDEMSs with financial constraints is

analyzed in Section III. Simulation results are shown in

Section IV, and Section V concludes the paper.

II. SYSTEM MODEL

We consider a single household where energy consump-

tion can be monitored and controlled using a HDEMS. The

household is modelled with a storage device and an optional

EV. Both of these devices can be used to charge or discharge

power into the system. Models for cost and time of year are

integrated into the system. The data used for the load demand,

RES, and cost models is based upon historic data averages for

the UK. The intention is that if this was to be implemented in

the home the data recorded by the HDEMS could be used to

increase model accuracy. This would allow for further savings

for the consumer and supplier. The model is split into time

periods of length tp in hours, where P t
g represents the amount

of power taken from the grid at time t.

A. EV and Storage Model

The storage model used is similar for both the EV and

the household storage system, with the EV model holding

special constraints for plug in and unplug times. The model

used for the storage system defines the storage level at time t
of the battery in the household storage and EV as P t

s and

P t
v , respectively, and the per hour charge rate is therefore

represented by dP t
s and dP t

v , respectively. As a result we can

say that for the next time period the stored power in the EV

and household storage is represented by:

P t+1
s = P t

s + dP t
s · tp (1)

αt
v · P

t+1
v = αt

v · P
t
v + βt

v · dP
t
v · tp (2)

where αt
v and βt

v are matrices used to represent the time at

which the EV is plugged into the system where αt
v is used

for the storage level and βt
v is used for the charge rate. To

allow for user variation the hour of the day at which the EV

is plugged in and unplugged is given the factor tvi and tvo,

respectively, this is assumed to be constant for each day of the

model. Due to the user variation the period of time the EV is

at the household can vary, and so if tvi < tvo then the EV is

not plugged in at the start of the day and is therefore available

for use between tvi and tvo. Therefore we have:

αt
v=

{

1 tvi ≤ t ≤ tvo

0 otherwise
, βt

v=

{

1 tvi ≤ t ≤ tvo−tp

0 otherwise
(3)

It is seen here that as it is unplugged when t = tvo that it is

not possible for the EV to be charged in this time period and

therefore the last charge will take place at the previous time

period. This equation ensures that αtvo
v = 1 and βtvo

v = 0.

If tvi > tvo then the EV is assumed to be plugged in at the

beginning and end of the day, so we have:

αt
v =

{

0 tvi < t < tvo

1 otherwise
, βt

v =

{

0 tvi < t < tvo−tp

1 otherwise
(4)

Here we once again see the same principle as in the previous

case as the EV cannot be charged in the same time period as

the one in which it is unplugged.

Otherwise we have, as if tvi = tvo no charging can occur

and therefore for ∀t:

αt
v = 0, βt

v = 0 (5)

It must be noted that to ensure that the charge rate at

any given time doesn’t cause the battery to over charge, the

following conditions must be applied to the system:

Pmin
s − P t

s ≤dP t
s ≤ Pmax

s − P t
s (6)

Pmin
v − P t

v ≤dP t
v ≤ Pmax

v − P t
v (7)

where Pmin
s , Pmax

s , Pmin
v , and Pmax

v represent the minimum

and maximum storage values for DESS and EV, respectively.

B. Load Demand Model

The load demand data is based on the Household Elec-

tricity Survey [9]. This data shows 10 minute breakdowns

of households for various months and house types. For the

purposes of our model demand the data has been simplified

and assumed to be constant over an hour long period. Data

is then generated for each time period using a randomly

generated value based on the hourly average +/- a single

standard deviation, calculated from the data in [9]. The data

output can be varied by month and house type (bungalow,

detached, end-terrace, flat, mid-terrace, or semi-detached) or

an average of all house types and/or months. This model

outputs P t
L, which is the load power required at t, for all

values of t in the model range.

