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Abstrat.

Frature mehanis problems have been addressed using the boundary element method (BEM)

for many years, and more reently with the extended boundary element method (XBEM). However,

frature analysis of dynami rak propagation with BEM have not onsidered dynami e�ets suh as

rak branhing (when a rak tip generates two others) or rak initiation. It is very ompliated to

apture the dynami behaviour at the rak tip that an lead to rak branhing. A reently developed

numerial approah denominated peridynamis (PD) has shown great potential in modelling omplex

rak propagation behaviour, inluding rak branhing. However, sine it is a partile-based method,

it requires a great amount of omputational time, whih an be impratial for large problems.

In this work we ombine PD and XBEM for the study of dynami frature problems. A PD zone is

de�ned around the rak tip, and it will reeive the displaements from the XBEM solution. If the rak

propagation riteria are satis�ed, the bonds between the partiles in the PD zone will break, generating

a new rak path. This rak path is further disretised with the XBEM mesh. The advantage of this

proedure is to redue the omputational osts of a modelling the problem using only PD partiles.

An example will be shown to illustrate the potential of the proposed approah.

Introdution

The boundary element method (BEM) has been used in frature mehanis problems for many years.

The apability of providing high auray and stable results for the stress �eld around the rak tip is

still not ahievable by domain disretisation methods suh as the �nite element method (FEM). More

reently, an extended boundary element method (XBEM) formulation has been implemented by the

authors [1, 2℄ so the stress intensity fators (SIF) beome part of the solution of the displaements

�eld, therefore eliminating the post-proessing step to alulate the SIF. However, BEM and XBEM

have not been used to model dynami e�ets properly.

Peridynamis (PD) is a novel formulation where ontinuum mehanis is disretised in terms of

partiles, whih interat with eah one through physial onnetions entitled bonds. The formulation

was �rst proposed by Silling [3℄ and it has gained attention from the frature ommunity in reent

years. The main advantage of this framework is that no speial assumptions have to be made when

dealing with disontinuities in the domain. This implies that PD an easily model omplex rak

propagation behaviour, suh as rak initiation and rak branhing, whih is very di�ult to model

with boundary elements. However, PD is a partile-based method, whih normally requires a high

number of partiles to model the problem adequately.

In this paper we present an overview on how to ouple the XBEM and PD frameworks. Initially

the XBEM analysis is performed, then the displaements are passed to a PD zone around the rak

tip. The PD model then evaluates if the bonds will break, leading to rak propagation of even the

initiation of raks in other areas. This approah an use the advantage of both numerial methods

and avoid the high omputational ost assoiated to PD.

Governing equations

The equation of motion in the presene of body fores b is de�ned as

σij,j + bi = ρüi (1)



where ρ is the mass density and üi stands for the aeleration.
Symmetry applies for the stress and strain tensors, i.e.:

σij = σji; εij = εji (2)

where

εij =
1

2
(ui,j + uj,i) (3)

and ui stands for the displaement on the i-diretion.
The linear onstitutive equations are given by the generalised Hooke's law

σij = Cijklεkl (4)

where Cijkl de�ne the material onstants tensor, satisfying the following symmetry relations

Cijkl = Cjikl = Cijlk = Cklij (5)

The deformation gradient F(x) haraterises the behaviour of motion in the neighbourhood of a

material point x, and it is de�ned as [4℄

F(x) =
∂y

∂x
(6)

where x stands for the an arbitrary partile in the referene on�guration, and y = x + u stands for

the partile in the deformed on�guration. The deformation gradient is in priniple not symmetri.

The determinant of the deformation gradient is de�ned as J = det(F(x)), and it is a measure of the

volume inrease. Sine J > 0, the inverse of the deformation gradient an always be obtained.

The �rst Piola-Kirhho� stress is given by

P(x) = JσF(x)T (7)

Peridynamis (PD)

The equation of motion in the PD framework is rede�ned as [3℄

ρü(x, t) =

∫

H

f(u(x′, t)− u(x, t),x′ − x)dVx′ + b(x, t) (8)

where f is the pairwise fore funtion that the partile x′
exerts on the partile x, H is the neighbour-

hood of x. This de�nition is also known as bond-based PD.

Figure 1 depits the horizon of a partile x. The horizon δ an be onsidered as a ut-o� in�uene

area of any given partile. The interation between partiles is de�ned as a bond, whih in ontinuum

mehanis ould also be onsidered as a spring onneting two partiles. This de�nition is fundamen-

tally the di�erene between the lassial theory and PD, where the main idea is the diret ontat

between two partiles.

