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Abstract—Electroencephalography (EEG) is a common signal
acquisition approach employed for Brain-Computer Interface
(BCI) research. Nevertheless, the majority of EEG acquisition
devices rely on the cumbersome application of conductive gel
(so-called wet-EEG) to ensure a high quality signal is obtained.
However, this process is unpleasant for the experimental par-
ticipants and thus limits the practical application of BCI. In
this work, we explore the use of a commercially available dry-
EEG headset to obtain visual cortical ensemble signals. Whilst
improving the usability of EEG within the BCI context, dry-EEG
suffers from inherently reduced signal quality due to the lack of
conduit gel, making the classification of such signals significantly
more challenging.

In this paper, we propose a novel Convolutional Neural
Network (CNN) approach for the classification of raw dry-
EEG signals without any data pre-processing. To illustrate the
effectiveness of our approach, we utilise the Steady State Visual
Evoked Potential (SSVEP) paradigm as our use case. SSVEP
can be utilised to allow people with severe physical disabilities
such as Complete Locked-In Syndrome or Amyotrophic Lateral
Sclerosis to be aided via BCI applications, as it requires only the
subject to fixate upon the sensory stimuli of interest. Here we
utilise SSVEP flicker frequencies between 10 to 30 Hz, which we
record as subject cortical waveforms via the dry-EEG headset.
Our proposed end-to-end CNN allows us to automatically and
accurately classify SSVEP stimulation directly from the dry-EEG
waveforms. Our CNN architecture utilises a common SSVEP
Convolutional Unit (SCU), comprising of a 1D convolutional
layer, batch normalization and max pooling. Furthermore, we
compare several deep learning neural network variants with
our primary CNN architecture, in addition to traditional ma-
chine learning classification approaches. Experimental evaluation
shows our CNN architecture to be significantly better than
competing approaches, achieving a classification accuracy of 96%
whilst demonstrating superior cross-subject performance and
even being able to generalise well to unseen subjects whose data
is entirely absent from the training process.

I. INTRODUCTION

Electroencephalography (EEG) is the most prominent data
acquisition approach in BCI, owing to its non-invasive nature,
relative ease of use and exquisite temporal resolution [1],
[2]. Traditionally, the electrodes used for EEG are placed on
the scalp with conductive gel (wet-EEG) in order to lower
the impedance between the electrodes and the skin [3]. The
impedance values in EEG signals are a measurement of how
good the conductivity is between the electrode and the skin.
The lower the value of impedance, the better the electrode and
the skin contact thus improving overall EEG signal quality [4],
[5].

The major drawback of wet-EEG is the required gel applica-
tion owing to the Ag/AgCl electrodes, consequently resulting
in relatively substantial preparation time, scalp discomfort
and additional time required to remove the gel after the
experimental protocol [5]. Furthermore, the gel will dry over
a certain time frame, thus somewhat limiting the experimental
data acquisition interval [4]. Moreover, classical wet-EEG
requires some specific experimental conditions like a Faraday
cage (a physical shield using conductive material) which
reduces the effect of external electromagnetic interference in
terms of signal noise [3]. This limits the application of BCI
using wet-EEG to strict experimental operating conditions. By
contrast, a dry-EEG headset offers an alternative approach
alleviates these limitations in terms of skin preparation, stable
connectivity and comfort during experimentation in addition
to ready adaptability to different head sizes [6], [7]. However,
the major drawback is the relatively higher impedance values,
as compared to wet-EEG [8], thus making it difficult to
reduce the EEG signal noise and unwanted artefacts. This
results in a substantially more challenging signal decoding and
classification task.

In this study, we are using the commercially available
Quick-20 dry EEG headset from Cognionics Inc. (San Diego,
USA) with 20 dry-EEG sensors (10-20 sensor layout com-
pliant). The system is employed without the need for skin
preparation and it is both portable and wireless [6]–[9]. This
headset comes with individual local active shields that elimi-
nate the need for the rigid experimental condition [6], [10]. In
our experiments, we collect dry-EEG signals with SSVEP as
the neuro-physiological responses. SSVEP has the feature of
frequency tagging, which enables the measurement of neural
activity in response to a flickering stimuli which the subject is
fixated upon, even if the subject is not paying full conscious
attention to the stimuli [11]. It is considered to be the most
suitable type of stimuli to be used for effective high throughput
BCI as SSVEP can provide high Information Transfer Rate
(ITR) neural signals with minimal subject training [12].

