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Abstract

Information that is stored in an encrypted
format is, by definition, usually not amenable
to statistical analysis or machine learning
methods. In this paper we present detailed
analysis of coordinate and accelerated gra-
dient descent algorithms which are capable
of fitting least squares and penalised ridge
regression models, using data encrypted un-
der a fully homomorphic encryption scheme.
Gradient descent is shown to dominate in
terms of encrypted computational speed, and
theoretical results are proven to give param-
eter bounds which ensure correctness of de-
cryption. The characteristics of encrypted
computation are empirically shown to favour
a non-standard acceleration technique. This
demonstrates the possibility of approximat-
ing conventional statistical regression meth-
ods using encrypted data without compro-
mising privacy.

1 Introduction

Issues surrounding data security and privacy of per-
sonal information are of growing concern to the pub-
lic, governments and commercial sectors. Privacy con-
cerns can erode confidence in the ability of organisa-
tions to store data securely, with a consequence that
individuals may be reticent to contribute their per-
sonal information to scientific studies or to commercial
organisations (Sanderson et al., 2015; Naveed et al.,
2015; Gymrek et al., 2013).

In this paper we demonstrate that statistical regres-
sion methods can be applied directly to encrypted
data without compromising privacy. Our work in-
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volves adapting existing methodology for regression
analysis in such a way as to enable full computa-
tion within the mathematical and computational con-
straints of recently developed fully homomorphic en-
cryption schemes (Gentry, 2010; Fan and Vercauteren,
2012). We show empirically that traditional state-of-
the-art convergence acceleration techniques can under-
perform when such constraints are taken into account.

Fully homomorphic encryption (FHE) differs from dif-
ferential privacy (DP) in that it provides for exact
computation with cryptographically strong privacy of
all the data during the fitting process itself, at the ex-
pense of much greater restrictions on the operations
and computational cost (Gentry, 2010; Aslett et al.,
2015a). However, it is complementary to DP (as op-
posed to competing with it) in the sense that FHE
maintains privacy during model fitting and prediction,
while DP can ensure privacy post-processing of the
data if the model itself is to be made public. For an
overview of DP see Dwork and Roth (2014).

FHE allows for secure operations to be performed on
data, and statistical analysis and machine learning is
the major reason why people want to perform mathe-
matical operations on data. Thus, there is a real op-
portunity for machine learning scientists to be involved
in shaping the research agenda in FHE (United States
EOP, 2014). The applications of encrypted statistics
and machine learning include general purpose cloud
computing when privacy concerns exist, and are espe-
cially important in e-health and clinical decision sup-
port (Basilakis et al., 2015; McLaren et al., 2016).

§2 is a brief accessible introduction to FHE and §3
recaps regression to fix notation and our method of
representing data prior to encryption. A detailed ex-
amination of coordinate and gradient descent meth-
ods in an encrypted context follows in §4, including
encrypted scaling for correctness, computational con-
siderations, prediction, inference, regularisation and
theoretical proofs for parameters in a popular FHE
scheme. §5 discusses acceleration methods optimal for
encrypted computation, with examples provided in §6
and discussion in §7.
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2 Homomorphic encryption

A common technique for ensuring the privacy of data
is to encrypt it, but typically once one wishes to fit a
model it is necessary to first decrypt and risk exposing
the data. However, recent advances in cryptography
enable a very limited amount of computation to be
performed directly on the encrypted content, rendering
the correct result upon decryption.

2.1 Standard cryptography

A public key encryption scheme is one which has two
algorithms, Enc(·, ·) and Dec(·, ·), to perform encryp-
tion and decryption respectively, together with two
keys: the public key, kp, can be widely distributed and
used by anyone to encrypt a message; the secret key,
ks, is required to decrypt any message encrypted using
kp and so is kept private. The fundamental identity is:

Dec(ks, Enc(kp,m)) = m ∀m.

The data to be encrypted, m, is referred to as the mes-
sage or plaintext and after encryption is referred to as
the ciphertext. In conventional encryption algorithms
manipulation of the ciphertext does not typically lead
to meaningful modification of the message.

2.2 Fully Homomorphic encryption

An encryption scheme is said to be fully homomorphic
if it also possesses two operations, ⊕ and ⊗, which
satisfy the following identities:

Dec(ks, Enc(kp,m1)⊕ Enc(kp,m2)) = m1 +m2

Dec(ks, Enc(kp,m1)⊗ Enc(kp,m2)) = m1 ×m2

for all m1,m2, which can be applied a theoretically ar-
bitrary number of times. In other words, a homomor-
phic encryption scheme allows computation directly on
ciphertexts which will correctly decrypt the result as if
the corresponding operations had been applied to the
original messages.

However there are many constraints in practical im-
plementation, reviewed in Aslett et al. (2015a). For
the purposes of this work they may be synopsised as:

• Typically m can only easily represent binary or
integers.
• Data size grows substantially after encryption.
• The computational cost of ⊕ and ⊗ is orders of

magnitude higher than standard + and ×.
• Operations such as comparisons (==, <,>) and

division (÷) are not possible.
• Implementation of current schemes necessitate a

highly computationally expensive ‘bootstrap’ op-
eration (unrelated to statistical bootstrap) which

must be applied frequently between ⊗ operations
to control the noise in the ciphertext.

