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Abstract
Finding maximum-cardinality matchings in undirected graphs is arguably one of the most cen-
tral graph primitives. For m-edge and n-vertex graphs, it is well-known to be solvable in
O(m

√
n) time; however, for several applications this running time is still too slow. We investigate

how linear-time (and almost linear-time) data reduction (used as preprocessing) can alleviate the
situation. More specifically, we focus on linear-time kernelization. We start a deeper and system-
atic study both for general graphs and for bipartite graphs. Our data reduction algorithms easily
comply (in form of preprocessing) with every solution strategy (exact, approximate, heuristic),
thus making them attractive in various settings.
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1 Introduction

“Matching is a powerful piece of algorithmic magic” [22]. In the maximum matching problem,
given an undirected graph, one has to compute a maximum set of nonoverlapping edges.
Maximum matching is arguably among the most fundamental graph-algorithmic primitives
allowing for a polynomial-time algorithm. More specifically, on an n-vertex and m-edge
graph a maximum matching can be found in O(m

√
n) time [20]. Improving this upper time

bound resisted decades of research. Recently, however, Duan and Pettie [9] presented a
linear-time algorithm that computes a (1− ε)-approximate maximum-weight matching, where
the running time dependency on ε is ε−1 log(ε−1). For the unweighted case, the O(m

√
n)

algorithm of Micali and Vazirani [20] implies a linear-time (1− ε)-approximation, where in
this case the running time dependency on ε is ε−1 [9]. We take a different route: First, we do
not give up the quest for optimal solutions. Second, we focus on efficient—more specifically,
linear-time executable—data reduction rules, that is, not solving an instance but significantly
shrinking its size before actually solving the problem. Doing so, however, we focus here on
the unweighted case. In the context of decision problems and parameterized complexity
analysis this approach is known as kernelization.
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46:2 The Power of Linear-Time Data Reduction for Matching

The spirit behind our approach is thus closer to the identification of efficiently solvable
special cases of maximum matching. There is quite some body of work in this direction.
For instance, since an augmenting path can be found in linear time [11], the standard
augmenting path-based algorithm runs in O(s(n+m)) time, where s is the number of edges
in the maximum matching. Yuster [25] developed an O(rn2 logn)-time algorithm, where
r is the difference between maximum and minimum degree of the input graph. Moreover,
there are linear-time algorithms for computing maximum matchings in special graph classes,
including convex bipartite [23], strongly chordal [8], chordal bipartite [7], and cocomparability
graphs [19].

All this and the more general spirit of “parameterization for polynomial-time solvable
problems” [13] (also referred to as “FPT in P” or “FPTP” for short) forms the starting point
of our research. Remarkably, Fomin et al. [10] recently developed an algorithm to compute a
maximum matching in graphs of treewidth k in O(k4n logn) randomized time.

Following the paradigm of kernelization, that is, provably effective and efficient data
reduction, we provide a systematic exploration of the power of not only polynomial-time but
actually linear-time data reduction for maximum matching. Thus, our aim (fitting within
FPTP) is to devise problem kernels that are computable in linear time. In other words, the
fundamental question we pose is whether there is a very efficient preprocessing that provably
shrinks the input instance, where the effectiveness is measured by employing some parameters.
The philosophy behind this is that if we can design linear-time data reduction algorithms,
then we may employ them for free before afterwards employing any super-linear-time solving
algorithm. We believe that this sort of question deserves deeper investigation and we initiate
it based on the matching problem.

As kernelization is defined for decision problems, we use in the remainder of the paper
the decision version of maximum matching. In a nutshell, a kernelization of a decision
problem instance is an algorithm that produces an equivalent instance whose size can solely
be upper-bounded by a function in the parameter (preferably a polynomial). The focus on
decision problems is justified by the fact that all our results, although formulated for the
decision version, in a straightforward way extend to the corresponding optimization version.

(Maximum-Cardinality) Matching
Input: An undirected graph G = (V,E) and a nonnegative integer s.
Question: Is there a size s subset MG ⊆ E of nonoverlapping (i.e. disjoint) edges?

