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Abstra
t.

Fra
ture me
hani
s problems have been addressed using the boundary element method (BEM)

for many years, and more re
ently with the extended boundary element method (XBEM). However,

fra
ture analysis of dynami
 
ra
k propagation with BEM have not 
onsidered dynami
 e�e
ts su
h as


ra
k bran
hing (when a 
ra
k tip generates two others) or 
ra
k initiation. It is very 
ompli
ated to


apture the dynami
 behaviour at the 
ra
k tip that 
an lead to 
ra
k bran
hing. A re
ently developed

numeri
al approa
h denominated peridynami
s (PD) has shown great potential in modelling 
omplex


ra
k propagation behaviour, in
luding 
ra
k bran
hing. However, sin
e it is a parti
le-based method,

it requires a great amount of 
omputational time, whi
h 
an be impra
ti
al for large problems.

In this work we 
ombine PD and XBEM for the study of dynami
 fra
ture problems. A PD zone is

de�ned around the 
ra
k tip, and it will re
eive the displa
ements from the XBEM solution. If the 
ra
k

propagation 
riteria are satis�ed, the bonds between the parti
les in the PD zone will break, generating

a new 
ra
k path. This 
ra
k path is further dis
retised with the XBEM mesh. The advantage of this

pro
edure is to redu
e the 
omputational 
osts of a modelling the problem using only PD parti
les.

An example will be shown to illustrate the potential of the proposed approa
h.

Introdu
tion

The boundary element method (BEM) has been used in fra
ture me
hani
s problems for many years.

The 
apability of providing high a

ura
y and stable results for the stress �eld around the 
ra
k tip is

still not a
hievable by domain dis
retisation methods su
h as the �nite element method (FEM). More

re
ently, an extended boundary element method (XBEM) formulation has been implemented by the

authors [1, 2℄ so the stress intensity fa
tors (SIF) be
ome part of the solution of the displa
ements

�eld, therefore eliminating the post-pro
essing step to 
al
ulate the SIF. However, BEM and XBEM

have not been used to model dynami
 e�e
ts properly.

Peridynami
s (PD) is a novel formulation where 
ontinuum me
hani
s is dis
retised in terms of

parti
les, whi
h intera
t with ea
h one through physi
al 
onne
tions entitled bonds. The formulation

was �rst proposed by Silling [3℄ and it has gained attention from the fra
ture 
ommunity in re
ent

years. The main advantage of this framework is that no spe
ial assumptions have to be made when

dealing with dis
ontinuities in the domain. This implies that PD 
an easily model 
omplex 
ra
k

propagation behaviour, su
h as 
ra
k initiation and 
ra
k bran
hing, whi
h is very di�
ult to model

with boundary elements. However, PD is a parti
le-based method, whi
h normally requires a high

number of parti
les to model the problem adequately.

In this paper we present an overview on how to 
ouple the XBEM and PD frameworks. Initially

the XBEM analysis is performed, then the displa
ements are passed to a PD zone around the 
ra
k

tip. The PD model then evaluates if the bonds will break, leading to 
ra
k propagation of even the

initiation of 
ra
ks in other areas. This approa
h 
an use the advantage of both numeri
al methods

and avoid the high 
omputational 
ost asso
iated to PD.

Governing equations

The equation of motion in the presen
e of body for
es b is de�ned as

σij,j + bi = ρüi (1)



where ρ is the mass density and üi stands for the a

eleration.
Symmetry applies for the stress and strain tensors, i.e.:

σij = σji; εij = εji (2)

where

εij =
1

2
(ui,j + uj,i) (3)

and ui stands for the displa
ement on the i-dire
tion.
The linear 
onstitutive equations are given by the generalised Hooke's law

σij = Cijklεkl (4)

where Cijkl de�ne the material 
onstants tensor, satisfying the following symmetry relations

Cijkl = Cjikl = Cijlk = Cklij (5)

The deformation gradient F(x) 
hara
terises the behaviour of motion in the neighbourhood of a

material point x, and it is de�ned as [4℄

F(x) =
∂y

∂x
(6)

where x stands for the an arbitrary parti
le in the referen
e 
on�guration, and y = x + u stands for

the parti
le in the deformed 
on�guration. The deformation gradient is in prin
iple not symmetri
.