Consequently, a crucial property of any FHE scheme
is the multiplicative depth1 which is possible before
a ‘bootstrap’ is required. Typically, one can select
the parameters of the FHE scheme to support a pre-
specified multiplicative depth, but this is a trade-off
because parameters supporting greater depth between
‘bootstraps’ also result in larger ciphertexts and slower
homomorphic operations (⊕,⊗). Therefore, it is es-
sential to consider the Maximum Multiplicative Depth
(MMD) required to evaluate an algorithm encrypted,
since this dramatically affects speed and memory us-
age. Indeed, cryptographic parameters are typically
chosen to match the MMD of the target algorithm be-
ing run so as to avoid ‘bootstrap’ altogether (which is
simply deemed too computationally costly).

The above constraints often mean that standard sta-
tistical methodology cannot be applied unmodified on
encrypted content.

2.3 Privacy preserving statistics

There has been some work towards using FHE schemes
for statistics and machine learning. Often this has
involved identifying existing algorithms which can be
run with minimal modifications (Wu and Haven, 2012;
Graepel et al., 2013), or fitted on unencrypted data for
later prediction on new encrypted data (Dowlin et al.,
2016). However, some recent work has also begun on
developing new methodology inspired by traditional
techniques, specifically tailored to homomorphic com-
putation so that the whole analysis — model fitting
and prediction — can be computed encrypted (Aslett
et al., 2015b).

In particular, the topic of linear regression in the con-
text of FHE has not been covered systematically in
the literature thus far. Hall et al. (2011) propose
protocols for regression analysis which involve sub-
stantial communication and intermediate decryption
between multiple parties: it takes two days to com-
plete a problem of size N = 51, 016 observations and
P = 23 predictors. In this work, we want to develop
methods capable of fitting and prediction without any
intermediate communication or decryption. Wu and
Haven (2012) were the first to tackle linear regression
in the context of FHE by using Cramer’s rule for ma-
trix inversion. Unfortunately, this approach calls for
the computation of the determinant of XTX, which

1Having only addition and multiplication operations
mean all computations form polynomials. Simply put,
the multiplicative depth corresponds to the degree of the
maximal degree term of the polynomial minus one. e.g.,∑P

j=1 ajbj has depth 1 and
∏P

j=1 aj has depth P − 1.



Pedro M. Esperança, Louis J. M. Aslett, Chris C. Holmes

quickly becomes intractable for even low dimensional
problems (e.g., P > 4). Specifically, the multiplicative
depth is unbounded with growing dimension and, con-
sequently, bootstrapping seems unavoidable. Graepel
et al. (2013) mention that regression can be done by
gradient descent, but do not implement the method or
give further details.

The approach we present in this work enjoys several
notable properties: (i) estimation and prediction can
both be performed in the encrypted domain; (ii) boot-
strapping can be avoided even for moderately large
problems, (iii) scales linearly with the number of pre-
dictors; (iv) and admits the option of L2 (ridge) regu-
larisation.

3 The linear regression model

The standard linear regression model assumes

y = Xβ + ε, ε ∼ N (0N , σ
2INN) (1)

where y is a response vector of length N ; X is a design
matrix of size N×P ; β is a parameter vector of length
P ; and ε is a vector of length N of independent and
Normally distributed errors with zero mean and con-
stant variance σ2. Provided that XTX is invertible,
the ordinary least squares (OLS) solution to

min
β
||y −Xβ||22 (2)

is β̂ols = (XTX)−1XTy. (3)

Regularisation techniques trade the unbiasedness of
OLS for smaller parameter variance by adding a con-
straint of the form

∑P
j=1 |βj |γ ≤ c, for some γ (Hastie

et al., 2009). Bounding the norm of the parameter
vector imposes a penalty for complexity, resulting in
shrinkage of the regression coefficients towards zero.
We focus on L2 regularisation (ridge, henceforth RLS;
Hoerl and Kennard, 1970), where γ = 2. Other op-
tions are available, although no one method seems to
dominate the others (Zou and Hastie, 2005; Tibshi-
rani, 1996; Fu, 1998). The standard solution to the
regularised problem

min
β

{
||y −Xβ||22 + α||β||22

}
(4)

is β̂rls(α) = (XTX + αIPP )−1XTy (5)

revealing that α is also key in converting ill-
conditioned problems into well-conditioned ones (Ho-
erl and Kennard, 1970).

3.1 Data representation and encoding

Because FHE schemes can only naturally encrypt rep-
resentations of integers, dealing with non-integer data

requires a special encoding. We use the transformation
ż ≡ b10φze ∈ Z, for z ∈ R and φ ∈ N. Here, φ repre-
sents the desired level of accuracy or, more precisely,
the number of decimal places to be retained. By con-
struction, ż ≈ 10φz, so that smooth relative distances
between elements encoded in this way are approxi-
mately preserved. The encoding can accommodate
both discrete (integer-valued) data and an approxima-
tion to continuous (real-valued) data. Throughout, we
assume that covariates are standardised and responses
centred before integer encoding and encryption.

