
Fast DEM collision checks on multicore nodes

Konstantinos Krestenitis, Tobias Weinzierl, and Tomasz Koziara ?

School of Engineering and Computing Sciences
Durham University

Great Britain
{konstantinos.krestenitis,tobias.weinzierl}@durham.ac.uk

Abstract. Many particle simulations today rely on spherical or ana-
lytical particle shape descriptions. They find non-spherical, triangulated
particle models computationally infeasible due to expensive collision de-
tections. We propose a hybrid collision detection algorithm based upon
an iterative solve of a minimisation problem that automatically falls back
to a brute-force comparison-based algorithm variant if the problem is ill-
posed. Such a hybrid can exploit the vector facilities of modern chips and
it is well-prepared for the arising manycore era. Our approach pushes the
boundary where non-analytical particle shapes and the aligning of more
accurate first principle physics become manageable.

1 Introduction

Discrete Element Methods (DEM) are a popular technique to model granular
flow, the break-up of brittle material, ice sheets, and many other phenomena.
They describe the medium of interest as a set of rigid bodies that interact with
each other through collisions and contact points. The expressiveness of such a
simulation is determined on the one hand by the accuracy of the physical inter-
action model. On the other hand, it is determined by the accuracy of scale: the
more rigid bodies (particles) can be simulated the more accurate the outcome.

Many DEM codes restrict themselves to analytical shape models: Their par-
ticles are described by some analytical function; most of the time spheres. Fur-
thermore, they stick to explicit time integrators (cmp. [1] and references therein).
Whenever particles are close to each other, i.e. their distance underruns a given
threshold, they are assumed to be in contact. An interaction model then realises
two types of physics. On the one hand, it mitigates the real-world impact of
collision, friction, and so forth. On the other hand, it mitigates the fact that real
particles are not spherical/analytical [6].

While the distributed memory parallelisation of DEM codes through classic
domain decomposition is well understood and the codes scale (see [5] as an exam-
ple), most codes refrain from modelling particles as irregularly shaped objects

? This work has been sponsored by EPSRC (Engineering and Physical Sci-
ences Research Council) and EDF Energy as part of an ICASE stu-
dentship (award ref 1429338). It made use of the facilities of the Hamil-
ton HPC Service of Durham University. All software is freely available from
https://github.com/KonstantinosKr/delta (pronounced/written �).

and, thus, from eliminating the second role of the interaction model, as they
already spend a majority of their compute time in collision detection. Iglberger
et al. [5] report 31–34% within a multiphysics setting, while Li [7] for example
reports even 90%. Detection becomes significantly more complicated once we
switch from sphere-to-sphere or ellipsoid-to-ellipsoid checks to the comparison
of billions of triangles if the particles are represented by meshes—notably if no
constraints on convectivity are made and if explicit time stepping stops us from
modelling complex particle shapes as compound of simpler convex shapes sub-
ject to a non-decomposable constraint. Injecting meshes particles into DEM is a
single node challenge.

We introduce a triangle-based collision detection scheme for DEM that sup-
ports particles of arbitrary triangle count, configuration and size. Geometric
comparisons su↵er from poor SIMDability if realised straightforwardly as they
involve many case distinctions. We recast the geometric checks into a minimi-
sation that falls back to classic geometric checks as emergency solver. This way,
we obtain a collision detection algorithm that is both robust and can exploit
wide vector registers (Section 3). Furthermore, it can be parallelised on multiple
cores either by deploying the triangles among multiple cores or by handling sets
of triangles (batches) concurrently (Section 4). Some numerical results in Sec-
tion 5 highlight the potential of our approach on multicore nodes before a brief
summary and an outlook detail the impact on future DEM codes.

2 The particle and collision model

We study media composed of particles of arbitrary size. Each particle p

i

2 P
is described by a set of triangles T

i

. We do not impose any constraints on the
triangle layout such as convexity. Our algorithms of interest consist of an explicit
time stepping loop with a time step size �t. Per time step, it runs over all
particle pairs and identifies where any particle pair collides with each other: we
determine the contact points. Per contact point, we determine the arising forces
on the involved particles. Once all forces for all particles are accumulated, we
update the particle velocities and positions and continue. If the contact point
detection identifies that particles are too close to each other it halves �t. If no
contact points are identified at all, it increases �t by 10%.