In this study, we investigate the use of a deep neural
network, specifically a CNN, to perform the classification of
SSVEP frequencies in dry-EEG data. CNN are a subset of
neural networks, which learn to differentiate between classes
in data by extracting unique features across multiple layers of
convolutional transformation [13]. In the convolution layer, the
input is convolved via kernels (filters) to obtain feature maps



[14]. This process removes the requirement for hand-crafted
feature extraction as well as common signal pre-processing
steps, as raw data samples can be used as a direct input to the
model [14], [15]. This property provides a critical advantage
as the potential exists for salient EEG signals or features to
be excluded or missed when using traditional pre-processing
based approaches [16].

We evaluate the performance of our proposed CNN architec-
ture at classifying dry-EEG SSVEP signals across a four class
stimuli problem collected from a single subject and highlight
the vastly superior performance when compared to baseline
classifiers including the Support Vector Machine (SVM), Lin-
ear Discriminant Analysis (LDA), Minimum Distance to Mean
(MDM) and a Recurrent Neural Network (RNN). Furthermore,
we explore the use of the same CNN architecture to examine
both multiple subject, exploring both within subject and across
subject performance [16]. Finally, to test the ability of the
CNN to generalise across unseen subjects, we explore the
performance when testing upon a subject for which no sample
data is present within the training dataset.

In summary, the major contributions of this study are:
• An end-to-end deep learning CNN architecture to perform

the classification of raw dry-EEG SSVEP data without the
need for manual pre-processing or feature extraction (the
first study to do so with the accuracy achieved: 96%).

• A demonstrable model that achieves generalisation across
subjects during training in contrast to earlier EEG BCI
work in the field (accuracy: 78%).

• An approach with the ability to generalise to entirely
unseen subjects with no additional training, raising the
potential for subject-independent BCI applications.

II. RELATED WORK

In [7], a 32-channel dry-EEG was used on subjects in which
they fixated on 11 and 12 Hz SSVEP stimuli during walking
trials. The performance and the quality of cortical signals
between the wet-EEG and dry-EEG during locomotion were
compared. From their experiments, wet-EEG performed better
as compared to the dry-EEG by 4% to 10% in accuracy for
standing and walking at different speeds, respectively.

The study of foot motor imagery has been carried out in [9]
to trigger a lower limb exoskeleton while using the same 20-
channel dry-EEG headset we use here. The aim of the paper
is to have the quick setup system for asynchronous motor
imagery BCI as offered by using the dry-EEG headset.

Deep learning approaches have been used in many different
BCI applications, akin to motor imagery [15] as well as the
classification of SSVEP signals. In [12], the authors control
an exoskeleton via a visual stimulus generator that had five
different frequency LEDs to control five different behaviours
for static and ambulatory experiments. They used eight wet-
EEG electrodes to measure the SSVEP signals with Canonical
Correlation Analysis (CCA), Multivariate Synchronization In-
dex (MSI) and CCA with k-Nearest Neighbours (CCA-KNN)
used to compare the classification result with three proposed
Neural Network (NN) methods: CNN-1 (3 layer network),

CNN-2 (4 layer network) and a fully-connected NN. The data
from the stimuli is pre-processed for all approaches with the
CNN-1 method providing the best accuracy results across both
EEG data genres.

A five class SSVEP signal problem is classified using both
traditional machine learning approaches and deep learning
[17]. The authors analyse the dataset from the Physionet [18]
which used the traditional wet-EEG with five flickering stimuli
frequencies. These authors proposed CNN and RNN with
Long-short Term Memory (LSTM) for the deep learning meth-
ods against traditional classifiers like k-Nearest Neighbour (k-
NN), Multi-layer Perceptron (MLP), decision trees and SVM.
Within all the classifiers, CNN outperformed other approaches
with a mean accuracy of 69.03% and within the traditional
classifiers, SVM provided the best overall accuracy.

The authors in [16] introduce EEGNet, a CNN model for
wet-EEG data across paradigms. The paper includes four
datasets for four different paradigms (P300 Event-Related Po-
tential, Error-Related Negativity, Movement-Related Cortical
Potential, and Sensorimotor Rhythm). All the datasets come
from different sources with different data sizes. These authors
pre-process the data before training the datasets using different
approaches including both shallow CNN and deep CNN for
within subject classification and across subject classification
and for all four paradigms. Inconclusively, the results demon-
strate that different paradigms perform differently for every
approach.

