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Abstract

Autonomous flight within a forest canopy represents a key challenge for generalised scene understanding
on-board a future Unmanned Aerial Vehicle (UAV) platform. Here we present an approach for automatic
trail navigation within such an environment that successfully generalises across differing image resolutions -
allowing UAV with varying sensor payload capabilities to operate equally in such challenging environmental
conditions. Specifically, this work presents an optimised deep neural network architecture, capable of state-
of-the-art performance across varying resolution aerial UAV imagery, that improves forest trail detection for
UAV guidance even when using significantly low resolution images that are representative of low-cost search
and rescue capable UAV platforms.

1 Introduction

Scene understanding within unstructured environments with varying illumination conditions are critical for
autonomous flight within the forest canopy. Growing interest in solving this challenge has motivated researchers
to investigate the use of Deep Neural Networks (DNN) to identify trail images for UAV navigation. However,
in order to train such a DNN, a large volume of labelled data is required, which is challenging to obtain due to
the target task in hand (i.e. sub canopy UAV operation).

The work of [3] gathered data by using a head-mounted rig with three cameras worn by a human trail
walker, allowing their proposed DNN architecture to identify the direction of the trail in a given view -
{left,right, forward}. A similar approach is followed by [7] whereby a wide-baseline rig is used, also with
three cameras mounted to gather data which they used to augment the dataset of [3] (IDSIA dataset). As a
result, the approach presented by [7] is capable of estimating both lateral offset and trail direction. In both
cases [3] [7], the authors, follow the common practice of dataset augmentation, via affine image transformations,
which adds extra computation without any performance guarantees.

Alternatively, synthetic data, from virtual environment models, could potentially replace or at least supple-
ment hard-won real environment data [ [0, 9. However, the significant discrepancy between synthetic data
and real-world data often results in models that are trained only on synthetic environment examples not being
able to directly transfer this knowledge to real-world operating tasks [2] 8 5] [1].

Even when training a DNN using only real-world data, it is important to observe that models trained on a
limited domain-specific dataset often fail to generalise successfully. In addition, since common DNN architectures
require the dataset to be formed from fixed resolution images [4], models commonly fail to generalize across
domains.

Our work here is closely related to [3, [7, 2] and demonstrates that the same trail direction required for
automous UAV navigation can be acquired by using imagery gathered by a single forward-facing camera (Figure
. This is due the fact that the center of the forward-facing camera usually shows the trail ahead. Additionally,
we demonstrate that a trail can be identified in unseen parts of a forest by training the model with data gathered
across varying devices and camera resolutions. This not only facilitates more general data gathering but also
eliminates the need for synthetic data and augmentation. As result, the same model can be used by UAV with
different sensor payload capabilities.
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Figure 1: Comparison of three way image cropping performed on varied camera view



2 Method

Here we were motivated by the three class problem presented by [3] in which an estimation of the trail direction,
{left,right, forward}, is achieved by processing an image triplet of left /right /forward camera views via a DNN.
In contrast to [3| [7], our approach uses only a single forward facing camera view which more representative
of an operational UAV case. This image view is then itself cropped into {left, right, forward} which can be
labelled for trail presence/absence (Figure [1]).

Input data Convl Poolingl Conv2 Pooling2 Conv3 Pooling3 Convd Poolingd
Ix101x101 32x9Bx98  32x49x49 32xd46x46 32x23x23 32x20x20  32x10x10 32uBxE 32xdxd

Filter: 4x4  Kernel: 2x2 Filter: 4x4  Kernel: 2x2 Filter: 4x4  Kernel: 2x2 Filter: 4x4  Kernel: 2x2
)
I
I
I
I
I
I I
I
I
I
I
I
l |
I
I
I
I
i

B conv+ RelLU() + Dropout [ | Fully Connected Layer Softmax MaxPooling Output Layer

Fel

200 neurons E @ Turn |eft
— @ Go straight
@ Turn right

Figure 2: An outline of our DNN architecture - based on [3]

Using the architecture of [3] (illustrated in Figure , we evaluate varying image resolution, the use of
additional data augmentation (DA) and activation function (tanh() / ReLU()). DNN training uses a gradient
descent optimiser, random weight initialisation with zero node biases and is performed over 90 epochs with a 0.05
reduction in learning rate per epoch (decay rate: 0.95). For both training and testing we use the high-resolution
(752 x 480) IDSIA dataset (from [3]) and a low-resolution (106 x 240) Urpeth Burn (UB) dataset, gathered
locally. For training 45,097 high-resolution and 32,017 low-resolution image were used, while for testing 12,251
high-resolution and 5,152 low-resolutions images were used. Further data augmemtation (mirror, translation &
rotation) was performed on a copy of this original dataset. For simplicity of reporting, we define NA as non
augmented data obtained results and DA as data augmented obtained results (Table .

3 Results

Our experimental results are divided into three sets:- (1) image triplet approach of [3] with differing activation
functions (tanh()/ReLU() - Table [1| upper 2 sets), (2) our proposed approach (single forward view image, split
into three views - Table [1| middle sets in bold) and (3) the impact of high/low/varied image resolutions on
performance (Table |1| lower sets). Overall we see what the use of the ReLU() activation outperforms tanh()
and our approach gives high levels of accuracy without the need for data augmentation outperforming the prior
reported results in [3] (in fact no significant improvement was achieved by data augmentation). Although our
approach fails to generalise when trained with high-resolution images on to low resolution images, it achieves
82% accuracy when low-resolution images are added to the training dataset and achieves 78% accuracy for
training and testing on low-resolution images only.

Moethod Activation Training Testing Training Training  Test Test
Function Dataset Dataset Loss Accuracy Loss Accuracy
Giusti et al. [3] [DA] tanh() High High 1.04 0.46 1.07 047
Giusti et al. [3] [NA] tanh() High High 1.01 0.41 1.02  0.48
Giusti et al. [3] [DA] ReLU() High High 0.02 1.00 297  0.59
Giusti et al. [3] [NA] ReLU()  High High  0.00 1.00 256 0.72
Our Approach [DA] ReLU() High High 0.18 0.92 0.26 0.89
Our Approach [NA] ReLU() High High 0.07 0.97 0.31 0.89
High Resolution[NA] ReLU() High Low 0.17 0.94 1.00 0.44
Low Resolution [NA] ReLU() Low Low 0.40 0.86 0.58 0.78
Varied Resolutions [NA] ReLU() High+Low Low 0.24 0.93 0.51 0.82
Varied Resolutions [NA] ReLU() High+Low High 0.40 0.83 0.64 0.76

Table 1: Results showing varying performance across High and Low image dataset combinations.

4 Conclusion
In this paper, we present an alternative method to gather and process UAV imagery that improves the level
of accuracy for trail navigation under forest canopy based on the use of a single forward facing camera view



instead of the triplet view approach of [3]. Our approach also performs well across varying image resolutions
and increases the capability of low-cost UAV platforms with limited payload capacity. Future work will in-
clude additional aspects of UAV perception and control targeting end-to-end autonomy across this and other
challenging operating environments.
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