Our contact model is based upon an ✏ environment around each particle and
a weak compressibility model for this ✏-area: Two particles are in contact as
soon as they are closer than 2✏. Mirroring Minkowski sums, we may interpret
each particle to be enlarged by a soft layer of width ✏ (Fig. 1). Particles are in
contact with each other as soon as these soft areas penetrate. If two particles are
in contact, the contact point is the point that is closest to the particles’ surfaces.
We do not support contact areas at the moment but multiple contact points per
particle pair may exist. Each contact point is associated one outer normal vector
n per involved particle. Though our particles themselves are rigid, we call ✏� |n|
between a contact point and the real particle surface the penetration depth.

n

Fig. 1. Three particles with their ✏ environment. The particles do not penetrate each
other, but two particles plus their ✏ environment penetrate and create one contact
point (diamond point) with a normal n.

Our force computation equals pseudo-elastic damping as it is used in geom-
etry overlapping methods [1]. We rely on the spring-dashpot DEM force model
[3] which yields per particle pair p

i

, p

j

forces

f?(pi, pj) =

8
><

>:
S · (✏� |n

ij

|) + 2D ·
 r

1.0
1.0
mi

+ 1.0
mj

!
· (v

ij

,

nij

|nij |) if (vi, vj) 0

0 otherwise

,

fk(pi, pj) = r ⇥ f>(pi, pj) (1)

acting on p

i

. The forces on p

j

result from parameter permutation. (., .) denotes
the Euclidean scalar product, D is a damping, S the spring coe�cient. v

ij

is the
relative collision velocity v

j

�v

j

. m denotes the mass of p
i

or p
j

respectively, n
ij

is the contact normal pointing from the contact point in-between the particles
onto the surface of particle j, i.e. from i to j.

The orthogonal force f? models solely repulsive forces, i.e. forces arise if
and only if two particles continue to approach each other. The tangential force
injects friction into the system. Obviously, system (1) is sti↵ and cannot avoid
penetration of the real particles without their halo environment. We thus rely
on small time step sizes �t and reduce �t as soon as |n| 0.2 · ✏ for any contact
point normal in the system. fk(pi, pj) is the torque force, where r is the lever
arm of p

i

’s centre of mass to the contact point.
The plain algorithm is in O(|P|2 · T2

max

) with T
max

= max

i

|T
i

|. We rely on
a multiscale linked-cell approach based upon adaptive Cartesian meshes as it is
used in molecular dynamics codes [4]: The computational domain is split into
cubes that are at least as large as the biggest particle in the system and the
cubes host the particles, i.e. hold links to the particles. The realisation stems
from [11]. Particles can be in contact if and only if they are hosted by the same
or neighbouring cells. This reduces the first quadratic term to a linear one as
rigid particles cannot cluster arbitrarily dense. The second quadratic term results
from the fact that we have to compare, for two particles p

i

and p

j

, each triangle
from particle p

i

with each triangle from p

j

. Each pair of triangles requires fifteen

checks: point-to-face (2 · 3 = 6) and edge-to-edge (32 = 9). These comparisons
are based upon a barycentric coordinate transform and yield a sequence of com-
putations followed by if statements filtering out inadmissible solutions. The 15
distance computations then are reduced subject to the minimum function. Vec-
torisation of this approach labelled brute force su↵ers from branching and low
arithmetic intensity.

3 A penalty-based, vectorising comparison method

With barycentric coordinates a, b, c, d over two triangles T

i

and T

j

that span a
vector x

i

2 T

i

and x

j

2 T

j

, we can cast the minimal distance problem into

min

a,b,c,d

|x
i

(a, b)� x

j

(c, d)|2

subject to the six inequality constraints �a 0,�b 0, a + b � 1 0,�d
0,�g 0 and g + d� 1 0. We refer to them as c1, . . . , c6 0.