The determinant of the deformation gradient is de�ned as J = det(F(x)), and it is a measure of the

volume in
rease. Sin
e J > 0, the inverse of the deformation gradient 
an always be obtained.

The �rst Piola-Kir
hho� stress is given by

P(x) = JσF(x)T (7)

Peridynami
s (PD)

The equation of motion in the PD framework is rede�ned as [3℄

ρü(x, t) =

∫

H

f(u(x′, t)− u(x, t),x′ − x)dVx′ + b(x, t) (8)

where f is the pairwise for
e fun
tion that the parti
le x′
exerts on the parti
le x, H is the neighbour-

hood of x. This de�nition is also known as bond-based PD.

Figure 1 depi
ts the horizon of a parti
le x. The horizon δ 
an be 
onsidered as a 
ut-o� in�uen
e

area of any given parti
le. The intera
tion between parti
les is de�ned as a bond, whi
h in 
ontinuum

me
hani
s 
ould also be 
onsidered as a spring 
onne
ting two parti
les. This de�nition is fundamen-

tally the di�eren
e between the 
lassi
al theory and PD, where the main idea is the dire
t 
onta
t

between two parti
les.

State-based peridynami
s

The original PD formulation proposed in [3℄ has a 
riti
al limitation: it 
onstrains the Poisson ratio

to a �xed value. This issue arise from the fa
t that the bond-based formulation does not take into

a

ount that ea
h one of the parti
les also possess its own horizon. This issue has been solved with a

generalisation of the PD framework in [5℄, denominated state-based PD. In this 
ase, the equation of

motion is de�ned as

∫

H

{T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉}dV
x
′ + b(x, t) = ρü(x, t) (9)

with T as the for
e ve
tor state �eld, and square bra
kets denote that the variables are taken in the

state ve
tor framework.
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Figure 1: Horizon of a parti
le.
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Figure 2: Referen
e and deformed 
on�guration in state-based PD.

Figure 2 illustrates the referen
e (or initial) 
on�guration, and the deformed 
on�guration after a

displa
ement u and u′
has been imposed on parti
les x and x′

, respe
tively.

There are 2 types of state-based formulation: ordinary and non-ordinary. In the ordinary theory,

the for
es in the bonds are de�ned in the dire
tion of the bonds, in the same way as in the bond-based

formulation. However, in ordinary state-based the for
es in the bonds 
an have di�erent magnitudes.

In this 
ase, the equilibrium is satis�ed for every parti
le at the same time, in a similar as in other

numeri
al methods. The main issue of the ordinary state-based theory is how to obtain the equivalent

material properties from the 
lassi
al 
ontinuum me
hani
s. An energy equivalent approa
h 
an be

used, as detailed in Maden
i and Oterkus [6℄.

In the non-ordinary theory, the for
es in the bond are free to assume any dire
tion, sin
e parameters

of 
ontinuum me
hani
s are employed, allowing for a generalisation. Another parti
ularity of non-

ordinary PD is that the 
onstitutive matrix 
an be used dire
tly in the formulation. In this paper we

fo
us on the non-ordinary state-based formulation.