4 Least squares via descent methods

Conventional solutions to (3) and (5) can be found in
closed form using standard matrix inversion techniques
with runtime complexity O(P 3) for the matrix inver-
sion and O(NP 2) for the matrix product. This direct
approach was the one advocated for encrypted regres-
sion by Wu and Haven (2012), though dimensionality
is constrained by school-book matrix inversion to en-
able homomorphic computation.

4.1 Iterative methods

We analyse two variants of an iterative algorithm, one
which updates all parameters in β[k] simultaneously
at each iteration k, using the vector β[k−1] (ELS-GD);
and another which updates these parameters sequen-
tially , using always the most current estimate for each
parameter (ELS-CD).

The sequential update mode is related to the Gauss–
Seidel method (coordinate descent), while the simul-
taneous update mode is related to the Jacobi method
(gradient descent). See Varga (2000, chapter 3);
Björck (1996, chapter 7).

As we will see below, there are two competing con-
cerns here: optimisation efficiency and computational
tractability within the cryptographic constraints, with
these two types of updates having different properties.
We demonstrate that the properties of these methods
in the encrypted domain means some standard opti-
mality results no longer apply.

4.1.1 Sequential updates via coordinate
descent

Standard coordinate descent (see e.g. Wright, 2015)
for linear regression has the update:

β
[k]
jk

= β
[k−1]
jk

+
XT

•jk
(y −Xβold)

XT
•jk
X•jk

(6)

where βold contains the components updated on the
previous iteration or this one as appropriate, there
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being many variants for the schedule of coordinates
to update. However, this cannot be computed en-
crypted because the required data-dependent division
is not feasible. In an alternative variant we can replace
this with a generic step-size δ and at each iteration
k choose one variable, say jk ∈ N1:P , and update the
corresponding regression parameter:

β
[k]
jk

= β
[k−1]
jk

+ δXT
•jk

(y −Xβold) (7)

Two things are noteworthy: first, these equations re-
quire only evaluation of polynomials; and second, a
rescaling is necessary since only integer polynomial
functions can be computed homomorphically, and the
parameter δ is usually not an integer. We show how to
perform this type of rescaling in the context of §4.1.2.

Encrypted computation As each update uses the
most recent estimate of every parameter, the MMD
grows by 2 with each parameter update (due to the
term XT

•jk
Xβold). This implies that for K iterations

over P covariates the MMD is equal to 2KP . This
renders the algorithm very expensive computationally,
as it requires bootstrapping of ciphertexts for problems
with even moderately large P .

4.1.2 Simultaneous updates via gradient
descent

In the case of gradient descent, for the objective func-
tion S(β) = ||y −Xβ||22 with ∇S(β) = ∂S(β)/∂β =
−2XT (y −Xβ), the update equations are:

β[k] = β[k−1] − δ∇S(β[k−1]) (8)

= β[k−1] + δXT (y −Xβ[k−1]). (9)

As with coordinate descent, these updates can be com-
puted homomorphically, although the update equa-
tions must again be rescaled. This is strictly neces-
sary to accommodate the transformed data, in order
to overcome the fact that we cannot divide (see §3.1).
Letting δ ≡ 1/ν for ν ∈ N, the transformed equations
for the simultaneous updates are:

β̃[k] ≡ 10φν̃β̃[k−1] + X̃T (10kφν̃k−1ỹ − X̃β̃[k−1])

= 10(2k+1)φνkβ[k] (10)

where now all transformed variables are represented
with tildes, e.g., X̃ = 10φX and similarly for the other
variables, except the coefficients {β[k]}k∈N0:K

as their
scaling is iteration dependent (see supplementary ma-
terials, §1). The rescaling factors are independent of
the data and known a priori, and so can be grouped
during computation, e.g., 10kφν̃k−1 in (10) can be en-
crypted as a single value.

Retrieval of the coefficients can be done by
the secret key holder by computing β[K] ←

Dec(ks, β̃
[K])/(10(2K+1)φνK). Note the important dif-

ference between coordinate and gradient descent: for
K iterations, in CD each coefficient is updated K/P
times while in GD each coefficient is updated K times.

Encrypted computation There is a crucial differ-
ence between CD and GD in the encrypted domain:
GD reduces the multiplicative depth from 2KP to
2K, which is independent of P , enabling scalability
to higher dimensional models without bootstrapping
or having to select parameters which support greater
MMD. As discussed in §2.2, bootstrapping in current
FHE schemes is to be avoided wherever possible be-
cause it is very computationally expensive. This is
an interesting and important result, because it means
that in the specific setting of encrypted computation,
Nesterov’s faster rates of convergence (Nesterov, 2012)
compared to gradient descent in a randomised coordi-
nate descent setting will not apply, as we will show.