Our penalty method adds a Lagrange multiplier with ↵·P
i=1...6 max

2(0, c(x
i

))
to the minimisation’s objective function. It is a pseudo-transient continuation to
penalise any solution out of the admissible region. The minimisation can not be
passed to a plain Newton iteration as its Hessian is singular inside the admissible
region, i.e. for valid solutions of a, b, c, d. Therefore, we resort to quasi-Newton
where the Hessian is added an additional diagonal part � · id, where � is a tuned
regularisation parameter and id is the identity matrix.

The penalty problem comes along with pros and cons. Its iterative character
implies that there is no inner branching—max is supported by AVX—and it
is arithmetically intense. In return, its performance is subject to two magic
variables (↵, �) and there are always cases where it does not converge within a
reasonable number of iterations for a chosen variable pair.

Fig. 2. Left: Histogram of Newton iterations required to solve characteristic triangle
configurations. Right: Non-spherical granular material in a hopper setup.

A hierarchical collision check. Empirical studies suggest that the Newton it-
eration converges within few iterations for the majority of all of our meshes’
triangles (Fig. 2). We thus propose a hybrid algorithm combining penalty and
brute force. It fuses the iterative performance and brute force robustness.

Per triangle pair of two particles, our approach runs it
Newton

Newton itera-
tions. it

Newton

is given. An epilogue then evaluates c1, . . . , c6, i.e. the Euclidean
norm (error) over (max{0, c

i

})
i

2 R6. If one constraint is harmed and the norm
big, we trigger the brute force comparison variant.

SoA flattening of the triangle data structures Triangle meshes are logically hier-
archical information consisting of triangles referencing spatial positions. To be
able to exploit SIMD facilities e�ciently, i.e. to avoid indirect memory access,
our data structures replicate the vertex information and serialise the meshes.
Our particle meshes are given as a sequence of vectors. Every three vectors in
a row represent one triangle. On top of the actual geometric data, a hull struct
holds all particle properties such as velocities, rotation, mass, geometric centre
and mass centre, but also references to the vector sequences. The vectors of a
vertex that is adjacent to k triangles thus is replicated k times.

In exchange for the memory increase, we can store the whole mesh as a struc-
ture of array [9] over the x, y and z coordinates with aligned arrays of double.
Once all forces become available, our rigid body models determine translational
and rotational updates. They are applied to all vertices. It thus is computation-
ally acceptable to have vertex data replicated. It is automatically kept consistent
as a particle mesh topologically does not change.

4 Shared memory parallelisation

Our multithreaded collision detection code runs a classic data decomposition
scheme on the triangles: While the first triangle T

i

of p

i

is compared to the
first triangle of T

j

, we can simultaneously compare the second triangle. The con-
currency scales in the number of triangles per particle. Synchronisation points,
i.e. critical sections, are solely the insertion of contact points into the result set.

Further to our straightforward parallelisation of the hybrid collision model,
we propose a batched multithreaded variant (Alg. 1). We make the hybrid col-
lision checks exploit the multi-threaded environment by splitting the computa-
tional workload into groups of batches. A batch is a set of triangle pairs taken
sequentially from the vertex vector arrays. It represents a subset of the triangles
of a particle. Batches are empirically chosen to hold eight triangles in our ex-
periments. As we know the size of a batch, we can collapse the Newton iteration
loops and the batch iteration loop once we fix the number of Newton iterations.
This widens the number of arithmetic operations subject to compiler reordering
and vectorisation. The convergence check on c1, . . . , c6 is then performed on a
per-batch basis, i.e. we determine whether one of the triangles from T

i

harms
the admissibility condition. If this is the case, we apply our recursive scheme
falling back to brute force to the whole patch.