In contrast to these earlier works, we explicitly consider
an end-to-end approach, without the need for EEG signal
pre-processing, to tackle single subject, multiple subject and
unseen subject SSVEP-based dry-EEG signal classification
challenges.

III. METHODOLOGY

In this section, we explore the creation of a machine learning
model, specifically a deep CNN, in order to perform accurate
classification of dry-EEG data. We include several baseline
studies in order to compare the performance of the classifica-
tion accuracy. We also detail the methodology adopted for the
experimental SSVEP data collection.

A. Experimental Setup

In this work, we utilise SSVEP as the neuro-physiological
response, measured via dry-EEG. The subjects sit in front of
a 60Hz refresh rate LCD monitor whilst wearing the dry-EEG
headset. We record the data from a range of SSVEP stimuli
frequencies; 10, 12, 15 and, 30 Hz [11] using PsychoPy for
SSVEP stimuli presentation [19]. The stimuli corresponding to
the different flicker frequencies were presented on the primary
computer. In order to assist with real time processing further
along the analysis pipeline, the cortical signals were streamed
via the data acquisition software to a secondary computer and
sent back to the primary computer. The communication be-
tween the different hardware components is shown in Figure 1.

The dry-EEG headset provides 19 channels and A2, refer-
ence and ground as shown in Figure 1 (highlighted in blue).



Fig. 1: Experiment setup and the location of the electrodes of
dry-EEG (highlighted in blue)

The 20-channel (Cognionics Inc.) sensor montage [20] has
been coregistered with the MNI Colin27 brain (Montreal Neu-
rological Institute Colin 27 atlas). Average sensor locations
were obtained by averaging 3-D digitized (ELPOS, Zebris
Medical GmbH) electrode locations from ten individuals.
Electrode labels are assigned based on the nearest neighbour
mapping to the standard 10/5 montage. Nas, LPA, and RPA
denote nasion and left/right preauricular fiducials [6].

During the experiments, we collect data over the parietal
and occipital cortex (P7, P3, Pz, P4, P8, O1 and O2) [7],
frontal centre (Fz) and A2 reference at 500 Hz sampling rate
across four subjects. The data for subject one (S01) consists
of 100 trials of each of the 4 SSVEP classes investigated. For
the additional three subjects, we only record 20 trials instead.
Each trial flickers the LCD screen for three seconds. The data
acquisition software used to monitor and record the signals
provides real-time measurement of the impedances for the
entire duration of the experiment, thus ensuring good quality
EEG signals are recorded.

(a) 10Hz Signal (b) 12Hz Signal

(c) 15Hz Signal (d) 30Hz Signal

Fig. 2: Illustrative raw signal data as captured from dry-EEG
Nevertheless, the primary challenge associated with the

classification of dry-EEG signals is the higher noise ratio
as compared to the traditional wet-EEG system, owing to
the relatively higher impedance values. This noise can be

seen in Figure 2 which shows the seven distinct dry-EEG
data channels across the four SSVEP frequencies we are
investigating.

B. Convolutional Neural Network Model Design

Signal processing is one of the primary components in
the field of BCI and it acts as the translation between the
raw EEG cortical signals to a specific desirable decision or
application [3]. Traditionally, this requires the use of man-
ual pre-processing and feature extraction stages to transform
the data into a format suitable for down-stream prediction
tasks. By contrast in this work, we explore the use of a
deep convolutional neural network to perform this translation
process in an end-to-end fashion1. We explore whether or not
a CNN can perform accurate classification of SSVEP target
class frequencies on raw dry-EEG data, without the need
for manual pre-processing nor feature extraction as found in
contemporary work [13]. CNN have demonstrated state-of-
the-art results in many image processing tasks, when being
used on two dimensional image data [14]. However, there is
growing evidence that CNN can be used to process time-series
data, when passing a filter over the time dimension, often
outperforming recurrent models designed specifically for such
temporal data tasks [21]. As EEG data represents time-series
data, we make use of a 1D CNN model to classify the dry-
EEG data.