The PD state-based formulation 
onsists in the use of state �elds, whi
h are explained in detail in

Ref. [5℄. For instan
e, the deformation ve
tor state �eld is stated as

Y[x, t]〈ξ〉 = y(x + ξ, t)− y(x, t) (10)

The non-lo
al deformation gradient F(x) for ea
h parti
le is given by

B(x) =

[
∫

H

ω(|ξ|)(ξ ⊗ ξ)dVξ

]

−1

(11)

F(x) =

[
∫

H

ω(|ξ|)(Y(ξ)⊗ ξ)dVξ

]

.B(x) (12)



where B(x) is the shape tensor, ⊗ denotes the dyadi
 produ
t of two ve
tors, and ω(|ξ|) is a dimension-

less weight fun
tion, used to in
rease the in�uen
e of the nodes 
loses to x. In this work, we assumed

that ω(|ξ|) = 1.
To in
orporate the kinemati
 stress into the PD model, the transpose of the �rst Piola-Kir
hho�

stress is equivalent to [7℄

P(x)T =
∂W

∂F
(13)

with W being the strain energy density fun
tion.

The for
e ve
tor at time t is �nally stated as [7℄

T[x, t]〈x′ − x〉 = ω(|x′ − x|)P(x)T .B(x).(x′ − x) (14)

Damage

In PD, damage is de�ned when a bond between two parti
les is broken. There are several damage


riteria, but here we use one based on the 
riti
al deviatori
 deformation [8℄. We de�ne the Lagrangian

strain E(x) as

E(x) =
1

2

(

F(x)TF(x)− I
)

(15)

Next we 
al
ulate the equivalent strain

Eeq(x,x
′) =

√

4

3
I ′2 =

√

2

3
E′

ij(x,x
′)E′

ij(x,x
′) (16)

where

E′

ij(x,x
′) = Eij(x,x

′)−
1

3
Ekk(x,x

′) (17)

Eij(x,x
′) =

1

2

(

E(x) +E(x′)
)

(18)

If Eeq(x,x
′) ≥ Ecrit, then the bond between x and x′

will break. We de�ne the fun
tion µ(x,x′)
as

µ(x,x′) =

{

1 if Eeq(x,x
′) < Ecrit

0 otherwise

(19)

The damage index ϕ is obtained using the expression

ϕ = 1−

∫

H
µ(x,x′)dVx′

∫

H
dVx′

(20)

Extended Boundary Element Method (XBEM)

The extended boundary element method (XBEM) has been developed by [1, 2℄ for isotropi
 and

anisotropi
 materials, respe
tively. The method uses the information of the SIF to des
ribe the dis-

pla
ements at the 
ra
k surfa
es. In this way, the additional number of degrees of freedom of the

problem is independent to the number of enri
hed elements, as is the 
ase of other enri
hment ap-

proa
hes su
h as in the extended �nite element method (XFEM). Moreover, the SIF be
ome part of

the unknowns of the problem, so there is no need for evaluating the J-integral or the intera
tion integral

to obtain the SIF.

The XBEM formulation uses a dual approa
h, where the fra
ture problem is dis
retised using a

displa
ement boundary integral equation (DBIE) and a tra
tion boundary integral equation (TBIE).

The DBIE and TBIE for the XBEM are de�ned as

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)K̃lψlj(ξ)dΓ =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x)

(21)

cij(ξ)pj(ξ) +Nk

∫

Γ

s∗kij(x, ξ)uj(x)dΓ(x) +Nk

∫

Γc

s∗kij(x, ξ)K̃lψlj(ξ)dΓ = Nk

∫

Γ

d∗kij(x, ξ)pj(x)dΓ(x)

(22)



where Γ represents the boundaries, Γc = Γ+ ∪ Γ− stands for the 
ra
k surfa
es Γ+ and Γ−, Nk is the

normal at the observation point, K̃l are the additional degrees of freedom (KI and KII in this 
ase)

and ψlj are the enri
hment fun
tion whi
h des
ribe the asymptoti
 behaviour of the displa
ement �eld

around the 
ra
k tip; u∗ij and p
∗

ij are the displa
ement and tra
tion fundamental solutions, while d∗kij
and s∗kij are obtained through derivation and further appli
ation of the generalised Hooke's law on the

u∗ij and p∗ij kernels, respe
tively. Let us remark that strongly singular and hypersingular terms arise

from the integration of the p∗ij , d
∗

rij and s∗rij kernels and they are need to be regularised before any

numeri
al integration s
heme 
an be used. The regularisation pro
edures for both the DBIE and the

TBIE are detailed in [2℄.