Algorithm 1 Simplified hybrid contact detection fusing penalty-based and
brute force checks into one algorithm. It is parallelised patch-wisely. penalty
and bf are the penalty and brute force subroutine calls which are inlined. We
have removed the recursion of the penalty blueprint here and fall back to brute
force directly if an admissibility constraint is harmed.
1: for k

i

, k
j

=0; k
i

, k
j

<noOfTriangles/batchSize;k++ do

2: OMP PARALLEL FOR REDUCTION (+:batchError)
3: for l

i

, l
j

=0; l
i

, l
j

<batchSize; l++ do

4: id
i

=k
i

*batchSize + l
i

; id
j

=k
j

*batchSize + l
j

;
5: distance[i] = penalty(T

i

[id
i

], T
j

[id
j

], error,it
Newton

= 4) . inlined
6: batchError += error
7: end for . Nested loops can be unrolled and reordered, as it

Newton

= 4 fixed
8: if batchError/batchSize> 10�8

then . max reduction works, too
9: OMP PARALLEL FOR
10: for l

i

, l
j

=0; l
i

, l
j

<batchSize; l++ do

11: id
i

=k
i

*batchSize + l
i

; id
j

=k
j

*batchSize + l
j

; . Rerun with
12: distance[i] = brute force(T

i

[id
i

], T
j

[id
j

]) . robust algorithm
13: end for

14: end if

15: end for

It is usually not possible to predict the existence and distribution of “non-
convergent” triangle pairs. Furthermore, the batch size choice is a tuning pa-
rameter. It determines the computation assigned per thread in terms of number
of vectorised triangle pairs and thus correlates to OpenMP’s chunk size [2]. The
batch size also a↵ects SIMD performance and penalty robustness. The larger the
size the more triangle comparisons can be fused into SIMD statements. However,
if one or more triangles fail convergence, the whole batch falls back to brute force.
In theory, dynamic scheduling should resolve imbalances and thus mitigate ef-
fects of unwise batch size choices and unfortunate geometric constellations. Yet,
experiments suggested that dynamic balancing does not yield a performance
improvement; possible due to its overhead. Static scheduling is su�cient.

5 Results

Our code is a C/C++ collection of plain functions and structures. It is aug-
mented by Intel SIMD and OpenMP pragmas which allows us to exploit SSE and
AVX2 instruction sets. Results were obtained on an Intel Sandy Bridge 2.0GHz
i5 node with 16 cores where we use Likwid [10] to read out hardware counters.
Further experiments were conducted on Intel Xeon E5-2650 v4 (Broadwell) nodes
with 24 cores each that run at 2.20 GHz. All result codes pass through Intel 15
(Sandy Bridge) and 17 (Broadwell) compilers. With respective code annotations
the GNU compilers yield comparable yet slightly inferior throughput.

Single core hardware characteristics. We start with comparisons of the single
node throughput of the plain brute force and penalty approach against the

STREAM Triad benchmark [8]. In this context, we run the code with and with-
out vectorisation. As we refrain from intermixing penalty and brute force version
into a hybrid, we let the penalty version converge up to a precision of 10�8,
i.e. the number of Newton iterations is not constrained. The measurement picks
up a characteristics particle-to-particle comparison where one particle consists
of 40 triangles.

Table 1. Hardware counter results for characteristic single-core runs on the Sandy
Bridge chip. BF means brute force.

Metric Stream BF Penalty BF+SIMD Penalty+SIMD

Runtime (s) 6.71 22.49 15.47 7.78 4.54
MFLOPS/s 1,245 962 1,073 2,808 3,202
CPI 0.48 0.48 0.49 0.91 1.26
Bandwidth MB/s 14,120 408 579 902 1,424

We observe (Table 1) that both variants do not exploit by any means the
bandwidth that is available. This is promising w.r.t. the vectorisation. Indeed,
the throughput triples almost for the vectorised iterative scheme. The brute
force variant can not increase the throughput that significantly. Yet, we observe
that both schemes benefit from SIMD—a fact also suggested by the compiler’s
vectorisation reports—which materialises both in an increase of cycles per in-
struction (CPI) and achieved MFLOPS/s.

Overall, the penalty-based version clearly outperforms the brute force variant
which su↵ers from branching. We can expect the speed gap to widen once we
fix or restrict the number of Newton iterations or supplement wider vector reg-
isters. Our results reveal furthermore that the algorithmic baseline is promising
w.r.t. multicore parallelisation as the codes require a lower bandwidth than our
STREAM baseline. We are not memory-bound.