Note that for any polynomial-time solvable problem solving the given instance and returning
a trivial yes- or no-instance always produces a constant-size kernel in polynomial time. Hence,
we are looking for kernelization algorithms that are faster than the algorithms solving the
problem. The best we usually can hope for is linear time. For NP-hard problems, each
polynomial-time kernelization algorithm is faster than any solution algorithm, unless P = NP.
While the focus of classical kernelization for NP-hard problems is mostly on improving the
size of the kernel, we particularly emphasize that for polynomially solvable problems it now
becomes mandatory to also focus on the running time of the kernelization algorithm. Indeed,
we consider linear-time kernelization as the holy grail and this drives our research when
studying kernelization for Matching.

Our contributions. We present three kernels for Matching (see Table 1 for an overview).
All our parameterizations can be categorized as “distance to triviality” [6, 14, 18, 24]. They
are motivated as follows. First, note that it is important that the parameters we exploit can
be computed, or well approximated (within constant factors), in linear time regardless of
the parameter value. For instance, it is not known whether this is possible for treewidth.
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Table 1 Our kernelization results.

Parameter k running time kernel size

Results for Matching
Feedback edge number O(n + m) O(k) vertices and edges (Theorem 3)
Feedback vertex number O(kn) 2O(k) vertices and edges (Theorem 11)

Results for Bipartite Matching
Distance to chain graphs O(n + m) O(k3) vertices (Theorem 15)

Next, note that maximum-cardinality matchings can be trivially found in linear time on
trees (or forests). So we consider the edge deletion distance (feedback edge number) and
vertex deletion distance (feedback vertex number) to forests. Notably, there is a trivial linear-
time algorithm for computing the feedback edge number and there is a linear-time factor-4
approximation algorithm for the feedback vertex number [1]. We mention in passing that
the parameter vertex cover number, which is lower-bounded by the feedback vertex number,
has been frequently studied for kernelization [3, 4]. In particular, Gupta and Peng [15]
and Giannopoulou et al. [13] provided a linear-time computable quadratic-size kernel for
Matching with respect to the parameter solution size (or equivalently vertex cover number).
Coming to bipartite graphs, we parameterize by the vertex deletion distance to chain graphs
which is motivated as follows. First, chain graphs form one of the most obvious easy cases for
bipartite graphs where Matching can be solved in linear time [23]. Second, we show that
the vertex deletion distance of any bipartite graph to a chain graph can be 2-approximated
in linear time. Moreover, vertex deletion distance to chain graphs lower-bounds the vertex
cover number of a bipartite graph, and thus gives a stronger parameterization [18] than
vertex cover number.

An overview of our main results is given in Table 1. We study kernelization for Matching
parameterized by the feedback vertex number, that is, the vertex deletion distance to a forest
(see Section 2). As a warm-up we first show that a subset of our data reduction rules for the
“feedback vertex set kernel” also yields a linear-time computable linear-size kernel for the
typically much larger parameter feedback edge number (see Section 2.1). As for Bipartite
Matching no faster algorithm is known than on general graphs, we kernelize Bipartite
Matching with respect to the vertex deletion distance to chain graphs (see Section 3).

Seen from a high level, our two technical main results (Theorems 11 and 15, see Table 1)
employ the same algorithmic strategy, namely upper-bounding (as a function of the parameter)
the number of neighbors in the appropriate vertex deletion set X; that is, X being the
feedback vertex set or in the deletion set to chain graphs, respectively. To achieve this we
develop new “irrelevant edge techniques” tailored to these two kernelization problems. More
specifically, whenever a vertex v of the deletion set X has large degree, we efficiently detect
edges incident to v whose removal does not change the size of the maximum matching. Then
the remaining graph can be further shrunk by scenario-specific data reduction rules. While
this approach of removing irrelevant edges is natural, the technical details and the proofs of
correctness become quite technical and combinatorially challenging.

Note that there exists a trivial O(km)-time solving (not only kernelization) algorithm,
where k is the feedback vertex number. Our kernel has size 2O(k). Therefore, only if k =
o(logn) our kernelization algorithm provably shrinks the initial instance. However, our result
is still relevant: First, our data reduction rules might assist in proving a polynomial upper
bound on the kernel size—so our result is a first step in this direction. Second, the running
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46:4 The Power of Linear-Time Data Reduction for Matching

time O(kn) of our kernelization algorithm is a kind of “half way” between O(km) (which
could be as bad as O(k2n)) and O(n+m) (which is best possible). Finally, note that this
work focuses on theoretical and worst-case analysis; in practice, our kernelization algorithm
might achieve much better upper bounds on real-world input instances.