For these computational reasons we focus primarily
on gradient descent hereinafter. For convergence in a
regression setting recall:

Lemma 1 (Convergence of ELS-GD). Define β[k+1] ≡
β[k] + δXT (y − Xβ[k]) and let β[0] ≡ 0P . Then,

limk→∞ β
[k] = (XTX)−1XTy = β̂ols for δ ∈

(0, 2/S(XTX)) where S(XTX) is the spectral radius
of XTX.

The optimal choice of step size, in the sense that it
minimises the spectral radius, is δ? = 2/(λmax +λmin),
implying an optimal spectral radius S? = (λmax −
λmin)/(λmax + λmin), where λmax and λmin denote the
largest and smallest eigenvalues of XTX, respectively
(see Ryaben’kii and Tsynkov, 2006, Theorem 6.3 for
all proofs).

Lemma 2 (Oscillatory nature of ELS-GD). The itera-
tive process (8) can be written as an oscillating sum:

β[k] =

k∑
n=1

(−1)n+1

(
k

k − n

)
δn(XTX)n−1XTy (11)

This lemma is proved in the supplementary materials
(§3). We show in §5.2 that it is possible to improve the
convergence rate by using acceleration methods that
exploit the oscillatory nature of the GD algorithm to
accelerate the convergence of the series {β[k]}k≥0.

4.2 Prediction

Note that the form of the GD equation (10) implies
a common scaling factor, 10(2k+1)φνK , for all parame-
ters. Performing encrypted prediction is then straight-
forward as it requires only the computation of the
dot product ỹi = X̃T

i• β̃
[K] = 10(2K+1)φνK ŷi, where
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ŷi = XT
i• β

[K] denotes the predicted values in the space
of the original data and ỹi denotes the corresponding
transformed version. Upon decryption, rescaling can
be done as before by the secret key holder. The pro-
cedure increases the MMD of the algorithm by 1.

The situation is more complex for coordinate descent
since at the end of the final iteration each element of
β[K] will have different scaling. Therefore the scaling
must be unified before prediction, adding additional
overhead.

4.3 Inference

Inference in the linear regression model (e.g., confi-
dence intervals, hypothesis testing, variable selection)
requires knowledge of the standard errors of the re-
gression coefficients:

V[β̂ols] = σ̂2(XTX)−1, σ̂2 = eTe/(N − P ). (12)

However, the matrix inversion is intractable under ho-
momorphic computation except for very small P . An
alternative is to estimate the standard errors by boot-
strapping the data and using the variability in the pa-
rameter estimates obtained.

4.4 Regularisation

L2-regularised (ridge) least squares is easy to imple-
ment using the well known data augmentation proce-
dure (Allen, 1974):

X̊ =

[
X√
αIPP

]
and ẙ =

[
y
0P

]
. (13)

OLS estimates when using the augmented data,
(X̊, ẙ), are equivalent to RLS estimates when using
the original data, (X,y); that is,

β̂rls(α) = (X̊T X̊)−1X̊T ẙ = (XTX + αIPP )−1XTy.
(14)

Because the augmentation terms (
√
αIPP and 0P ) are

independent of the data (X and y), the iterative meth-
ods already developed for least squares (§4.1) can be
used with the augmented data. Also note that the
maximal eigenvalue is easily updated, λ̊max = λmax+α
and so a new step size δ̊ can be chosen without addi-
tional computation.

4.5 Theoretical parameter requirements for
the Fan and Vercauteren scheme

We provide results to guide the choice of crypto-
graphic parameters for the encryption scheme of Fan
and Vercauteren (2012) — hereinafter FV. This is im-
plemented in the HomomorphicEncryption R package
(Aslett et al., 2015a) and used in the examples.

FV represents data as a polynomial of fixed degree
with coefficients in a finite integer ring.2 For exam-
ple, m is represented by m̊(x) =

∑
aix

i where ai are
the binary decomposition of m, such that m̊(2) = m.
Addition and multiplication operations on the cipher-
text result in polynomial addition and multiplication
on this representation.

The transformed regression coefficients grow substan-
tially during computation, so that we must ensure (i)
the maximal degree of the FV message polynomial is
large enough to decrypt β̃[K]; and (ii) that the coeffi-
cient ring is large enough to accommodate the worst
case growth in coefficients.

Lemma 3 (FV parameter requirements for GD). If
data is represented in binary decomposed polynomial
form, then after running the ELS-GD algorithm the de-
gree and coefficient value of the encrypted regression
coefficients is bound by:

deg(β̃[k]) ≤ max{4n+ deg(β̃[k−1]), (4k − 1)n}

where deg(β[1]) ≤ 3n and n ≡ (φ+ 1) log2(10);

and ||β̃[k]||∞ ≤ (4n+ (n+ 1)2)NP ||β̃[k−1]||∞
+ (4k − 3)n(n+ 1)N

where ||β̃[1]||∞ ≤ n(n+ 1)N

This lemma is proved in the supplementary materi-
als (§2) and provides lower bounds on the choice of
parameters d and t in the FV scheme.

