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ABSTRACT: The Material Point Method (MPM) is a quasi Eulerian-Lagrangian approach to solve solid me-
chanics problems involving large deformations. In order to improve the stability of the MPM, several extensions
have been proposed in the last decade. In these extensions, the sudden change of stiffness when a point crossing
an element boundary in the standard MPM is avoided by replacing a material point with a deformable particle
domain. The latest extensions are Convected Particle Domain Interpolation approaches, primarily including the
CPDI1 and recently published CPDI2. We have unified the standard MPM and CPDI approaches into one im-
plicit computational framework, and here investigate their ability to model problems involving large rotational
deformation, which is essential in the installation of screw pile foundations. It was found that the CPDI2 ap-
proach can produce erroneous results due to particle domain distortion, while the CPDI1 approach and standard
MPM can predict more physically realistic mechanical responses.

1 INTRODUCTION

The Material Point Method (MPM) is a numeri-
cal method used to simulate massive deformation of
solids combining advantages of both Eulerian and
Lagrangian approaches for solving solid mechanics
problems. In the MPM a body is described by a num-
ber of Lagrangian material points, at which state vari-
ables are stored and tracked. Computation for an in-
cremental loading is then carried out on a background
computational mesh. As demonstrated in Figure 1 for
a simple shear problem, the total deformation and
other state variables are stored at the material points,
while the background mesh is extended with the in-
cremental displacment, thus avoiding the mesh dis-
tortion seen with the standard FEM for large defor-
mation problems. In fact, the background mesh can
be any mesh at the beginning of each load step. Be-
cause of this attraction the MPM has been applied to
several large deformation problems particularly in the
area of geotechnical engineering, e.g. (Ceccato et al.
2016, among others).

As part of wider study, we are developing a pro-
gram based on the MPM to model the soil response
to the installation of a screw pile, with the engineer-
ing application of providing a computer-aided design
tool for engineers to optimise pile design for offshore
wind turbine foundations (Wang et al. 2017). During
installation of a screw pile, the pile is pushed and ro-
tated into the ground. Our program focuses on com-
putation of the vertical force and torque applied on
the pile for this installation. Modelling large torsion
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Figure 1: Demonstration of the standard MPM under simple
shear: a high quality mesh (red) is used in the computation of
equilibrium for each loading increment, while the material points
(blue) track the total deformation.

is essential for this purpose.

The method of mapping the state variables back
and forth between the material points and background
mesh nodes in the MPM is a crucial step. For exam-
ple, in a static elasticity analysis, the stresses at ma-
terial points are used to work out the nodal internal
force; and a material point’s position is updated by
adding incremental displacements interpolated from
the nodal increment displacements. In the standard
MPM (sMPM), a material point only relates to its par-
ent element, (i.e. the backgound element in which it is
currently located). However, the sMPM has an inher-
ent instability when a material point crosses an ele-
ment boundary. This instability is due to the sudden
transfer of stiffness between elements, this can re-
sult in some elements having very little stiffness, or
some internal elements losing all stiffness. Therefore,
several extensions to the sMPM have been proposed,



each of which replace the material point with a de-
formable particle domain. The most notable of these
extensions are the Generalized Interpolation Mate-
rial Point (GIMP) (Bardenhagen and Kober 2004),
Convected Particle Domain Interpolation (CPDI1)
(Sadeghirad et al. 2011), and Second-order CPDI
(CPDI2) (Sadeghirad et al. 2013). Assigning a par-
ticle domain to each material point enables the influ-
ence domain of a material point to cover more than
one element. For a 2D problem, the particle domain
is a rectangle in GIMP, a parallelogram in CPDI1 and
a quadrilateral in CPDI2. Therefore, the CPDI2 ap-
proach has particle domains for completely covering
a general body, while are gaps or overlaps with the
other two approaches. Previously, these methods have
not been examined in terms of their ability to model
problems involving large rotational deformation, and
this is the focus of this paper.

Applying boundary conditions is another challenge
when using the MPM, because the mesh is indepen-
dent of the probem domain (unlike in the FEM) and
the domain boundary generally is not included in the
computational mesh. This is probably why numerical
examples in many published papers consider prob-
lems in which body forces only are present. With
a regular grid as the computational mesh, Dirichlet
boundary conditions can be applied using the implicit
boundary method, e.g. Cortis et al. (2017). However,
in our project the geometry of a screw pile is more
complex than allowed for in that paper. In this frame-
work, the moving mesh concept (Beuth 2012), which
simply modifies the computational mesh such that
the boundary of domain is explicitly included in the
mesh, is adapted as the rotating mesh associated with
the rotation, as detailed in Wang et al. (2017). In or-
der to generate mesh including body boundary, an un-
structured mesh is used. With the mesh including the
domain boundary at the beginning of each load-step,
boundary conditions are applied on these mesh nodes,
straightforwardly as in the FEM.