As a technical side remark, we emphasize that in order to achieve a linear-time kernelization
algorithm, we often need to use suitable data structures and to carefully design the appropriate
data reduction rules to be exhaustively applicable in linear time, making this form of
“algorithm engineering” much more relevant than in the classical setting of mere polynomial-
time data reduction rules.

Notation and Observations. We use standard notation from graph theory. Merging two
vertices u and v means to first introduce a new vertex w with N(w) = N(u)∪N(v) and then
delete u and v. A feedback vertex (edge) set of a graph G is a set X of vertices (edges) such
that G−X is a tree or a forest. The feedback vertex (edge) number denotes the size of a
minimum feedback vertex (edge) set. All paths we consider are simple paths. Two paths in a
graph are called internally vertex-disjoint if they are either completely vertex-disjoint or they
overlap only in their endpoints. A matching in a graph is a set of pairwise disjoint edges.
Let G = (V,E) be a graph and let M ⊆ E be a matching in G. The degree of a vertex is
denoted by deg(v). A vertex v ∈ V is called matched with respect to M if there is an edge
in M containing v, otherwise v is called free with respect to M . If the matching M is clear
from the context, then we omit “with respect to M”. An alternating path with respect to M
is a path in G such that every second edge of the path is in M . An augmenting path is an
alternating path whose endpoints are free. It is well known that a matching M is maximum
if and only if there is no augmenting path for it. Let M ⊆ E and M ′ ⊆ E be two matchings
in G. We denote by G(M,M ′) := (V,M 4M ′) the graph containing only the edges in the
symmetric difference of M and M ′, that is, M 4M ′ := M ∪M ′ \ (M ∩M ′). Observe that
every vertex in G(M,M ′) has degree at most two.

I Observation 1. Let G = (V,E) be a graph with a maximum matching MG, let X ⊆ V

be a vertex subset of size k, and let MG−X be a maximum matching for G − X. Then,
|MG−X | ≤ |MG| ≤ |MG−X |+ k.

Kernelization. A parameterized problem is a set of instances (I, k) where I ∈ Σ∗ for a finite
alphabet Σ, and k ∈ N is the parameter. We say that two instances (I, k) and (I ′, k′) of
parameterized problems P and P ′ are equivalent if (I, k) is a yes-instance for P if and only if
(I ′, k′) is a yes-instance for P ′. A kernelization is an algorithm that, given an instance (I, k)
of a parameterized problem P , computes in polynomial time an equivalent instance (I ′, k′)
of P (the kernel) such that |I ′|+ k′ ≤ f(k) for some computable function f . We say that f
measures the size of the kernel, and if f(k) ∈ kO(1), we say that P admits a polynomial
kernel. Often, a kernel is achieved by applying polynomial-time executable data reduction
rules. We call a data reduction rule R correct if the new instance (I ′, k′) that results from
applying R to (I, k) is equivalent to (I, k). An instance is called reduced with respect to
some data reduction rule if further application of this rule has no effect on the instance.

2 Kernelization for Matching on General Graphs

In this section we first present as a warm-up a simple, linear-size kernel for Matching
with respect to the parameter feedback edge number (see Section 2.1). Exploiting the data
reduction rules and ideas used for this kernel, we then present the main result of this section:



G. B. Mertzios, A. Nichterlein, R. Niedermeier 46:5

an exponential-size kernel for the typically much smaller parameter feedback vertex number
(see Section 2.2).

2.1 Warm-up: Parameter feedback edge number
We provide a linear-time computable linear-size kernel for Matching parameterized by the
feedback edge number, that is, the size of a minimum feedback edge set. Observe that a
minimum feedback edge set can be computed in linear time via a simple depth-first search or
breadth-first search. The kernel is based on the next two simple data reduction rules due to
Karp and Sipser [17]. They deal with vertices of degree at most two.

I Reduction Rule 2.1. Let v ∈ V . If deg(v) = 0, then delete v. If deg(v) = 1, then delete v
and its neighbor and decrease the solution size s by one (v is matched with its neighbor).

I Reduction Rule 2.2. Let v be a vertex of degree two and let u,w be its neighbors. Then
remove v, merge u and w, and decrease the solution size s by one.