C. RES Model

We consider solar contributions for the RES. To model the

solar panel, we have used SunPower R©E20-327 panels which

have a solar efficiency of 0.204 [10]. We have assumed the

house to have two of these panels, which are 1.046m by

1.559m each, giving a total area of 3.261 m2. Using the solar

cell efficiency equation in (8):

P t
r = η · Et · Ac (8)

where P t
r is the Power ouput, η is the solar efficiency, Ac is

the area the solar panel covers and Et is the solar irradiance

received in the area at time t in W/m2. The data for Et

was taken from the European solar radiation database, “Pho-

tovoltaic Geographical Information System” (PVGIS), created

by the European Commission [11]. Data for this was collated

at three locations across the UK for each month, the three

locations represent northern, central and southern areas of the

UK. The panels were set to be at 35◦ inclination and at 0◦

azimuth, equivalent to south facing. The location data can be

seen in Table I.

Using the calculated P t
r from the PVGIS data it was possible

to gain an average and standard deviation for each half hour

period. For this model a value between 0 and the sum of the

average value and standard deviation at each time period is

randomly generated at each time period. These bounds are



TABLE I
LOCATION OF SOLAR PANELS

Location Longitude Latitude

Northern UK 1◦53′22” West 53◦42′27” North
Mid UK 1

◦
42

′
49” West 53

◦
17

′
1” North

Southern UK 0◦43′30” West 51◦32′30” North

used to allow for the potential losses due to cloud cover. This

model outputs P t
r , which is the power generated by the RES

at t, for all values of t in the model range.

D. Cost Model

The cost model is based on historic data from British Energy

Trading and Transmission Agreements, using the previous

years buy and sell prices. The data had been calculated from

Elexon’s Balancing Mechanism Reporting website [12]. Using

this data an hourly average and standard deviation is once

again calculated, and then a randomised value between its

average and a standard deviation on each side is generated for

each time period or hour, depending on the user preferences.

The user is given the option of a fixed buy/sell price or an

hourly or time period based real-time price structure (Hourly

RTP or Time-period RTP), as well as selecting which month

of the year it is and to represent the unpredictability of solar

power. This model outputs Ct
s and Ct

b which is the cost

function of for selling power to the grid and buying power

from the grid respectively.

E. Cost Penalties Model

The method chosen aims to keep the consumption as close

to the limit without forcing a fixed limit which, as shown in

paper [13] where the fixed limit can cause new peaks following

shifts between low and high limits, restricting limit levels.

In this model we introduce soft limits. Soft limits allow

the user to exceed the limits, however they will be financially

penalised if they do. Therefore the supplier, who would usually

implement fixed household limits which can cause issues for

the consumer and generally do not offer suitable trade off

between the two, we use soft limits to implement a penalty

factor fp when the limit is exceeded. This penalty factor is

applied to the cost of any generation above the defined soft

limit. The difference between the soft limit at time t, P t
limit,

and P t
g is represented by P t

excess. In the model we offer two

forms of the penalty factor, a fixed percentage value and an

increasing convex function seen in (9). Here Q represents a

fixed factor, which must be greater than 1, normally a value

of 1.4 is used, however this can be varied by the model user.

f t
p = Q

(

Pt
excess
100

)

− 1 (9)

If soft limits are applied then P t
excess is defined by (10),

otherwise P t
excess = 0, ∀t.

P t
excess =

{

0 P t
g < P t

limit

P t
g − P t

limit otherwise
(10)

III. PROPOSED HDEMS

A. Optimisation Model

This paper focuses on reducing the end cost to the user

by making use of the periods of lower cost or higher RES

generation to charge the battery of the storage unit or the

EV so that it can be released at the optimal times, and as

a result achieves the lowest cost to the user. The aim is to

assist balancing out both storage and RES in the home, as

well as providing new insight on the impact of the EV.