Fig. 3: Our proposed 1D CNN architecture including our
proposed SSVEP Convolutional Unit (SCU, highlighted in
pink)

The structure of the CNN used in this work is displayed
in Figure 3 in which we have our SSVEP Convolutional Unit
(SCU) comprising of a triplicate layer of a 1D convolutional
layer, batch normalization and max pooling layer operations.
These SCU form the common computational building blocks
of the CNN architectures used for dry-EEG signal decoding
in this study. Our CNN architecture has a large initial filter
to capture the frequencies we are interested in classifying in
the dry-EEG data. We also make use of batch normalization
to help counterbalance the noisy EEG data. Once the data
has been transformed via the convolutional filter, the actual
classification of the EEG signal is performed via a softmax

1Implemented using the Pytorch library (http://pytorch.org/).



function (highlighted in black in Figure 3) in the final layer.
The softmax function takes as input the feature vector x, gen-
erated by the CNN fCNN (y|x) and computes the conditional
probability of producing the label y as:

softmax(y|x) = exp (fCNN (y|x))∑|Y |
y′∈Y exp (fCNN (y′|x))

, (1)

where Y is the set of all labels in the dataset.
The loss function the model minimised during training is

that of categorical cross-entropy (CCE), which will measure
the distance between the output distribution of ŷ ∈ fCNN and
y ∈ Y as:

CCE(y, ŷ) = − 1

N

N∑
n=1

(ynlog(ŷn)+(1−y)log(1− ŷn)), (2)

where N is the total number of training samples.
The model is trained using the ADAM gradient descent

algorithm [22], for 100 epochs with a mini-batch size of 32.
We also utilise L2 weight decay to help prevent over-fitting
by penalising the network for having large weights, meaning
that the final objective of our model for optimising is:

Loss = CCE(y, ŷ) + λ||fCNN (w)||22, (3)

where w are the weights of the network and λ is a user
controllable scaling parameter, set to 10−4 for this work.

C. Baselines

To validate the effectiveness of our proposed approach, we
compare with traditional classifiers and other deep learning
models. The traditional classifiers used require pre-processing
and feature extraction prior to the classification stage. As
such, the raw signals will process via the following steps:-
downsampled to 250Hz, referencing to the frontal centre
sensor signals (Fz), notch filtered at 50Hz to remove line
signal noise and bandpass filtered between 9 to 100 Hz. As a
result, pre-processing is used to remove the unwanted signals
such as power-line noise, and to focus on the signals between
the desirable range [3]. These filtered signals are then utilised
as the input for the feature extraction stage. Based on the
recent comparative review of [23], we select the Riemannian
approach for feature extraction [24] which utilises covariance
matrix and tangent space features which estimate a feature
vector in R9.

Based on the result from [17], SVM is the optimal tradi-
tional classifier for EEG data. Therefore we use SVM as one
of our baseline classifiers with a Gaussian and linear kernel
[1]. For further comparison purposes, we also compare with
Linear Discriminant Analysis (LDA) and Minimum Distance
to Mean (MDM), both frequent choices for EEG analyses [23].
To compare with other leading neural network approaches, we
also compare with several Recurrent Neural Network (RNN)
models [25] including vanilla RNN, Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU), which have also
been assessed for EEG classification in previous study [17].

IV. RESULTS AND DISCUSSION

In this section, we present detailed experimental evaluation
demonstrating the ability of our approach to accurately classify
SSVEP signals in dry-EEG data. All the presented results are
produced using 10-fold cross validation, with models which
were initially optimised using hyperparameters chosen via a
grid-search over a validation set. The key hyperparameters
which are common across all the networks are L2 weight
decay scaling 0.001, dropout level 0.5 and 0.001 for CNN
and other deep approaches respectively2. For the CNN, the
hyperparameters utilised are: convolution kernel size 1x10,
kernel stride 4, maxpool kernel size 2, and ReLU as the
activation function. The dataset and experimental setup are
detailed previously in Section III-A.

A. Single Subject Classification

The results for the classification of the data of a single
subject (S01) are presented in Table I. The table highlights
the accuracy of our proposed CNN approach against all
the baselines discussed in Section III-C. The results for the
traditional approaches, are presented with and without pre-
processing. Without pre-processing, we perform feature ex-
traction only before classification with the traditional baseline
approaches. Overall, the results show that, even without any
pre-processing of the data, our CNN approach demonstrates
superior performance over the baselines. The confusion matrix
obtained from the classification of S01 using the CNN is
presented in Figure 4a, which shows very strong accuracy
across all classes.