Reduction Rules 2.1 and 2.2 are correct; however, it is not clear whether Reduction
Rule 2.2 can be exhaustively applied in linear time. Fortunately, for our purpose it suffices
to consider the following restricted version which we can exhaustively apply in linear time.

I Reduction Rule 2.3. Let v be a vertex of degree two and u,w be its neighbors with u and w
having degree at most two. Then remove v, merge u and w, and decrease s by one.

I Lemma 2. Reduction Rules 2.1 and 2.3 can be exhaustively applied in O(n+m) time.

I Theorem 3. Matching admits a linear-time computable linear-size kernel with respect to
the parameter feedback edge number k.

Proof. Apply Reduction Rules 2.1 and 2.3 exhaustively in linear time (Lemma 2). We
claim that the reduced graph G = (V,E) has less than 12k vertices and less than 13k
edges. Denote with X ⊆ E a feedback edge set for G, |X| ≤ k. Furthermore, denote
with V 1

G−X , V 2
G−X , and V ≥3

G−X the vertices that have degree one, two, and more than two in
the G−X. Thus, |V 1

G−X | ≤ 2k as each leaf in G−X has to be incident to an edge in X.
Next, since G −X is a forest (or tree), we have |V ≥3

G−X | < |V 1
G−X | and thus |V ≥3

G−X | < 2k.
Finally, each degree-two vertex in G needs at least one neighbor of degree at least three
since G is reduced with respect to Reduction Rule 2.3. Thus, the vertices in V 2

G−X are
either incident to an edge in X or adjacent to one of the at most |V ≥3

G−X |+ 2k vertices in G
that have degree at least three. Since the sum over all degrees of vertices in V ≥3

G−X is at
most

∑
v∈V

≥3
G−X

degG−X(v) ≤ 2|V ≥3
G−X | + |V 1

G−X | < 6k, it follows that |V 2
G−X | ≤ 8k. Thus,

the number of vertices in G is |V 1
G−X |+ |V 2

G−X |+ |V
≥3

G−X | ≤ 12k. Since G−X is a forest, it
follows that G has at most |V |+ k ≤ 13k edges. J

Applying the O(m
√
n)-time algorithm for Matching [20] on the kernel yields:

I Corollary 4. Matching can be solved in O(n+m+ k1.5) time, where k is the feedback
edge number.

2.2 Parameter feedback vertex number
We next provide for Matching a kernel of size 2O(k) computable in O(kn) time where k is
the feedback vertex number. Using a known linear-time factor 4-approximation algorithm [1],
we can approximate feedback vertex set and use it in our kernelization algorithm.
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46:6 The Power of Linear-Time Data Reduction for Matching

Roughly speaking, our kernelization algorithm extends the linear-time computable kernel
with respect to the parameter feedback edge set. Thus, Reduction Rules 2.1 and 2.3 play an
important role in the kernelization. Compared to the other kernels presented in this paper,
the kernel presented here comes at the price of higher running time O(kn) and bigger kernel
size (exponential size). It remains open whether Matching parameterized by the feedback
vertex number admits a linear-time computable kernel (possibly of exponential size), and
whether it admits a polynomial kernel computable in O(kn) time.

Subsequently, we describe our kernelization algorithm which keeps in the kernel all vertices
in the given feedback vertex set X and shrinks the size of G − X. Before doing so, we
need some further notation. In this section, we assume that each tree is rooted at some
arbitrary (but fixed) vertex such that we can refer to the parent and children of a vertex.
A leaf in G−X is called a bottommost leaf either if it has no siblings or if all its siblings
are also leaves. (Here, bottommost refers to the subtree with the root being the parent
of the considered leaf.) The outline of the algorithm is as follows (we assume throughout
that k < logn since otherwise the input instance is already a kernel of size O(2k)):
1. Reduce G with respect to Reduction Rules 2.1 and 2.3.
2. Compute a maximum matching MG−X in G−X.
3. Modify MG−X in linear time such that only the leaves of G−X are free.
4. Bound the number of free leaves in G−X by k2.
5. Bound the number of bottommost leaves in G−X by O(k22k).
6. Bound the degree of each vertex in X by O(k22k). Then, use Reduction Rules 2.1 and 2.3

to provide the kernel of size 2O(k).
Whenever we reduce the graph at some step, we also show that the applied data reduction
is correct. That is, the given instance is a yes-instance if and only if the reduced one is a
yes-instance. The correctness of our kernelization algorithm then follows by the correctness
of each step. We discuss in the following some details of each step.