As aforesaid, the objective function may be defined by (11)

min
dP t

v ,dP
t
s ,P

t
g ,P

t
s ,P

t
v

=

T
∑

t=1

tp ·
[

Ct
b

(

P t
buy + fpP

t
excess

)

− Ct
sP

t
sell

]

(11)

subject to (1), (2), (6), (7), (13), (14), (15),(16), and (17). tp
is used to factor the power to kWh for the cost function.

The optimisation uses the variables dP t
v , dP t

s , P t
g , P t

s ,

and P t
v . All other inputs to the optimisation are considered

independent of these and are therefore fixed prior to start, this

makes use of the RES model, cost model and load demand

model as described above. P t
sell and P t

buy are factors of power

taken from the grid at time t, P t
g , and

P t
sell =

{

0 P t
g > 0

−P t
g otherwise

, P t
buy =

{

0 P t
g < 0

P t
g otherwise

(12)

The optimisation is subject to the constraints of the EV and

Storage model as seen in (1), (2), (6), and (7). The constraints

represent the flow of energy into and out of the batteries and

ensure that storage levels do not exceed Pmax
s or Pmax

v .

Additionally the EV is subject to:

P tvi
v = P arrive

v , P tvo
v ≥ P leave

v (13)

which ensures that at the time the EV is plugged in at tvi the

EV is at the expected charge level for when it returns to the

household (P arrive
v ), and that when it is unplugged at tvo the

charge level meets the required charge set by the user for their

commute (P leave
v ). These levels are then repeated on a daily

basis. To ensure that the values of load demand are met, the

optimisation is also subject to (14)

P t
L = P t

r + P t
g − tp ·

(

dP t
s + βt

vdP
t
v

)

(14)

which uses the RES (P t
r ) and load model (P t

L) data to ensure

that the required load demand for each time period is met.

In addition there are also the following upper and lower

bounds applied:

−dPmax
s ≤ dP t

s ≤ dPmax
s ,−dPmax

v ≤ dP t
v ≤ dPmax

v (15)

0 ≤ P t
s ≤ Pmax

s , 0 ≤ P t
v ≤ Pmax

v (16)

P t
gmin ≤ P t

g ≤ P t
gmax (17)

where (15) is to limit the rate of charge and (16) represents the

max storage levels on the DESS and EV. Whilst (17) represents

the maximum power available to and from the grid.



B. Solving the Optimisation

The Matlab R©function fmincon is used to solve this problem,

using it’s Sequential Quadratic Programming (SQP) function.

SQP finds the minimum of the defined objective function for a

set of linear and non-linear constraints. To initialise the values

of dP t
v , dP t

s , P t
s , and P t

v the average value of their bounds

was chosen, whilst the value for P t
g was set to P t

L.

In Matlab R©the fmincon SQP function closely mimics New-

ton’s method for contained optimisation. At each major itera-

tion the function approximates the Hessian of the Lagrangian

function. This can then be used to form a search direction for

a line search procedure. This then allows the equation to be

solved based on the constraints given.

The SQP solving method was chosen in this case due to

it’s efficiency at solving the problem as well as it’s robustness

against infinite or not-a-number outputs that can cause the

interior-point method to get stuck in a repeating loop and cause

it to be unable to solve the objective function. If the SQP

algorithm does return one of these values, it will simple take

a smaller step to ensure it can continue with the optimisation.

IV. SIMULATION RESULTS

A. Simulation Set Up

To allow for consistency all simulations were subject to

the conditions seen in Table II. When running groups of

simulations the data generated for load, RES and cost are kept

consistent, where applicable, to allow for better comparison

between factors. All simulations were run for 4 day periods,

the data used for analysis was taken from the central 48 hours.

This is done to remove errors at the beginning and the end

of simulation due to full charge or discharge of the batteries

happening, which would lead to unrealistic simulations.