In this paper, the sMPM and CPDI approaches
are unified into one computational framework. This
framework solves a quasi-static problem for the defor-
mation of elasto-plastic material. The finite stain the-
ory is used to characterise the deformation. The plas-
tic yield condition is governed by the von-Mises crite-
rion. An implicit stress return algorithm is employed
for finding the stress state after material is yielded,
such that the yield condition is accurately enforced,
with more details included in Coombs (2011). An im-
plicit scheme is also employed for solving the sys-
tem of equations. This allows large load-steps and in-
creases in stability and accuracy, as shown in Charlton
et al. (2017).

This unified computational framework is verified
and investigated for modelling large torsion. The per-
formance of these methods is compared in Section 3
and conclusions are drawn in Section 4.

2 COMPUTATIONAL FRAMEWORK

This computational framework solves implicitly the
weak form of the equilibrium equtions for the quasi-
static finite deformation problem of an elasto-plastic
material. The formulation is largely based on Charlton
et al. (2017) but uses different particle domains and
basis functions, which are detailed below.

Compared to the FEM, the MPM requires mapping
between material points and the computational mesh.
However, the computation inside each load-step, e.g.
each column in Figure 1, is the same as in the FEM.
Therefore, we present a unified computational frame-
work for integrating the standard material point meth-
ods and the CPDI approaches as follows.

(i) Set up problems: generate computational mesh,
specify boundary conditions and material param-
eters, and generate

• IF (sMPM): material point coordinates

• IF (CPDI1): material point coordinates and
two vectors, (s0, t0), of the parallelogram
particle domain for each material point

• IF (CPDI2): corners and connectivity for
the particle domains

and material point volumes.

(ii) A load-step starts, incremental boundary condi-
tions are specified.

(iii) Find influence elements of material points in the
mesh:

• IF (sMPM): FOREACH material point, p,
find its parent element

• IF (CPDI1): FOREACH material point, p,
to compute the coordinates of four corners
of its particle domain as

xp + [−1 1 1 − 1]
sp
2

+ [−1 − 1 1 1]
tp
2

and find parents elements for these corners

• IF (CPDI2): FOREACH corner to find its
parent element

(iv) Compute the basis functions Sip and their spatial
gradients∇Sip for node i and material point p:
FOREACH material point apply the following:

• IF (sMPM)

Sip = Si(xp), ∇Sip = ∇Si(xp),

where Si(•) are the standard FEM basis
functions and xp are the coordinates of ma-
terial point p.



• IF (CPDI1)

Sip =
1

4

[
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1
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p) + Si(x

3
p) + Si(x
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p)
]
,
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2Vp
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p)
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4
p)
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,

where the superscript indicates the index of
particle domain corners.

• IF (CPDI2)

Sip =
1

24vp

[
(6vp − a− b)Si(x

1
p)

+(6vp − a+ b)Si(x
2
p) + (6vp + a+ b)Si(x

3
p)

+(6vp + a− b)Si(x
4
p)
]
,

∇Sip =
1

2Vp

{
Si(x

1
p)

[
y2p − y4p
x4p − x2p

]
+ Si(x

2
p)

[
y3p − y1p
x1p − x3p

]

+Si(x
3
p)

[
y4p − y2p
x2p − x4p

]
+ Si(x

4
p)

[
y1p − y3p
x3p − x1p

]}
,

where

a= (x4p−x1p)(y2p−y3p)− (x2p−x3p)(y4p−y1p),

b= (x3p−x4p)(y1p−y2p)− (x1p−x2p)(y3p−y4p).

For more detail on these basis functions see
(Sadeghirad et al. 2013).

(v) The nodal internal force can then be obtained
from the stresses at the material point using

f int
i = −

∑
p

∇Sipσpvp,

where σp is the Cauchy stress and vp the vol-
ume of the material point p. The system of equa-
tions for the nodal force equilibrium can then be
formed

f int −
(
f rea + f ext

)
= 0, (1)

where the superscripts rea and ext indicate
nodal reactions and external forces.