2.2.1 Steps 1 to 3

By Lemma 2 we can perform Step 1 in linear time. A maximum matching in Step 2 can be
computed by repeatedly matching a free leaf to its neighbor and by removing both vertices
from the graph (thus effectively applying Reduction Rule 2.1 to G−X). By Lemma 2, this
can be done in linear time. Step 3 can be done in O(n) time by traversing each tree in MG−X

in a BFS manner starting from the root: If a visited inner vertex v is free, then observe that
all children are matched since MG−X is maximum. Pick an arbitrary child u of v and match
it with v. The vertex w that was previously matched to u is now free and since it is a child
of u, it will be visited in the future. Observe that Steps 2 and 3 do not change the graph but
only the auxiliary matching MG−X , and thus these steps are correct.

2.2.2 Step 4.

Recall that our goal is to upper-bound the number of edges between vertices of X and V \X,
since we can then use a simple analysis as for the parameter feedback edge set. Observe that
if a vertex x ∈ X has at least k neighbors in V \X that are free wrt. MG−X , then there
exists a maximum matching where x is matched to one of these k vertices since at most k− 1
can be “blocked” by other matching edges. This means that we can delete all other edges
incident to x. Formalizing this idea, we obtain the following data reduction rule.
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I Reduction Rule 2.4. Let G = (V,E) be a graph, let X ⊆ V be a subset of size k, and let
MG−X be a maximum matching for G−X. If there is a vertex x ∈ X with at least k free
neighbors Vx = {v1, . . . , vk} ⊆ V \X, then delete all edges from x to vertices in V \ Vx.

To finish Step 4, we exhaustively apply Reduction Rule 2.4 in linear time. Afterwards,
there are at most k2 free (wrt. to MG−X) leaves in G−X that have at least one neighbor
in X since each of the k vertices in X is adjacent to at most k free leaves. Thus, applying
Reduction Rule 2.1 we can remove the remaining free leaves that have no neighbor in X.
However, since for each degree-one vertex also its neighbor is removed, we might create new
free leaves and need to again apply Reduction Rule 2.4 and update the matching (see Step 3).
This process of alternating application of Reduction Rules 2.1 and 2.4 stops after at most
k rounds since the neighborhood of each vertex in X can be changed by Reduction Rule 2.4
at most once. This shows the running time O(k(n+m)). We next show how to improve this
to O(n+m) time and arrive at the final lemma of this subsection.

I Lemma 5. Given a matching instance (G, s) and a feedback vertex set X, one can compute
in linear time an instance (G′, s′) with feedback vertex set X and a maximum matchingMG′−X

in G′ −X such that the following holds.
There is a matching of size s in G if and only if there is a matching of size s′ in G′.
Each vertex that is free wrt. MG′−X is a leaf in G′ −X.
There are at most k2 free leaves in G′ −X.

2.2.3 Step 5
Step 5 reduces the graph in O(kn) time so that at most k2(2k + 1) bottommost leaves will
remain in the forest G−X. We restrict ourselves to consider leaves that are matched with
their parent vertex in MG−X and that do not have a sibling. Any sibling of a bottommost
leaf is by definition also a leaf. Thus, at most one of these leaves (the bottommost leaf or
its siblings) is matched with respect to MG−X and all other leaves are free. Recall that in
the previous step we upper-bounded the number of free leaves with respect to MG−X by k2.
Hence there are at most k2 bottommost leaves with siblings.

Our general strategy for this step is to extend the idea behind Reduction Rule 2.4: We
want to keep for each pair of vertices x, y ∈ X at most k different internally vertex-disjoint
augmenting paths from x to y. (For ease of notation we keep k paths although keeping k/2
is sufficient.) In this step, we only consider augmenting paths of the form x, u, v, y where v is
a bottommost leaf and u is v’s parent in G−X. Assume that the parent u of v is adjacent
to some vertex x ∈ X. Observe that in this case any augmenting path starting with the
two vertices x and u has to continue to v and end in a neighbor of v. Thus, the edge {x, u}
can be only used in augmenting paths of length three. Furthermore, all these length-three
augmenting paths are clearly internally vertex-disjoint. If we do not need the edge {x, u}
because we kept k augmenting paths from x already, then we can delete {x, u}. Furthermore,
if we deleted the last edge from u to X (or u had no neighbors in X in the beginning), then u
is a degree-two vertex in G and can be removed by applying Reduction Rule 2.2. As the
child v of u is a leaf in G−X, it follows that v has at most k + 1 neighbors in G. Thus, an
application of Reduction Rule 2.2 to remove u takes O(k) time.