TABLE II
CONDITIONS FOR ALL SIMULATIONS

Variable Value Variable Value

House Type Standardised Days 4
Location Mid UK Month January/July
tvi 18:00 Cost Model Hourly RTP
tvo 08:00 Pmax

s 500

tp 15 minutes P
t
gmax 3000∀t

B. RES and EV Investigation

For the initial investigations the constraints of fp=40% and

P t
limit = 800∀t, unless the constraint in question was varied

itself, were used. Simulations were run to compare with and

without RES as well as with and without EV.

C. Limit Considerations

To investigate the effect of the soft limit and the penalty

factor the limits as seen in Table III were applied, as well as

a control with no penalty factors applied. Lower limits were

applied in January; this is to represent the lower levels offered

by solar generation and increased consumer power usage in

this period, which would lead to higher pressure on non-RES

power sources.

TABLE III
LIMIT VALUES

Time
Morning Limits

(W)

Evening Limits

(W)

Both Limits

(W)

00:00 - 06:00 800 800 800
06:00 - 10:00 300/200 800 300/200
10:00 - 12:00 500/300 800 500/300
12:00 - 16:00 800 800 800
16:00 - 19:00 800 300/200 300/200
19:00 - 00:00 800 400/300 400/300

D. Effect of RES or EV

The results of the EV investigation are outlined in Table

IV. It can be seen for both investigations that the EV leads

to both a greater Pgrid and Pexcess. This is to be expected

as the presence of the EV requires additional power to be put

into the system. Based the data from the simulation it can be

calculates that the EV adds and extra 11.8 pence per day to

the household bill in January and 8 pence per day in July, this

means that an average additional yearly expenditure for the

EV would be £36.12. This assumes that the car only travels

20 miles each day on it’s home charge and does so in a Tesla

Motors Model S. It is assumed that further charging is done

when it is parked to keep it topped up.

TABLE IV
EV INVESTIGATION RESULTS

Case
P total
g

(Wh)

P
total
buy

(Wh)

P
total
excess

(Wh)

P
total
sell

(Wh)

Cost

(Pence)

Jan., EV&RES 30839 30839 3567 0 190
Jan., only RES 27679 27679 1509 0 166
July, EV&RES 18836 18872 872 35 86
July, only RES 15677 15677 0 35 70

This low cost shows it’s benefit over the carbon outputs

and cost of traditional petrol vehicles. These cost households

and average of £15.70 a week (or £816.40 a year). While

our estimations may be low and do not account for external

charging it shows the vast difference in the cost of the two.

TABLE V
RES INVESTIGATION RESULTS

Case
P total
r

(Wh)

P
total
g

(Wh)

P total
buy

(Wh)

P total
excess

(Wh)

Cost
(Pence)

Jan., EV&RES 959 30805 30805 3496 185
Jan., only EV 0 31764 31764 3499 191
July, EV&RES 5029 19119 19119 836 87
July, only EV 0 24148 241148 972 109

The results of the RES investigation are outlined in Table

V, where P total
sell = 0 for all the cases. It is seen here the clear

cost savings of installing solar, where in our simulation up

to 11.2 pence per day could be saved on the electricity bill.

We also note that 5029W is generated by the RES in July,

meaning this amount of electricity is not taken from the grid,

meaning less centralised generation needs to be used. Clearly

there are issues inherit in Solar Generation in the UK, where
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Fig. 1. RES, load, and cost model output for (a) January and (b) July.

solar radiation is a lot lower than other countries, as well as

the initial set up costs involved with the system. This may not

make Solar seem viable in isolation, however through use of

government grants it is still possible to see tangible benefits

for the consumer on top of the environmental benefits.

E. Effects of the Limit on Storage

Fig. 1 shows the outputs of the load, RES and cost model

data used for all simulations in each month. Figures 2, 3, and

4 show the results of the factors that have been optimised.

Fig. 2 show the power taken from the grid (P t
g ) over the

48 hour period. The plot contains all the data for the different

limit types applied (P t
limit) and representation of these soft

limits using dashed lines. It also shows the control value used

where no limits were applied. It can be seen that the control

evening and morning peaks are much higher than the peaks

when limits are applied and the limited data has a smoother

overall plot. This is the desired effect of the limiting factors.

