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ABSTRACT

The material point method (MPM) is a numerical tool able to model very large deformations in solid mechanics
such as geotechnical problems. To date, soil-tool interactionmodelling in theMPM is somewhat difficult, especially
when the tool position is not stationary. Usually, the tool’s boundaries do not coincide with the MPM grid and
therefore boundary conditions cannot be imposed directly on the grid nodes. An implicit approach based on a
penalty type method to impose essential boundary conditions in the MPM has been developed and used in the
paper to demonstrate how to model frictionless soil-tool interaction mechanism [3]. This approach assumes that
the tool is a rigid body as the deformation of the tool boundaries are insignificant. The same approach can also be
used to model the interaction between structures and soil such as foundations.
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1. Introduction
Since the development of the material point method (MPM) by Sulsky et al. [9] in 1994, it has been
widely promoted as the next generation of numerical methods to model large deformations in materials
such as soils. The method has two components: the material points which represent the volume of the
solid, and the background grid that is used to solve the discretised linear system using same approach
as the finite element method (FEM). While the MPM was developed in an explicit form [9], an implicit
approach was later presented in [8] making it easy to transfer finite element analysis (FEA) technology
to the MPM. After every load step, the material points’ positions are updated and the background grid
is reset to its original configuration. This means that the grid remains regular without any skewness,
distortion and any associated numerical error.

The MPM has been successful in modelling large deformation problems such as landslides [1] and
other geotechnical problems where boundary conditions are likely to coincide with the background grid
nodes. When modelling soil-tool or soil-structure interaction in the MPM, it is often the case that the
boundary of the tool or structure is arbitrary and does not coincide with the background grid nodes, so
that it is not possible to impose these essential boundary conditions in the standard FEM approach. To
overcome this problem, one can adopt the “moving mesh concept” [8], generally used when the boundary
movement is known a priori and therefore the background grid nodes are moved simultaneously, but
this unfortunately loses the advantageous regular grid concept of the MPM. The problem of imposing
arbitrary essential boundary conditions on non-matching meshes, or so-called “embedded domains” (e.g.
[5]), has been widely discussed with attempts to impose such boundary conditions (e.g. [4]) by using
penalty, Lagrange multiplier or Nitsche methods. A simple penalty approach developed by Kumar et al.
[7] to impose essential boundary conditions on a non-conforming grid FEA (called the implicit boundary
method (IBM)), has been adopted in the MPM [2, 3] to impose both homogeneous and inhomogeneous
Dirichlet boundary conditions. Thatmeans that arbitrary inclined fixed, rollers and non-zero displacement
boundary conditions can be applied in the MPM to represent frictionless soil-tool interaction.

In this paper, we summarise the essential components for implementing the of IBM in the MPM,
and demonstrate its effectiveness to model soil-tool interaction using an elastic domain pushed over a
wedge-like tool.



2. Essential boundary conditions in the material point method

The IBM proposed for the structured grid FEM is based on a penalty approach proposed by Kan-
torovich and Krylov [6] during the 1950s, but only for orthogonal arbitrary positioned essential boundary
conditions in the FEM[7]. The main concept of the IBM is to use Dirichlet step functions
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to identify the area inside/outside the solid region which are then used to activate/deactivate the standard
approximation for displacement {u} in the finite element sense and impose the essential boundary
condition {ua }. The displacement solution {u′} is therefore obtained as follows,

{u′} = [D]{u} + {ua }, (2)

where [D] = diag(dx, dy ) in 2D. dφ is set to unity to free the degrees of freedom in the φ-direction [3].
When Equation 2 is substituted in the standard FEM weak form, the strain-displacement matrix [B] is
now expanded and includes not only the finite element shape functions derivatives, but also the values
of Dirichlet functions and their derivatives. Therefore the element stiffness matrix kE with a volume Ve

is expressed in four terms, i.e.

[kE ] =
∫
Ve

[B1]T [De][B1]dV +
∫
Ve

[B1]T [De][B2]dV +
∫
Ve

[B2]T [De][B1]dV +
∫
Ve

[B2]T [De][B2]dV,

(3)
where the first term is denoted as the standard finite element stiffness matrix [K1], while the second, third
and fourth term of the implicit part are denoted as [K2], [K2]T and [K3] and expressed as
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where [B̄2] is a diagonal matrix contain the shape functions, [B̄1] is identical to the finite element
strain-displacement matrix [B], [D̄1] and [D̄2] are expressed as
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[De] is the tangent stiffness matrix and [T] is a rotation matrix in the Cartesian coordinate system used
to transform the inner integrals of [K2] and [K3] by a rotation angle θ to achieve an inclined boundary
condition as shown in Figure 1. Non-zero prescribed displacement boundaries are imposed by calculating
the equivalent reaction force as

{ f ER } = [[K2] + [K2]T + [K3]]{ua } (6)

caused by a nodal displacement {ua }, and are included in the linear system to be solved.

Another important step to impose arbitrary essential boundary conditions in theMPM is the discretization
of the continuum into a set of material points. In the initial pre-processing step, the background grid is
usually populated with a set of material points with associated domains and volumes. If the material point
domain lies complete inside the solid region, this point is retained, while if the material point domain



lies completely outside the solid region, this point is removed. If a material point domain lies on the
boundary of the problem, the material point domain is truncated to reflect the new solid region only, and
the volume is adjusted accordingly. In the MPM, the material points are used similar to Gauss points in
the standard FEM to evaluate the stiffness matrix [K1], and therefore grid elements are omitted from the
system of equations if they containing material points with a tiny fraction of volume measured to a given
tolerance. The implementation of the IBM in the MPM has now been successfully benchmarked [2, 3],
and is used in the next section on a soil-tool interaction problem.

Figure 1: Essential boundary through a grid element

3. Penetration of a wedged-like tool

In this section, a wedge-like tool penetrating an elastic domain is used to demonstrate how soil-tool
interaction can be modelled by using the IBM in the MPM. The problem consists of a solid elastic
continuum confined between two horizontal and an inclined roller boundary conditions, while the elastic
domain (shaded area) is being pushed toward the wedge as shown in Figure 2 (a). The stationary inclined
boundary is used to represent a frictionless wedge onto which the elastic domain will be compressed
while moving horizontally to the left. The problem is solved on 2mm x 2mm background grid and a single
material point in every grid element is used, as shown in Figure 2 (b). The elastic body has a Young’s
Modulus of 1000 MPa and a Poisson’s ratio of 0.3. The bandwidth δ was set to δ = 5 × 10−6 h, where
h is the background grid size. An incremental displacement of 6mm per load step was used to push the
elastic domain toward the wedge. The deformations of the body at the 1st , 3rd , 5th and 6th load steps
are shown in Figures 2 (c-f) respectively, where the contour plots represent the x-displacement of the
material points. Despite large load steps, that the material points clearly move along the wedge without
crossing the boundary, causing the elastic domain to “funnel” through the space between the wedge and
top horizontal roller boundary conditions. Such wedge type problem can be easily used to represent a
frictionless soil-tool interaction such as ploughing schemes and other similar problems.

4. Conclusions

In this paper we have described how an implicit boundary method has been used to model roller and
other boundaries in the MPM. This allows the modelling of frictionless soil-tool interaction problems.
In future work, the IBM will be developed to account for friction when this is important to the overall
mechanism of the problem.
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Figure 2: Rigid body penetration into an elastic domain: (a) problem dimensions, (b) initial MP discretisation and
(c) through (h) deformed material point positions coloured according to their x-displacement.
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