State-based peridynamis

The original PD formulation proposed in [3℄ has a ritial limitation: it onstrains the Poisson ratio

to a �xed value. This issue arise from the fat that the bond-based formulation does not take into

aount that eah one of the partiles also possess its own horizon. This issue has been solved with a

generalisation of the PD framework in [5℄, denominated state-based PD. In this ase, the equation of

motion is de�ned as

∫

H

{T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉}dV
x
′ + b(x, t) = ρü(x, t) (9)

with T as the fore vetor state �eld, and square brakets denote that the variables are taken in the

state vetor framework.
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Figure 1: Horizon of a partile.
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Figure 2: Referene and deformed on�guration in state-based PD.

Figure 2 illustrates the referene (or initial) on�guration, and the deformed on�guration after a

displaement u and u′
has been imposed on partiles x and x′

, respetively.

There are 2 types of state-based formulation: ordinary and non-ordinary. In the ordinary theory,

the fores in the bonds are de�ned in the diretion of the bonds, in the same way as in the bond-based

formulation. However, in ordinary state-based the fores in the bonds an have di�erent magnitudes.

In this ase, the equilibrium is satis�ed for every partile at the same time, in a similar as in other

numerial methods. The main issue of the ordinary state-based theory is how to obtain the equivalent

material properties from the lassial ontinuum mehanis. An energy equivalent approah an be

used, as detailed in Madeni and Oterkus [6℄.

In the non-ordinary theory, the fores in the bond are free to assume any diretion, sine parameters

of ontinuum mehanis are employed, allowing for a generalisation. Another partiularity of non-

ordinary PD is that the onstitutive matrix an be used diretly in the formulation. In this paper we

fous on the non-ordinary state-based formulation.

The PD state-based formulation onsists in the use of state �elds, whih are explained in detail in

Ref. [5℄. For instane, the deformation vetor state �eld is stated as

Y[x, t]〈ξ〉 = y(x + ξ, t)− y(x, t) (10)

The non-loal deformation gradient F(x) for eah partile is given by

B(x) =

[
∫

H

ω(|ξ|)(ξ ⊗ ξ)dVξ

]

−1

(11)

F(x) =

[
∫

H

ω(|ξ|)(Y(ξ)⊗ ξ)dVξ

]

.B(x) (12)



where B(x) is the shape tensor, ⊗ denotes the dyadi produt of two vetors, and ω(|ξ|) is a dimension-

less weight funtion, used to inrease the in�uene of the nodes loses to x. In this work, we assumed

that ω(|ξ|) = 1.
To inorporate the kinemati stress into the PD model, the transpose of the �rst Piola-Kirhho�

stress is equivalent to [7℄

P(x)T =
∂W

∂F
(13)

with W being the strain energy density funtion.

The fore vetor at time t is �nally stated as [7℄

T[x, t]〈x′ − x〉 = ω(|x′ − x|)P(x)T .B(x).(x′ − x) (14)

Damage

In PD, damage is de�ned when a bond between two partiles is broken. There are several damage

riteria, but here we use one based on the ritial deviatori deformation [8℄. We de�ne the Lagrangian

strain E(x) as

E(x) =
1

2

(

F(x)TF(x)− I
)

(15)

Next we alulate the equivalent strain

Eeq(x,x
′) =

√

4

3
I ′2 =

√

2

3
E′

ij(x,x
′)E′

ij(x,x
′) (16)

where

E′

ij(x,x
′) = Eij(x,x

′)−
1

3
Ekk(x,x

′) (17)

Eij(x,x
′) =

1

2

(

E(x) +E(x′)
)

(18)

If Eeq(x,x
′) ≥ Ecrit, then the bond between x and x′

will break. We de�ne the funtion µ(x,x′)
as

µ(x,x′) =

{

1 if Eeq(x,x
′) < Ecrit

0 otherwise

(19)

The damage index ϕ is obtained using the expression

ϕ = 1−

∫

H
µ(x,x′)dVx′

∫

H
dVx′

(20)

Extended Boundary Element Method (XBEM)

The extended boundary element method (XBEM) has been developed by [1, 2℄ for isotropi and

anisotropi materials, respetively. The method uses the information of the SIF to desribe the dis-

plaements at the rak surfaes. In this way, the additional number of degrees of freedom of the

problem is independent to the number of enrihed elements, as is the ase of other enrihment ap-

proahes suh as in the extended �nite element method (XFEM). Moreover, the SIF beome part of

the unknowns of the problem, so there is no need for evaluating the J-integral or the interation integral

to obtain the SIF.