Recall the MMD for GD is 2K. Theoretical bounds
on security level (Lindner and Peikert, 2011) and mul-
tiplicative depth (Lepoint and Naehrig, 2014) — to-
gether with the polynomial bounds and algorithmic
MMD proved here — then enable full selection of en-
cryption parameters to guarantee security and compu-
tational correctness of the encrypted GD algorithm.

5 Acceleration

Although ELS-GD is guaranteed to converge to the OLS
solution, the rate of convergence can be slow, for in-
stance when predictors are highly correlated. Here we
analyse some classic acceleration methods.

5.1 Preconditioning

A preconditioning matrix D is often used to accelerate
convergence of iterative methods (Björck, 1996, chap-
ter 7) by solving the preconditioned problem

D−1(XTXβ −XTy) = 0 (15)

2The maximal degree and maximal ring element are
tunable parameters, but even small increases make cipher-
texts bigger and homomorphic operations slower.
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Figure 1: The effect of diagonal scaling precondition-
ing on the convergence paths of ELS-GD. Full circles
represent OLS estimates. [N = 100, P = 5, ρ = 0.1]

with the same solution as the original problem, but
having more favourable spectral properties. A simple
preconditioning is diagonal scaling of the columns of
X. Let D = diag(d1, . . . , dP ) be a P × P diagonal
matrix with diagonal entries {d1, . . . , dP } where dj =
||X•j ||22. Since dj ≈ N for all j ∈ N1:P as a result of
standardisation (see §3.1) the preconditioning matrix
becomes D−1 ≈ N−1IPP . The preconditioned update
equation is then

β[k] = β[k−1] + (δ/N)XT (y −Xβ[k−1]) (16)

which differs from (8) only in the step size. Precondi-
tioning smooths the convergence path, but the number
of iterations required is still large (Figure 1).

5.2 van Wijngaarden transformation

The van Wijngaarden (1965) transformation (VWT)
is a variant of the Euler transform for accelerating the
convergence of an alternating series. Given the partial
sums of an alternating series, S1,k =

∑k
n=1(−1)nan,

we can compute averages of these partial sums,

Sz,k =
Sz−1,k + Sz−1,k+1

2
, z ∈ N2:K (17)

(and averages of the averages) to form a matrix of
averaged partial sums. For a finite number of terms
(K), averages of partial sums are often closer to the
limiting value, S1,∞, than any single partial sum of the
original series, S1,k (k ∈ N1:K), so that the alternating
nature of the sequence is averaged out, damping its
oscillatory behaviour and speeding-up convergence.

As shown in (11), the values {β[k]}k∈N1:K
computed

with ELS-GD form an alternating series, making the
VWT a candidate for accelerating the convergence to
the true regression coefficients.

The implementation of (17) has a simple, closed form
solution. For a stopping column k? = bK/3c + 1 (as
van Wijngaarden suggests) we compute the average

partial sum S? = (2K−k
?

)−1
∑K
n=k?

(
K−k?
n−k?

)
S1,n, and

take this as our best approximation to the value of
the series at convergence. Notably, this can be imple-
mented homomorphically with the exception of the di-
vision, but since the factor is independent of the data,
we can compute instead S̃? = 2K−k

?

S? and incorpo-
rate the appropriate correction upon decryption; i.e.,
once ELS-GD is completed, the final VWT estimate is:

β̃vwt ←
K∑

k=k?

(
K − k?

k − k?

)
β̃[k]. (18)

The computational cost of the VWT is minimal, in-
volving approximately 2K/3 additions and multiplica-
tions, and increasing the MMD by only 1.

5.3 Nesterov’s accelerated gradient

Nesterov’s accelerated gradient (NAG) achieves a con-
vergence rate of O(1/K2) as opposed to the O(1/K)
achieved by regular GD (Nesterov, 1983). The NAG
algorithm can be written as follows:

s[k] = β[k−1] + δXT (y −Xβ̃[k−1]) (19a)

β[k] = s[k] + ηk(s[k] − s[k−1]), ηk < 0. (19b)

The first step in NAG, (19a), is the same as the stan-
dard GD step in (8). The extra step, (19b), is pro-
portional to the momentum term s[k] − s[k−1], and is
responsible for the acceleration.

These equations must also be rescaled for homomor-
phic computation (similarly to GD in §4.1.2):

s̃[k] ≡ 10φν̃β̃[k−1] + X̃T (10(2k−1)φν̃k−1ỹ − X̃β̃[k−1])

≡ 103kφνks[k] (20a)

β̃[k] ≡ (10φ + η̃k)s̃[k] − 102φν̃η̃ks̃
[k−1]

≡ 10(3k+1)φνkβ[k] (20b)

where ỹ = 10φy is the transformed vector of responses,
according to §3.1, and similarly for the remaining vari-
ables, except {s̃[k], β̃[k]}k∈N0:K

which have iteration de-
pendent scaling factors.