Counting for each pair x ∈ N(u) ∩X and y ∈ N(v) ∩X one augmenting path gives in a
simple worst-case analysis O(k2) time per edge; this is too slow for our purposes. Instead, we
count for each vertex x ∈ N(u) ∩X and for each set Y = N(v) ∩X one augmenting path.
In this way, we know that for each y ∈ Y there is one augmenting path from x to y, without
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46:8 The Power of Linear-Time Data Reduction for Matching

iterating through all y ∈ Y . We get an exponential factor in the bound of the bottommost
leaves since there are 2k subsets of X, but we can perform this step in O(kn) time as follows.

I Lemma 6. Let (G = (V,E), s) be a matching instance, let X ⊆ V be a feedback vertex set,
and let MG−X be a maximum matching for G−X with at most k2 free vertices in G−X that
are all leaves. Then, can compute in O(kn) time an instance (G′, s′) with feedback vertex
set X and a maximum matching MG′−X in G′ −X such that the following holds.

There is a matching of size s in G if and only if there is a matching of size s′ in G′.
There are at most k2(2k + 1) bottommost leaves in G′ −X.
There are at most k2 free vertices in G′ −X and they are all leaves.

2.2.4 Step 6
In this subsection, we provide the final step of our kernelization algorithm. Recall that in the
previous steps we have upper-bounded the number of bottommost leaves in G−X by O(k22k),
we computed a maximum matching MG−X for G − X such that at most k2 vertices are
free wrt. MG−X and all free vertices are leaves in G−X. Using this, we next show how to
reduce G to a graph of size O(k32k). To this end we need some further notation. A leaf
in G−X that is not bottommost is called a pendant. We define T to be the pendant-free tree
(forest) of G−X, that is, the tree (forest) obtained from G−X by removing all pendants.
The next observation shows that G−X is not much larger than T . Together with the second
observation, this allows us to restrict ourselves in the following on giving an upper bound on
the size of T .

I Observation 7. Let G−X be as described above with vertex set V \X and let T be the
pendant-free tree (forest) of G−X with vertex set VT . Then, |V \X| ≤ 2|VT |+ k2.

I Observation 8. Let F be a forest, let F ′ be the pendant-free forest of F , and let B be the
set of all bottommost leaves in F . Then, the set of leaves in F ′ is exactly B.

From Observation 8 it follows that the set B of bottommost leaves in G−X is exactly the set
of leaves in T . In the previous step we reduced the graph such that |B| ≤ k2(2k + 1). Thus,
T has at most k2(2k + 1) vertices of degree one and, since T is a tree (a forest), T also has at
most k2(2k +1) vertices of degree at least three. Let V 2

T be the vertices of degree two in T and
let V 6=2

T be the remaining vertices in T . From the above it follows that |V 6=2
T | ≤ 2k2(2k + 1).

Hence, it remains to bound the size of V 2
T . To this end, we will upper-bound the degree of

each vertex in X by O(k22k) and then use Reduction Rules 2.1 and 2.3. We will check for
each edge {x, v} ∈ E with x ∈ X and V \X whether we “need” it. This check will use the
idea from the previous subsection where each vertex in X needs to reach each subset Y ∈ X
at most k times via an augmenting path. Similarly as in the previous section, we want to
keep “enough” of these augmenting paths. However, this time the augmenting paths might
be long, while different augmenting paths might overlap. To still use the basic approach, we
use the following lemma stating that we can still somehow replace augmenting paths.

I Lemma 9. Let MG−X be a maximum matching in the forest G − X. Let Puv be an
augmenting path for MG−X in G from u to v. Let Pwx, Pwy, and Pwz be three internally
vertex-disjoint augmenting paths from w to x, y, and z, respectively, such that Puv intersects
all of them. Then, there exist two vertex-disjoint augmenting paths with endpoints u, v, w,
and one of the three vertices x, y, and z.