In July there are much larger contributions from the RES

and this, paired with the lower demand, means that there is

much less power required from the grid. With higher limits

applied during this period, we see much lower costs on grid

usage, where we only see an 80.2% increase on costs from the

control value showing that there is less excess power used. As

a result of these factors, it is noted when comparing Fig. 2(a)

and Fig. 2(b) that a lower proportion of the graph is above the

limits, but also that there is less variation in when different

limits are applied in July than January. When considering this

and additional investigations into variations in the size of fp
the response of the system can be seen to be heavily dictated

by the cost function. The variable factor of fp acts as the

driving factor in keeping the overall system price low, the

incentive is to ensure that the consumer uses as little power

as possible that is over this limit, and therefore by using these
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Fig. 2. P
t
g and P

t
limit

for (a) January and (b) July.

the supplier could increase DR. This can be seen at hour 32 in

the July data, where the high value of Ct
buy causes the storage

system to discharge across all time periods.

An important point worth noting is that the different limits

periods do not have show large variations in consumption, and

that in times of higher limits they tend to follow different plots.

This is felt to mainly be due to the lack of appliance scheduling

for appliances other than the EV. The evening limits have a

larger effect on the evening peaks, whilst the morning limits

tends to have larger effect on the morning peaks. The evening

peak is reduced over all limits due to it’s size, as it goes over

the maximum limit value used.

Fig. 3 and 4 show both the storage levels and charge rate

of the EV and the household storage. The line represents

the amount of power stored (P t
v and P t

s respectively) for the

different limits as well as a control. The rate (dP t
v and dP t

s

respectively) is also provided as a bar behind for reference.

In January, where the limits and RES contributions are lower

the biggest cost variations are seen, with sharp increases when

both morning and evening demand limits are in place, causing

a 437% increase in costs from the control value. The effect

of these heavy limits is seen in the smoothing of the grid

consumption seen in Fig. 2(a), here we see for all limits

a reduction in peak electricity draws from the system. The

largest peaks are caused by the charging required for the EV,

which occur during the evening limits, as a result when these

are applied we see the heaviest reduction and delay in these

peaks, seeing a reduction of over 600W. This shows that by

using this optimisation it is possible to smooth the peaks in

electricity usage, which can allow for DR.

Many of these benefits come from the household storage

built into the system, we can see in Fig. 4(a) the large variation

in the charging patterns between the different limits. This
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Fig. 3. P t
v and dP t

v for (a) January and (b) July
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shows the benefits of even small amounts of household storage

in assisting the consumer in not only cutting costs but also

assisting in allowing a better DR system.

The interactions of the storage unit and the EV in both

July and January show the storage unit charging to full over

the periods where the EV is not plugged in and costs are

lower and then transferring this electricity upon its return to the

system. This shows the use of lower limits and prices to allow

for the large amount of charging required by the EV to be a

cost effective as possible. The data for the EV is incredibly

predictable and therefore in system like this the consumer can

use storage systems to minimise the costs of charging an EV.

V. CONCLUSIONS

In this paper, a method to optimise the cost of the demand

of a household is proposed with considerations for household

storage and the use of EVs. It uses a time-based cost structure

and fixed load and uses the storage of both the EV and the

household to find the lowest cost to the user. It uses existing

data to predict household energy demand and to schedule

changing and discharging. The use of penalty factors is also

investigated, where both fixed and function-based penalties

are implemented when the consumer exceeds certain limits,

through use of this method it is seen that the demand of a

household can be adapted to better respond to generation.

The results seen in the report show the financial and power-

levelling benefits of this method. This allows for a more robust

grid system that creates better communication between the

supplier and the consumer, allowing for better implementation

of large scale RES based generation in the future.
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