Method Accuracy
Pre-processing Without

CNN - 0.96±0.02
Vanilla RNN - 0.91±0.05

LSTM - 0.57±0.30
GRU - 0.90±0.06

SVMGaussian 0.92±0.01 0.86±0.01
SVMLinear 0.94±0.01 0.83 ±0.02

MDM 0.76±0.01 0.80±0.02
LDA 0.90±0.01 0.83±0.01

TABLE I: Mean accuracy with standard deviation over 10-fold
cross validation for subject, S01

B. Multiple Subject Classification

The second results, presented in Table II, demonstrate the
classification performance across three subjects {S01, S02,
S03}, where a new classification model is trained for each
subject. Due to the known impracticalities of collecting large
amounts of data per subject [23], here we reduce the number
of SSVEP presentation sessions (trials) per subject for each
class to only 20. We also only consider the highest performing
classification approaches across traditional and deep model
approaches from the previous result of Section IV-A (CNN and
SVM; Table I). The results highlight, that even with a reduced

2Training time taken for vanilla RNN 600 minutes, GRU 524 minutes,
LSTM 619 minutes, CNN 4 minutes on Nvidia GeForce GTX 1060 GPU.
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Fig. 4: Confusion matrices for the various dataset and model configuration tested highlighting the per-class statistical accuracy
(Maximal result being accuracy = 1.0 in the matrix diagonals).

quantity of data available, the CNN approach still significantly
outperforms the SVM across all subjects. This result highlights
the applicability of the proposed CNN approach for BCI
applications, where data quantity is often relatively limited
[23].

Method S01 S02 S03 Mean

CNN 0.91±0.08 0.92±0.11 0.85±0.10 0.89±0.03
SVMGaussian 0.59±0.08 0.68±0.08 0.67±0.10 0.65±0.04

SVMLinear 0.76±0.05 0.68±0.07 0.58±0.10 0.67±0.07

TABLE II: Mean accuracy with standard deviation over 10-
fold cross validation for each of the three subjects, mean
results across subjects are also presented

C. Classification Across Subjects

To assess the ability of a single CNN model to classify a
dataset comprising data from all of the subjects {S01, S02,
S03}, we classify all the signals from the three subjects to-
gether instead of performing individual classification. Having
a single model trained on EEG data from multiple subjects
is known to be challenging [26], potentially due to biological
differences between subjects and the variability of the EEG
recording process. However, the results presented in Table III
show that the CNN is able to significantly outperform the
SVM based approaches when performing classification across
subjects. This can be further seen in Figures 4b, 4c and 4d,
showing better performance across classes for the CNN.

Method Accuracy

CNN 0.78±0.10
SVMGaussian 0.51±0.06

SVMLinear 0.50±0.06

TABLE III: Test Accuracy across subjects

D. Generalisation Capability to an Unseen Subject

A strongly desirable quality for any model performing the
classification of EEG is that of unseen subject generalisation
- whereby the model is able to correctly classify data from
a subject whose data is absent from a priori model training.
To test this on our CNN model, we introduce the data of the
unseen subject S04. We then attempt to classify these data
using a model which was trained only on the data of the
other three subjects, {S01, S02, S03}. Using the same CNN
architecture for this task as depicted in Figure 3, we only
achieve an accuracy of 0.59 on S04 without any additional
training. We also attempt to classify the new test subject using
SVM, however the SVM only displays random classification
performance (≈ 0.25 accuracy; i.e 1/4 for 4 classes).

To overcome this performance issue, we explore a deeper
architectural network variant as deeper networks have been
shown to learn more complex features in order to determine
the correlation between subjects [14]. Figure 5 illustrates the
deeper architecture where empirically, we repeat our SCU
blocks (each dashed pink box represents a SCU block) to a
maximum number of five. This deeper architecture, introduced
to classify subject S04 data, demonstrates a substantially



Fig. 5: Our deeper CNN architecture for unseen subjects

better classification accuracy of 0.69, perhaps suggesting that
a deeper model is required to perform the unseen subject
generalisation task. The confusion matrix for this result is
presented in Figure 4e. This figure demonstrates that the CNN
has varying performance across the different classes, with the
30Hz signal being the best performing for this extended CNN
model.

V. CONCLUSION

In this paper we introduce deep convolutional neural net-
work architectures constructed around a common computa-
tional building block, for the classification of raw dry-EEG
SSVEP data - the first such study to do so. We evaluate
the performance of our model on SSVEP data recorded from
four subjects using the noise-prone dry-EEG methodology. As
compared with current state-of-the-art methods, our approach
requires no pre-processing to the data, demonstrates higher
overall classification accuracy across subjects and generalises
significantly better to entirely unseen test subjects. These
key results demonstrate that CNN based approaches should
become the new benchmark method for SSVEP dry-EEG
classification.

Future work would involve larger datasets to further study
the classification and generalisation performance across sub-
jects. The combination of the CNN and RNN models may also
offer a way to increase overall performance.
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