Proof. Label the vertices in Puv alternating as odd or even with respect to Puv so that no
two consecutive vertices have the same label, u is odd, and v is even. Analogously, label
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the vertices in Pwx, Pwy, and Pwz as odd and even with respect to Pwx, Pwy, and Pwz

respectively so that w is always odd. Since all these paths are augmenting, it follows that
each edge from an even vertex to its succeeding odd vertex is in the matching MG−X and
each edge from an odd vertex to its succeeding even vertex is not in the matching. Observe
that Puv intersects each of the other paths at least at two consecutive vertices, since every
second edge must be an edge in MG−X . Since G−X is a forest and all vertices in X are free
with respect to MG−X , it follows that the intersection of two augmenting paths is connected
and thus a path. Since Puv intersects the three augmenting paths from w, it follows that at
least two of these paths, say Pwx and Pwy, have a “fitting parity”, that is, in the intersections
of Puv with Pwx and with Pwy the even vertices with respect to Puv are either even or odd
with respect to both Pwx and Pwy.

Assume w.l.o.g. that in the intersections of the paths the vertices have the same label with
respect to the three paths (if the labels differ, then revert the ordering of the vertices in Puv,
that is, exchange the names of u and v and change all labels on Puv to its opposite). Denote
with v1

s and v1
t the first and the last vertex in the intersection of Puv and Pwx. Analogously,

denote with v2
s and v2

t the first and the last vertex in the intersection of Puv and Pwy. Assume
w.l.o.g. that Puv intersects first with Pwx and then with Pwy. Observe that v1

s and v2
s are

even vertices and v1
t and v2

t are odd vertices since the intersections have to start and end
with edges in MG−X . For an arbitrary path P and for two arbitrary vertices p1, p2 of P ,
denote by p1 −P − p2 the subpath of P from p1 to p2. Observe that u−Puv − v1

t −Pwx − x
and w − Pwy − v2

t − Puv − v are vertex-disjoint augmenting paths. J

Algorithm description. We now provide the algorithm for Step 6 (see Algorithm 1 for a
pseudocode). Algorithm 1 uses a table Tab which has an entry for each vertex x ∈ X and
each set Y ⊆ X. The table is filled in such a way that the algorithm detected for each y ∈ Y
at least Tab[x, Y ] internally vertex-disjoint augmenting paths from x to y. The main part of
the algorithm is the boolean function ‘Keep-Edge’ in Lines 13 to 22 which makes the decision
on whether to delete an edge {x, v} for v ∈ V \X and x ∈ X. The function works as follows
for edge {x, v}: Starting at v the graph will be explored along possible augmenting paths
until a “reason” for keeping the edge {x, v} is found or further exploration is possible.

If the vertex v is free wrt. MG−X , then {x, v} is an augmenting path and we keep {x, v}
(see Line 14). Observe that in Step 4 we upper-bounded the number of free vertices by k2

and all these vertices are leaves. Thus, we keep a bounded number of edges incident to x
because the corresponding augmenting paths can end at a free leaf. We provide the exact
bound below when discussing the size of the graph returned by Algorithm 1. In Line 14,
the algorithm stops exploring the graph and keeps the edge {x, v} if v has degree at least
three in T . The reason is to keep the graph exploration simple by following only paths in T .
This ensures that the running time for exploring the graph from x does not exceed O(n).
Since the number of vertices in T with degree at least three is bounded (see discussion after
Observation 8), it follows that only a bounded number of such edges {x, v} are kept.

If v is not free wrt. MG−X , then it is matched with some vertex w. If w is adjacent to
some leaf u in G−X that is free wrt. MG−X , then the path x, v, w, u is an augmenting path.
Thus, the algorithm keeps in this case the edge {x, v}, see Line 16. Again, since the number
of free leaves is bounded, only a bounded number of edges incident to x will be kept. If w
has degree at least three in T , then the algorithm stops the graph exploration here and keeps
the edge {x, v}, see Line 16. Again, this is to keep the running time at O(kn) overall.