Combined framework of XBEM and PD

The fra
ture problem is initially solved with the XBEM to obtain the displa
ement �eld and the SIF.

Next, we sele
t a small zone around the 
ra
k tip, and enfor
e that the displa
ement 
al
ulated with

XBEM will be the input for the PD, i.e., uXBEM = uPD
. The displa
ements 
an be obtained in two

di�erent ways: 1) using Eq. (21) (where cij(ξ) = 1 for internal points); 2) sin
e KI and KII are

known, the expression of the asymptoti
 �eld around the 
ra
k tip 
an be used, whi
h provides a good

approximation in a faster way than 
al
ulating internal points (refer to [1, 2℄ for the expressions of the

asymptoti
 displa
ements for isotropi
 and anisotropi
 materials, respe
tively).

The displa
ements are s
aled over time to ensure that there is no abrupt variation of the displa
e-

ment �eld in the PD domain. This issue 
ould result in a high number of bonds being broken at the

same time, hen
e leading to an higher damage estimation.

Plate with an 
entred 
ra
k

We 
onsider a square plate (w/h = 0.04 m) with a 
entred 
ra
k of length 2a = 0.02. The PD zone

is de�ned to be a square zone of 0.02a around the 
ra
k tip. Figure 3 illustrates how the PD zone is

de�ned around the 
ra
k tip. The material is aluminium, with E = 69 GPa and ν = 0.33. The XBEM
model is subje
t to a uniform stati
 load of σ = 1 MPa.

2h

2w

σ

σ

2a

0.1a

0.1a

PD parti
le

Figure 3: Coupling between XBEM and PD.

We assumed that there are some in
lusions that are not 
onsidered by the XBEM model, but 
an

have an e�e
t on the 
ra
k propagation in the PD model. The material properties of the in
lusions

are: Einc = 10E, ν = 0.33. To evaluate properly how PD 
an perform, we also in
luded a velo
ity

load at the 
ra
k surfa
es.

Figure 4 illustrates the damage index ϕ of the PD model with in
lusions and Figure 5 depi
ts the

same for the 
ase without in
lusions. One 
an observe that there are small damaged areas that appear



on the top and bottom of the 
ra
k surfa
es. Sin
e there are some in
lusions 
lose to these areas, they

a
t as re�e
ting boundaries, so that the displa
ements in that zone will be higher, further leading to

some of the bonds breaking. This kind of damage initiation is 
ompli
ated to model with XBEM and

XFEM, sin
e it requires more assumptions than the linear elasti
 fra
ture me
hani
s theory.

From Figure 5, no damage appears on the top and bottom of the 
ra
k surfa
es, and the 
ra
k

propagates perpendi
ularly to the dire
tion of the maximum stress. The same 
ra
k growth rate 
an

be veri�ed from both the in
lusion and no in
lusion examples. However, in
lusions 
an have a stress

shielding e�e
t, for example, if there would be an in
lusion 
lose to the 
ra
k tip, the 
ra
k would not

have su�
ient energy to grow.

Figure 4: PD zone - with in
lusions.

Figure 5: PD zone - no in
lusions.



Con
lusions

We presented an example on how to use both XBEM and PD for evaluating some dynami
 e�e
ts.

Some damage has been dete
ted 
oming from re�e
tion of the waves indu
ed by a velo
ity �eld at

the 
ra
k surfa
es. The results presented in this work are still preliminary. A more detailed 
oupling

between XBEM and PD is ne
essary in order to explore the advantages of this new framework, whi
h

is work in progress from the authors.
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