(vi) Solve (1) with the Newton-Raphson (NR) itera-
tive solver to obtain the nodal incremental dis-
placement.

(vii) Map nodal incremental displacements onto the
material points, and added onto the total dis-
placement field as

xp = xp + ∆up = xp +
∑
i

Sip∆ui.

for the sMPM and CPDI1 approach. For the
CPDI2 approach, the corners of particle domains
are updated in the same manner. Other state vari-
ables, e.g. deformation gradient F and Cauchy
stress, are also updated. In addition, the particle
volume are updated:

• IF (sMPM): vp=v0p detFp, where super-
script 0 indicates a value in the initial con-
figuration

• IF (CPDI1): sp=Fps
0
p, tp=Fpt

0
p, and vp =

|sp × tp|
• IF (CPDI2): vp is the volume of particle do-

main with updated corners

(viii) The computational mesh is simply modified by
the moving mesh concept and go back to (ii) for
simulation of next load-step.

Employing an unstructured mesh, the cost in step
(iii) for finding the position in a mesh for a point is
increased, because it cannot be determined by com-
puting the offset as with a structured mesh. Instead,
a searching routine has be to used by looping over
elements for a point. However, the independence of
the job of checking whether a point is inside of the an
element for different points and different elements en-
ables us to parallelise these loops and speed-up com-
putation in this framework. The searching algorithm
can be further speeded up by reducing the searching
region with a assistant bucket data structure, e.g. a
multilevel octree bucket in Nie et al. (2012).

3 NUMERICAL EXAMPLES

The computational framework is first validated
through benchmark problems. The performance of all
the methods are then investigated for a problem in-
volving large rotational deformation.

Figure 2: Left: Initial geometry (grey), computation mesh (red),
material points and particle domains (blue) with roller boundary
conditions in the CPDI2 approach. Right: deformed geometry
(grey) subject to uni-axial stretch and plane-strain condition.



3.1 Validation

The simple stretch of a square block is simulated
by the FEM, sMPM and CPDI approaches under the
plane-strain condition. The block has dimension 2×2
with the elasto-plastic material, specified by the von-
Mises constitutive law, with the yield criterion

ρ =
√

2J2/ρc − 1,

where J2 is the second invariant of the deviatoric part
of the Kirchhoff stress tensor. The material parame-
ters are Young’s modulus E = 1000, Poisson’s ratio
ν = 0 and yield strength ρc = 400. All variables have
compatible units.

For the FEM case, the block was discretised by four
bi-linear quadrilateral elements. For other cases, the
same mesh was used with four material points per ele-
ment. Figure 2 shows the geometry, mesh and bound-
ary conditions for the CPDI2 approach in both initial
and deformed configurations. Roller boundary condi-
tions were applied on the bottom and left sides, with
a horizontal displacement of 0.2 per load-step applied
on the right. The simulation was run up to 20 steps.
Due to the moving right boundary and displacement
applied there, the moving mesh concept described
above was adopted such that the computed incremen-
tal horizontal displacement was applied to the mesh
at the end of each load-step.

Quadratic convergence rate of solver for the global
equilibrium is expected, since the nonlinear system of
equations are solved by the NR iteration. The conver-
gence of the CPDI2 approach is shown in Figure 3 by
plotting the residual, i.e. L2 norm of the left hand side
of (1), against the NR iteration steps in each load-step.
Particularly, the residual of an iteration against that of
the previous iteration shows that the average conver-
gence rate is 1.996. The sMPM and CPDI1 approach
also have this correct quadratic convergence rate.

The x-component of reaction force on the right end
from the sMPM and FEM are plotted in Figure 4,
where the markers show the load-steps. The force in-
creases non-linearly in the first six steps due to the
large deformation mechanics, i.e. the geometric non-
linear finite strain measure used in the computational
framework. In the seventh step, the material yields
and so this reaction force starts to decrease gradually.
The results from the sMPM and CPDI approaches are
the same with the FEM, as this FEM simulation is not
affected by mesh distortion. This agreement validates
the computational framework and computer codes of
the sMPM and CPDI approaches.
3.2 Doughnut twist

To test the formulations performances for large tor-
sion problems, a challenging problem, used involving
the azimuthal shear of a confined annular domain, is
termed the Doughnut Twist problem here. The geom-
etry, boundary conditions and material parameters of
this problem are shown in Figure 5.
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Figure 3: Left: The residual against the NR iteration step for each
load-step, in which markers along a curve indicates NR iterations
in that load-step, in the simulation with the sMPM. Right: The
residual in the (n+1)-th iteration against that in the n-th iteration
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1.9965, showing the convergence rate is quadratic.
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Figure 4: The reaction force on the right end of the block. The
results from the CPDI approaches are the same with those from
the sMPM.
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Geometry: R=10,
A=B=5 for circle
A=6, B=4 for ellipse

Material: E=106, ν=0
ρc = 106

BC: the outer circle is fixed,
∆α is applied on the
inner circle per load-step

Figure 5: The geometry, material parameters and boundary con-
ditions (BC) for the simulation of doughnut twist.