All scaling constants are independent of the data and
known a priori, and so can be incorporated into the
scaling by the secret key holder to obtain the final
parameter estimates as: Dec(ks, β̃

[K])/(10(3K+1)φνK).
Because of the extra acceleration step, ELS-NAG has
a MMD equal to 3K (see Table 1). This is particu-
larly interesting, because although Nesterov’s method
is state-of-the-art for unencrypted GD, the increase in
MMD makes it costly for encrypted analysis.

6 Results

In this section we empirically analyse the methods pro-
posed for encrypted linear regression using simulated
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Table 1: Maximum Multiplicative Depth (MMD).

Algorithm MMD
Preconditioned gradient descent 2K
van Wijngaarden transformation 2K+1
Nesterov’s accelerated gradient 3K

and real data (see supplementary materials, §4, for de-
tails). We use the implementation of the Fan and Ver-
cauteren (2012) cryptosystem provided by Aslett, Es-
perança, and Holmes (2015a). The runtimes reported
for encrypted analysis are on a 48-core server. All error
norms are root mean squared deviations w.r.t. OLS,
and we use φ = 2 throughout.

6.1 Simulations

For simulations with independent data we generate
β ∼ N (0P , IPP ), X ∼ N (0P ,Σ) and y ∼ N (Xβ, IPP ).
For simulations with correlated data we use Normal
copulas and generate predictors whose pairwise corre-
lations are all equal to ρ.

Figure 2 (left) illustrates the computational properties
of the coordinate and gradient descent methods for en-
crypted regression for a fixed MMD. Since the MMD
supported in the encryption scheme is a prime deter-
minant of the computational cost of homomorphic op-
erations, this serves as a proxy for the error as a func-
tion of encrypted computational complexity. ELS-GD

clearly outperforms ELS-CD for a fixed encrypted com-
putational cost, as expected from §5. Furthermore,
Figure 2, (right) shows the VWT provides additional
acceleration in convergence relative to GD.

In general, higher correlation among predictors implies
less favourable spectral properties for XTX, which in
turn makes convergence slower for both ELS-GD-VWT

and ELS-NAG (Figure 3). A fair comparison must con-
trol for the fact that the two algorithms have differ-
ent encrypted computational complexities. Using the
MMD as a proxy again, ELS-GD-VWT typically outper-
forms ELS-NAG for fixed level of complexity (Figure 4).
In very high correlation settings this relationship can
be reversed, but only for large numbers of iterations,
which it is desirable to avoid.

We stress that this choice is conditional on the en-
crypted computational framework considered here. It
is particularly interesting that when working unen-
crypted, NAG is the state-of-the-art; but in the re-
stricted framework of FHE, VWT empirically appears
to be a better choice.

Convergence is affected by the number of predictors.
In particular, the maximum number of iterations re-
quired to reduce the norm of the initial error vector
by a factor e (reciprocal of the average convergence

5 10 15 20 25

0.
0

0.
4

0.
8

multiplicative depth

er
ro

r 
no

rm

●●●●●●●●●●●●●●
●●

●●●●●●●●●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●

●

●

CD, large P
GD, large P
CD, small P
GD, small P

5 10 15 20 25

0.
2

0.
6

1.
0

number of iterations

er
ro

r 
no

rm
 r

at
io

Figure 2: Error norms with respect to the OLS solu-
tion. [left] ELS-CD vs. ELS-GD. Comparison for fixed
multiplicative depth [right] acceleration via VWT.
Ratios of error norm of ELS-GD-VWT to ELS-GD. [N =
100, large P = 50, small P = 5]
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Figure 3: Convergence of ELS-GD-VWT and ELS-NAG

for different levels of correlation: [left] ρ = 0.3 [right]
ρ = 0.7. [N = 100, P = 5]

●

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

multiplicative depth

er
ro

r 
no

rm ●

●

●
●

● ● ● ● ● ● ● ● ● ●

● vwt
nag

ρ = 0.3

●

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

multiplicative depth

er
ro

r 
no

rm

●

●
●

●

●
●

●
● ● ●

● ● ●
●

● vwt
nag

ρ = 0.7

Figure 4: Error norm of ELS-GD-VWT and ELS-NAG as
a function of multiplicative depth, for different levels
of correlation: [left] ρ = 0.3 [right] ρ = 0.7. [N =
100, P = 5]

rate; Varga, 2000, p.69) gives us an idea of the rela-
tionship between number of predictors and speed of
convergence. For any level of correlation, this measure
of complexity increases linearly with P (see Figure 1
in the supplementary materials).

Finally, the computational costs of ELS-GD are given in
Figure 5. Runtime grows quickly with the algorithm’s
multiplicative depth, which increases with the num-
ber of iterations. However, for a fixed multiplicative
depth the runtime is roughly linear in both N and P .
Memory requirements grow in a similar fashion.
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Figure 5: Computational aspects of ELS-GD for dif-
ferent problem sizes P ∈ {2, 25}, per 100 observations:
[left] runtimes (in minutes) [right] encrypted data
size in memory, {X,y} (in gigabytes, excluding com-
putational overheads).