Fig. 3. Scaling of the various methods on the Broadwell. The setup runs a hopper
scenario. Particles with 20 (left) or 40 (right) triangles each squeeze through a chute.

Time-to-solution without batches. A combination of the penalty variant with
brute force as fallback yields a hybrid version that is robust, i.e. always gives a
valid result. We continue with the hopper experiment where 1,000 particles are
arranged in a regular Cartesian layout and fall down into a chute (Fig. 2). The
code employs a grid technique but does itself run serially. Only for the basic
particle-to-particle comparisons, it uses multithreading. We make the particles
have roughly the same diameter but assign them randomised shapes consisting
of 20 or 40 triangles. The penalty method tries four Newton iterations and
afterwards directly falls back to brute force. We also present the scaling of the
iterative method running at most four Newton steps. If we would not enforce
termination after four steps, the iteration-based method would neither yield valid
data nor be competitive with the other approaches due to outliers.

The hybrid’s performance ends up in-between the performance of its two
ingredients (Fig. 3). Our batched version is slower than a parallelisation based
upon triangle decomposition. We however already observe that the gap between
the two variants closes if we reduce the triangle count. Eventually, if one object
consists of less than 10 triangles—such a situation occurs if a particle collides
with the hopper geometry, e.g., as we model the hopper as set of independent,
non-moving triangles—the batched version becomes faster (not shown). Overall,
our algorithms exhibit reasonable scaling at least on one socket.

Fig. 4. Setup from Fig. 3 where the triangle and the grid cells and particle pairs run
concurrently. Experiments on Broadwell. The G postfix describes how many threads
are invested on the grid parallelisation while the digit following T describes how many
threads are made available to the parallelisation of the collision checks.

Context While our approach successfully makes triangle-based particle collision
exploit multicore processors, we have to assume that a sole thread decomposition
of the triangle loops is insu�cient. However, it is straightforward to combine
classic mesh-based parallelisation with our approach: We decompose the grid
into cells that are bigger than the particle diameter. A particle’s triangle then is
compared to the triangles of another particle if and only if the particles reside
in the same or neighbouring cells. Cell pairs can be handled in parallel. Inside

the parallelised loop over cell pairs, we also parallelise the collision checks over
particle pairs. If three particles A,B and C are held in two neighbouring cells,
we can deploy the three collision checks (A vs. B, A vs. C, B vs. C) to three
threads. Inside this nested concurrency, we place our triangle-pair checks.

To contextualise our timings, we have rewritten our code to support spheres—
the most convenient analytical shape. The tests continue with 1,000 spheres plus
a grid [11] which eliminates roughly 90% of the potential collision checks a priori:
including the sphere-hopper boundary checks, we run around 1.11 · 105 collision
checks per time step instead of the 1.35 · 106 checks required without any grid.
The sphere-based code basically streams data through the machine.

Our data uncover the significant speed reduction when we switch from spheres
to meshed particles (Fig. 4). We “loose” one order of magnitude due to improved
physics. With T

max

2 {10, 40}, our triangle-based approach furthermore yields
a memory footprint that is almost by a factor of 9 · T

max

sizeof(doubles)

bigger than its spherical counterpart. For our small-scale setup, we observe that
classic mesh-based parallelisation does not yield massive speedups. In contrast,
our collision check parallelisation continues to speed up the computation by a
factor of more than ten. An analysis of why the hybrid of grid and particle mesh
parallelisation does not collaborate is subject of future research—reasons might
be inappropriate pinning, strong scaling e↵ects (too few particles) or memory
boundedness. Yet, our results highlight how important a proper parallelisation
of the most inner loops of the algorithm is.