Two groups of simulation were carried out with cir-
cular and elliptical holes, respectively. Through these
simulations, we are investigating:

1) the variation in response among the sMPM,
CPDI approaches and FEM; and

2) the capacity of each method for modelling this
large rotation.

In order to simulate this problem, the moving mesh
was adopted as the rigid rotating mesh fixed to the
inner circle or ellipse.

3.2.1 Variation in response
For question 1), the results from different methods
when α = 10◦, i.e. small torsion, are first compared.
In this case the deformed FE mesh suffers only mi-
nor distortion, thus the FE results are still reliable
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Figure 6: The two components of displacement across the wall of doughnut when α = 10◦. The displacements U,V are non-
dimensionalised by the thickness of doughnut T . The FE results with both fine (160× 1152 elements) and coarse (10× 72 elements)
meshes are plotted. The difference in the sMPM and CPDI approaches results to the FE results are shown on the right hand axes.

as a control. With the FEM, fine (160 × 1152 ele-
ments) and coarse (10 × 72 elements) meshes were
used, in which the number before the sign× indicates
the number of elements in the radial direction and the
other is in the circumferential direction. The agree-
ment of the results between fine and coarse meshes
(Figure 6) suggests the coarse mesh is good enough
for modelling this deformation. Therefore, this coarse
mesh was used as computational mesh in the simula-
tion with the sMPM and CPDI approaches. In all sim-
ulations, four material points per element were used.
All simulations were run with the rotation increment
∆α = 5◦ in the clockwise direction up to α = 10◦ in
two load-steps.

The variations in response predicted by these meth-
ods are demonstrated by comparing the displacements
along a radius (Figure 6) and the reaction force (Fig-
ure 7) on the inner circle during this simulation. The
reaction force f is computed as the summation of the
reaction force magnitudes at all nodes along the inner
circle. The mesh nodes along the radius at the cen-
tral angle θ = 0◦ were selected as sampling points,
indicated by markers in Figure 6. From the FEM sim-
ulation, these nodal displacement were used directly.
However, these sampling points have to be added as
the material points in the sMPM and CPDI1 approach,
in order to obtain comparable total displacements.
These extra material points were also assigned a tiny
square domain with edge length 0.001, for comput-
ing the initial volumes in the sMPM and for specify-
ing particle domains in the CPDI1 approach. In con-
trast, the CPDI2 approach did not need these material
points. Instead the displacements at corners of some
particle domains were used. That is because the cor-
ners of some particle domains coincide with the sam-
pling points in the initial configuration and these do-
mains follow the deformation.

The difference in the displacement from the sMPM
and CPDI approaches were computed with respect to
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Figure 7: The normalised reaction force in FE simulation with
fine and coarse mesh, and the difference in the sMPM and CPDI
approaches results to the FE results. The force f is summation
of reaction at all nodes along the inner circle, and C is circum-
ference of the inner circle and E is the Young’s modulus.

the FEM results as

Pdiff =
um − uFE

uFE
, (2)

where um is the displacement component from the
sMPM and CPDI approaches and the superscript
m indicates a method. The comparison in Figure
6 shows the CPDI1 approach to differ the most
from the FEM result (<%5), followed by the CPDI2
approach(<1%), while the sMPM is the most similar
to the FEM (<0.05%). The difference in CPDI1 result
and the FEM result is because the CPDI1 approach
uses a parallelogram for a particle domain, and there
are consequently overlaps and/or gaps among particle
domains for covering this problem domain. The dif-
ference between the collection of these parallelogram
particle domains and the actual deformed domain re-
sults in the difference in the stiffness matrix for sim-
ulation. In contrast, quadrilateral particle domains are
employed in the CPDI2 approach, so avoiding this
difference. The observation, that the results from the
sMPM are closer to those from the FEM than from
the CPDI2 approach, is because of the mapping of



displacement information between material point and
mesh nodes, which needs to be done in two steps in
the CPDI2 approach but only one in the sMPM. For
example, updating of material points, positions at the
end of a load-step needs: 1) interpolation of nodal dis-
placements onto the corners of particle domains; and
2) computation of incremental displacements at ma-
terial points based on the corners of their own parti-
cle domains. In the sMPM, the incremental displace-
ment at material points is simply interpolated from the
nodal incremental displacement.