6.2 Applications

Mood stability data The first application is to
mood stability in bipolar patients (Bonsall et al.,
2012). Of interest in this application is the charac-
terisation of the stochastic process governing the re-
sulting time series, pre and post treatment, which
we model as an autoregressive process of order two
(N = 28, P = 2). Convergence is achieved within 2
iterations (||β[2]||∞ ≤ 0.04; Figure 6). The algorithm
runs encrypted in 12 seconds and requires under 15
MBs of memory, excluding overheads.

Prostate cancer data The second application is
to prostate cancer (Stamey et al., 1989). The model
here is a standard linear regression (N = 97, P = 8).
Although not all parameters have completely con-
verged by iteration 4 with unregularised ELS-GD-VWT

(||β[4]||∞ ≤ 0.26; Figure 7), the predictions are close
to those produced by RLS (Figure 8). The algorithm
runs encrypted in 30 minutes and requires 3.5 GBs of
memory (K = 4).

For runtimes and memory requirements in these appli-
cations see Figure 2 in the supplementary materials.

7 Discussion

We demonstrated that in the restricted framework of
FHE, traditional state-of-the-art methods can perform
poorly. Statistical and computational methods tai-
lored for homomorphic computation are therefore re-
quired, which may differ from the state-of-the-art in
an unrestricted framework.

For optimal convergence speed, the step size δ can
be provided by the data holder, who can use the
inequality S(XTX) ≤ ||(XTX)m||1/m ≡ B(m) to
approximate S(XTX) to arbitrary precision, since
B(m)→ S(XTX) as m→∞.
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Figure 6: Convergence of different algorithms in the
mood stability application (patient 8 shown): [left]
pre treatment [right] post treatment. Lines of differ-
ent colours represent different regression coefficients.
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Figure 7: Convergence of different algorithms in the
prostate data application: [left] without regularisa-
tion (α = 0) [right] with regularisation (α = 30).
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Figure 8: Predictions for the prostate dataset un-
der different regularisation settings, α ∈ {0, 15, 30}.
df = trace(X(XTX + αIPP )−1XT ), effective degrees
of freedom. [K = 4]

Choosing the penalty α is less straightforward. Tradi-
tional methods involve cross-validation which is impos-
sible under strict FHE. Alternatively, it is possible to
do rounds of communication and decryption between
two parties to achieve this, in which case Differential
Privacy can used as a way to guarantee security during
the intermediate communication steps.

Acknowledgements

P.M. Esperança: LSI-DTC doctoral studentship (EP-
SRC grant EP/F500394/1). L.J.M. Aslett and C.C.
Holmes: i-like project (EPSRC grant EP/K014463/1).



Pedro M. Esperança, Louis J. M. Aslett, Chris C. Holmes

References

D. Allen. The relationship between variable selection
and data agumentation and a method for prediction.
Technometrics, 16(1):125–127, 1974.

L. J. M. Aslett, P. M. Esperança, and C. C. Holmes.
A review of homomorphic encryption and soft-
ware tools for encrypted statistical machine learn-
ing. arXiv:1508.06574: arxiv.org/abs/1508.06574,
2015a.

L. J. M. Aslett, P. M. Esperança, and C. C.
Holmes. Encrypted statistical machine learning:
new privacy preserving methods. arXiv:1508.06845:
arxiv.org/abs/1508.06845, 2015b.

J. Basilakis, B. Javadi, and A. Maeder. The potential
for machine learning analysis over encrypted data in
cloud-based clinical decision support — background
and review. In Health Informatics and Knowledge
Management (HIKM’15), volume 164 of Confer-
ences in Research and Practice in Information Tech-
nology, pages 3–13. ACS, 2015.

A. Björck. Numerical methods for least squares prob-
lems. SIAM, 1996.

M. Bonsall, S. Wallace-Hadrill, J. Geddes, G. Good-
win, and E. Holmes. Nonlinear time-series ap-
proaches in characterizing mood stability and mood
instability in bipolar disorder. Proceedings of the
Royal Society B (Biological Sciences), 279(1730):
916–924, 2012.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing. Cryptonets:
Applying neural networks to encrypted data
with high throughput and accuracy. Technical
Report MSR-TR-2016-3.: www.microsoft.com/en-
us/research/publication/cryptonets-applying-
neural-networks-to-encrypted-data-with-high-
throughput-and-accuracy/, 2016.

C. Dwork and A. Roth. The Algorithmic Foundations
of Differential Privacy. Foundations and Trends
in Theoretical Computer Science. Now Publisher,
2014.

J. Fan and F. Vercauteren. Somewhat prac-
tical fully homomorphic encryption. IACR
Cryptology ePrint Archive, Report 2012/144:
eprint.iacr.org/2012/144, 2012.

W. Fu. Penalized regressions: The bridge versus
the lasso. Journal of Computational and Graphical
Statistics, 7(3):397–416, 1998.

C. Gentry. Computing arbitrary functions of en-
crypted data. Communications of the ACM, 53(3):
97–105, 2010.

T. Graepel, K. Lauter, and M. Naehrig. ML Confiden-
tial: Machine learning on encrypted data. In Infor-
mation Security and Cryptology (ICISC’12), volume
7839 of Lecture Notes in Computer Science, pages
1–21. Springer, 2013.