6 Conclusion

Our manuscript introduces a collision detection algorithm for triangle-based par-
ticles that is able to exploit modern compute nodes both w.r.t. vectorisation and
shared memory parallelisation. The key ingredient of our algorithm is to com-
bine a weak collision model solved by an iterative scheme with a constraint on
the iteration count plus a classic if-based collision check as fallback solver if the
Newton iterations do not converge quickly. Depending on the type of object-
object collision, we sketch a batched and a non-batched variant. Our code is one
building block to obtain physically more reliable simulations as complex interac-
tion functions mitigating non-spherical particle shapes can be replaced by first
principle mechanics plus complex particle shapes. Furthermore, it demonstrates
that triangle-based collision detection scales on multicore nodes. In particular,
it scales the better the more accurate the geometric model.

Our results suggest that future manycore architectures will enable engineers
to replace sphere-based DEM codes with software that relies on triangle meshes,
as it has orthogonal characteristics to classic DEM codes—it is not bandwidth-
bound, exploits vector registers and increases the code concurrency—and pre-
serves DEM’s spatially localised neighbour-to-neighbour checks. A showstopper
for future research however is its massively increased memory footprint.

Our current and future work is three-fold. First, we embed our triangle-based
comparisons into real-world engineering setups and study the qualitative impact

of the non-spherical particles on the simulation outcomes. Second, we plan to
extend our collision models to face contacts and to provide well-suited collision
point postprocessing. One challenge with triangle-based collision detection re-
sults from the fact that multiple contact points can arise per particle pair. An
algorithm has to decide which points from this set are duplicates as whole faces
are near and parallel to each other. At the moment, we drop contact points that
are closer to each other than the minimum mesh width of a particle mesh; which
is a working yet physically unmotivated approach. Finally, we have to study how
our approach integrates into distributed memory parallelisation. While most in-
gredients here are well-understood, it will be interesting to see how the SoA
technique and MPI interfer. Our plan is to keep particles as atomic units and to
work with whole ghost particles.

References

1. J. M. Boac, R. P. K. Ambrose, M. E. Casada, R. G. Maghirang, and D. E.
Maier, Applications of Discrete Element Method in Modeling of Grain Postharvest
Operations, Food Engineering Reviews, 6 (2014), pp. 128–149.

2. B. Chapman and J. LaGrone, OpenMP, Springer US, Boston, MA, 2011,
pp. 1365–1371.

3. P. Cundall and O. Strack, Discrete numerical model for granular assemblies.,
Geotechnique, 29 (1979), pp. 47–65.

4. M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular
Dynamics, Springer, Berlin, Heidelberg, 2007.

5. K. Iglberger and U. Rüde, Massively parallel granular flow simulations with
non-spherical particles, Computer Science - Research and Development, 25 (2010),
pp. 105–113.

6. J. B. Johnson, A. V. Kulchitsky, P. Duvoy, K. Iagnemma, C. Senatore,
R. E. Arvidson, and J. Moore, Discrete element method simulations of Mars
Exploration Rover wheel performance, J. Terramech., 62 (2015), pp. 31–40.

7. T.-Y. Li and J.-S. Chen, Incremental 3D collision detection with hierarchical
data structures, Proceedings of the ACM symposium on Virtual reality software
and technology 1998 - VRST ’98, 1998 (1998), pp. 139–144.

8. J. D. McCalpin, Memory bandwidth and machine balance in current high per-
formance computers, IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, (1995), pp. 19–25.

9. X. Tian, H. Saito, S. V. Preis, E. N. Garcia, S. S. Kozhukhov, M. Masten,
A. G. Cherkasov, and N. Panchenko, E↵ective SIMD Vectorization for Intel
Xeon Phi Coprocessors, Scientific Programming, 2015 (2015).

10. J. Treibig, G. Hager, and G. Wellein, LIKWID: A Lightweight Performance-
Oriented Tool Suite for x86 Multicore Environments, in Proceedings of the 2010
39th International Conference on Parallel Processing Workshops, ICPPW ’10,
IEEE Computer Society, 2010, pp. 207–216.

11. T. Weinzierl, B. Verleye, P. Henri, and D. Roose, Two particle-in-grid
realisations on spacetrees, Parallel Computing, 52 (2016), pp. 42–64.