3.2.2 Capacity of methods for large torsion
For question 2), all methods were applied to simulate
the doughnut twist problem up to α = 80◦. The mag-
nitude of reaction force along the inner circle against
the boundary condition α is plotted in Figure 8. These
reaction forces are almost the same in the elastic re-
gion when α < 25◦, but the FEM results are very dif-
ferent to the sMPM and the CPDI approaches in the
plastic region when α > 30◦.

0 20 40 60 80
 [°]

0

0.5

1

1.5

2

f/C
E

FEM
sMPM
CPDI1
CPDI2

Figure 8: The normalised reaction force in the simulation with
the same mesh (5× 18 elements) in the FEM, sMPM and CPDI
approaches.

When the material yields, the reaction force is
expected to decrease, as observed in the results of
the sMPM and CPDI approaches. The reaction force
in the FEM is erroneously increasing due to errors
brought via mesh distortion. Around α = 35◦, a larger
peak was observed in the sMPM than in the CPDI ap-
proaches. The results of the sMPM are closer to those
of the FEM than the CPDI approaches before α < 40◦

as demonstrated in the previous section. The drop fol-
lowing the peak appears to be due to the stress relax-
ation when the inner material yields while the external
material is still elastic, as shown in Figure 9. The in-
cremental displacements are shown for α = 30◦, 45◦

and 60◦. The first layer mesh nodes are rotated in the
opposite direction–counter-clockwise to the boundary
condition which is applied clock-wise on the inner cir-
cle when α = 45◦, showing the stress relaxation.

Both the sMPM and CPDI1 approaches predict the
same constant reaction force for α > 50◦, but the
CPDI2 approach has a slight increase. This erroneous

increase is because of the distortion of particle do-
mains. Recall that in the CPDI2 approach the particle
domains exactly follow the deformation as in a FE
mesh, but the distortion causes more serious error in
the FEM than the CPDI2 approach.

The performance of these methods was also inves-
tigated through the simulation of doughnut twist with
an elliptical hole. In these simulations, the mesh at the
ends of the long axis were locally refined because the
deformation gradient and stress tends to concentrate
in these positions. The deformed mesh with incre-
mental displacement and material points in the load-
steps for α= 20◦, 30◦ and 60◦ are shown in Figure 10.
Due to the stress concentration at ends of long axis of
the ellipse, the material yields earlier than for a cir-
cular hole. As the ellipse further rotates in the plastic
material, two regions with fewer material points are
created after the ends of long axis passing, e.g. see
Figure 10 when α = 60◦. The magnitude of torque
against α in Figure 11 shows that the CPDI2 approach
predicts erroneous increase in the plastic region again.
Both the CPDI1 approach and the sMPM predict a
more physically realistic response.

4 CONCLUSIONS

This paper has presented a common computational
framework for the sMPM and its extensions, i.e. the
CPDI approaches, which is first validated and then
applied to problems involving large rotational defor-
mation. In the published papers, the CPDI2 approach
is the latest extension of the sMPM. Using the CPDI
approaches can increase the stability of the computa-
tion, but as shown here can lead to erroneous results
if the particle domains are distorted. As observed in
the simulations of the doughnut twist problem, the in-
crease in the torque predicted using the CPDI2 ap-
proach does not seem physically correct. The CPDI1
approach appears to have less negative effect on the
results. In contrast, the sMPM predicts physically rea-
sonable response, and stable reaction force and torque
after the material is yielded. In the simulations for the
doughnut with the circular hole, both the sMPM and
the CPDI1 approach predict the same asymptotic re-
action force, but for an elliptical hole they predict dif-
ferent values. Without referring to a reliable control,
we cannot tell which is the closest to the exact so-
lution. But both the sMPM and the CPDI1 approach
predict what appear to be more physically reasonable
responses than the CPDI2 approach. In practice, in-
creasing the number of material points per element
could improve the stability of the sMPM. In conclu-
sion, the CPDI2 approach appears not to be suitable
for simulating these large rotational problems.
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