The XBEM formulation uses a dual approah, where the frature problem is disretised using a

displaement boundary integral equation (DBIE) and a tration boundary integral equation (TBIE).

The DBIE and TBIE for the XBEM are de�ned as

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)K̃lψlj(ξ)dΓ =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x)

(21)

cij(ξ)pj(ξ) +Nk

∫

Γ

s∗kij(x, ξ)uj(x)dΓ(x) +Nk

∫

Γc

s∗kij(x, ξ)K̃lψlj(ξ)dΓ = Nk

∫

Γ

d∗kij(x, ξ)pj(x)dΓ(x)

(22)



where Γ represents the boundaries, Γc = Γ+ ∪ Γ− stands for the rak surfaes Γ+ and Γ−, Nk is the

normal at the observation point, K̃l are the additional degrees of freedom (KI and KII in this ase)

and ψlj are the enrihment funtion whih desribe the asymptoti behaviour of the displaement �eld

around the rak tip; u∗ij and p
∗

ij are the displaement and tration fundamental solutions, while d∗kij
and s∗kij are obtained through derivation and further appliation of the generalised Hooke's law on the

u∗ij and p∗ij kernels, respetively. Let us remark that strongly singular and hypersingular terms arise

from the integration of the p∗ij , d
∗

rij and s∗rij kernels and they are need to be regularised before any

numerial integration sheme an be used. The regularisation proedures for both the DBIE and the

TBIE are detailed in [2℄.

Combined framework of XBEM and PD

The frature problem is initially solved with the XBEM to obtain the displaement �eld and the SIF.

Next, we selet a small zone around the rak tip, and enfore that the displaement alulated with

XBEM will be the input for the PD, i.e., uXBEM = uPD
. The displaements an be obtained in two

di�erent ways: 1) using Eq. (21) (where cij(ξ) = 1 for internal points); 2) sine KI and KII are

known, the expression of the asymptoti �eld around the rak tip an be used, whih provides a good

approximation in a faster way than alulating internal points (refer to [1, 2℄ for the expressions of the

asymptoti displaements for isotropi and anisotropi materials, respetively).

The displaements are saled over time to ensure that there is no abrupt variation of the displae-

ment �eld in the PD domain. This issue ould result in a high number of bonds being broken at the

same time, hene leading to an higher damage estimation.

Plate with an entred rak

We onsider a square plate (w/h = 0.04 m) with a entred rak of length 2a = 0.02. The PD zone

is de�ned to be a square zone of 0.02a around the rak tip. Figure 3 illustrates how the PD zone is

de�ned around the rak tip. The material is aluminium, with E = 69 GPa and ν = 0.33. The XBEM
model is subjet to a uniform stati load of σ = 1 MPa.

2h

2w

σ

σ

2a

0.1a

0.1a

PD partile

Figure 3: Coupling between XBEM and PD.

We assumed that there are some inlusions that are not onsidered by the XBEM model, but an

have an e�et on the rak propagation in the PD model. The material properties of the inlusions

are: Einc = 10E, ν = 0.33. To evaluate properly how PD an perform, we also inluded a veloity

load at the rak surfaes.

Figure 4 illustrates the damage index ϕ of the PD model with inlusions and Figure 5 depits the

same for the ase without inlusions. One an observe that there are small damaged areas that appear



on the top and bottom of the rak surfaes. Sine there are some inlusions lose to these areas, they

at as re�eting boundaries, so that the displaements in that zone will be higher, further leading to

some of the bonds breaking. This kind of damage initiation is ompliated to model with XBEM and

XFEM, sine it requires more assumptions than the linear elasti frature mehanis theory.

From Figure 5, no damage appears on the top and bottom of the rak surfaes, and the rak

propagates perpendiularly to the diretion of the maximum stress. The same rak growth rate an

be veri�ed from both the inlusion and no inlusion examples. However, inlusions an have a stress

shielding e�et, for example, if there would be an inlusion lose to the rak tip, the rak would not

have su�ient energy to grow.

Figure 4: PD zone - with inlusions.

Figure 5: PD zone - no inlusions.



Conlusions

We presented an example on how to use both XBEM and PD for evaluating some dynami e�ets.

Some damage has been deteted oming from re�etion of the waves indued by a veloity �eld at

the rak surfaes. The results presented in this work are still preliminary. A more detailed oupling

between XBEM and PD is neessary in order to explore the advantages of this new framework, whih

is work in progress from the authors.
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