M. Gymrek, A. L. McGuire, D. Golan, E. Halperin,
and Y. Erlich. Identifying personal genomes by sur-
name inference. Science, 339(6117):321–324, 2013.

R. Hall, S. E. Fienberg, and Y. Nardi. Secure multiple
linear regression based on homomorphic encryption.
Journal of Official Statistics, 27(4):669–691, 2011.

T. Hastie, R. Tibshirani, and J. Friedman. The ele-
ments of statistical learning: data mining, inference
and prediction. Springer, 2009.

A. Hoerl and R. Kennard. Ridge regression: Biased
estimation for nonorthogonal problems. TheJournal,
Technometrics(12):1, 1970.

T. Lepoint and M. Naehrig. A comparison of the ho-
momorphic encryption schemes FV and YASHE. In
Progress in Cryptology (AFRICACRYPT’14), vol-
ume 8469 of Lecture Notes in Computer Science,
pages 318–335. Springer, 2014.

R. Lindner and C. Peikert. Better key sizes (and
attacks) for LWE-based encryption. In Topics
in Cryptology (CT-RSA’11), volume 6558 of Lec-
ture Notes in Computer Science, pages 319–339.
Springer, 2011.

P. J. McLaren, J. L. Raisaro, M. Aouri, M. Rot-
ger, E. Ayday, I. Bartha, M. B. Delgado, Y. Val-
let, H. F. Günthard, M. Cavassini, H. Furrer,
T. Doco-Lecompte, C. Marzolini, P. Schmid, C. Di
Benedetto, L. A. Decosterd, J. Fellay, J. Hubaux,
A. Telenti, and the Swiss HIV Cohort Study.
Privacy-preserving genomic testing in the clinic: a
model using HIV treatment. Genetics in Medicine,
2016. Advance online publication.

M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A.
Gunter, J.-P. Hubaux, B. A. Malin, and X. Wang.
Privacy in the genomic era. ACM Computing Sur-
veys, 48(1):Article 6, 2015.

Y. Nesterov. A method for solving a convex program-
ming problem with convergence rateO(1/k2). Soviet
Mathematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Efficiency of coordinate descent methods
on huge-scale optimization problems. SIAM Journal
on Optimization, 22(2):341–362, 2012.

V. S. Ryaben’kii and S. V. Tsynkov. A Theoretical
Introduction to Numerical Analysis. Chapman and
Hall/CRC, 2006.

S. C. Sanderson, M. D. Linderman, S. A. Suckiel, G. A.
Diaz, R. E. Zinberg, K. Ferryman, M. Wasserstein,

http://arxiv.org/abs/1508.06574
http://arxiv.org/abs/1508.06845
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://eprint.iacr.org/2012/144


Encrypted accelerated least squares regression

A. Kasarskis, and E. E. Schadt. Motivations, con-
cerns and preferences of personal genome sequenc-
ing research participants: baseline findings from the
HealthSeq project. European Journal of Human Ge-
netics, 24:14–20, 2015.

T. Stamey, J. Kabalin, J. McNeal, I. Johnstone,
F. Freiha, E. Redwine, and N. Yang. Prostate spe-
cific antigen in the diagnosis and treatment of ade-
nocarcinoma of the prostate. II. radical prostatec-
tomy treated patients. Journal of Urology, 141(5):
1076–1083, 1989.

R. Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), 58(1):267–288, 1996.

United States Executive Office of the President. Big
data: Seizing opportunities, preserving values, 2014.

A. van Wijngaarden. In Cursus: Wetenschappelijk
Rekenen B: Process Analyse, pages 51–60. Stichting
Mathematisch Centrum, 1965.

R. S. Varga. Matrix iterative analysis, volume 27
of Springer Series in Computational Mathematics.
Springer, 2nd edition, 2000.

S. Wright. Coordinate descent algorithms. Mathemat-
ical Programming, 151(1):3–34, 2015.

D. Wu and J. Haven. Using homomorphic encryption
for large scale statistical analysis. Technical Re-
port: cs.stanford.edu/people/dwu4/papers/FHE-
SI Report.pdf., 2012.

H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. Journal of the Royal
Statistical Society. Series B (Methodological), 67(2):
301–320, 2005.

http://cs.stanford.edu/people/dwu4/papers/FHE-SI_Report.pdf
http://cs.stanford.edu/people/dwu4/papers/FHE-SI_Report.pdf

	Introduction
	Homomorphic encryption
	Standard cryptography
	Fully Homomorphic encryption
	Privacy preserving statistics

	The linear regression model
	Data representation and encoding

	Least squares via descent methods
	Iterative methods
	Sequential updates via coordinate descent
	Simultaneous updates via gradient descent

	Prediction
	Inference
	Regularisation
	Theoretical parameter requirements for the Fan and Vercauteren scheme

	Acceleration
	Preconditioning
	van Wijngaarden transformation
	Nesterov's accelerated gradient

	Results
	Simulations
	Applications

	Discussion