Let Y ⊆ X denote the neighborhood of w in X. The partial augmenting path x, v, w can
be extended to each vertex in Y . Thus, if the algorithm did not yet find 6k2 paths from x
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Algorithm 1: Algorithm for Step 6 of our kernelization.
Input: A matching instance (G = (V, E), s), a feedback vertex set X ⊆ V of size k for G

with k < log n and at most k2(2k + 1) bottommost leaves in G−X, and a maximum
matching MG−X for G−X with at most k2 free vertices in G−X that are all leaves.

Output: An equivalent matching instance (G′, s′) such that G′ contains at most O(k32k)
vertices and edges.

1 Fix an arbitrary bijection f : 2X → {1, . . . , 2k}
2 foreach v ∈ V \X do
3 Set fX(v)← f(N(v) ∩X) // The number fX(v) < n can be read in constant time.
4 Initialize a table Tab of size k · 2k with Tab[x, f(Y )]← 0 for x ∈ X, ∅ ( Y ⊆ X

5 T ← pendant-free tree (forest) of G−X

6 V ≥3
T ← vertices in T with degree ≥ 3

7 foreach x ∈ X do
8 foreach v ∈ N(x) \X do
9 if Keep-Edge(x, v) = false then // Is {x, v} needed for an augmenting path?

10 delete {x, v}

11 exhaustively apply Reduction Rules 2.1 and 2.3
12 return (G, s).
13 Function Keep-Edge(x ∈ X, v ∈ V \X)
14 if v is free wrt. MG−X or v ∈ V ≥3

T then return true
15 w ← matched neighbor of v in MG−X

16 if w ∈ V ≥3
T or w is adjacent to free leaf in G−X then return true

17 if w has at least one neighbor in X and Tab[x, fX(w)] < 6k2 then
18 Tab[x, fX(w)]← Tab[x, fX(w)] + 1
19 return true
20 foreach neighbor u 6= v of w that is matched wrt. MG−X and fulfills {u, x} /∈ E do
21 if Keep-Edge(u, x) = true then return true
22 return false

to vertices whose neighborhood in X is also Y , then the table entry Tab[x, fX(w)] (where
fX(w) encodes the set Y = N(w) ∩X) is increased by one and the edge {x, v} will be kept
(see Lines 18 and 19). The proof that 6k2 paths suffice is based on an exchange argument
using Lemma 9. If the algorithm already found 6k2 “augmenting paths” from x to Y , then
the neighborhood of w in X is irrelevant for x and the algorithm continues.

In Line 20, all above discussed cases to keep the edge {x, v} do not apply and the
algorithm extends the partial augmenting part x, v, w by considering the neighbors of w
except v. Since the algorithm dealt with possible extensions to vertices in X in Lines 17
to 19 and with extensions to free vertices in G − X in Line 14, it follows that the next
vertex on this path has to be a vertex u that is matched wrt. MG−X . Furthermore, since we
want to extend a partial augmenting path from x, we require that u is not adjacent to x as
otherwise x, u would be another, shorter partial augmenting path from x to u and we do not
need the currently stored partial augmenting path.

The next lemma shows that Algorithm 1 is correct and runs in O(kn) time.

I Lemma 10. Let (G = (V,E), s) be a matching instance, let X ⊆ V be a feedback vertex set
of size k with k < logn and at most k2(2k + 1) bottommost leaves in G−X, and let MG−X

be a maximum matching for G−X with at most k2 free vertices in G−X that are all leaves.
Then, Algorithm 1 computes in O(kn) time an equivalent instance (G′, s′) of size O(k32k).
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a1 a2 a3 a4 a5 a6 a7

b1b2b3b4b5b6b7

A

B

Figure 1 A chain graph. Note that the
ordering of the vertices in A is going from
left to right while the ordering of the ver-
tices in B is going from right to left. The
reason for these two orderings being drawn
in different directions is that a maximum
matching can be drawn as parallel edges,
see e. g. the bold edges.

Simply performing Steps 1 to 6 yields the following kernel.

I Theorem 11. Matching parameterized by the feedback vertex number k admits a kernel
of size 2O(k). It can be computed in O(kn) time.

Applying the O(m
√
n)-time algorithm for Matching [20] on the kernel yields:

I Corollary 12. Matching can be solved in O(kn + 2O(k)) time, where k is the feedback
vertex number.

3 Kernelization for Matching on Bipartite Graphs

In this section, we investigate the possibility of efficient and effective preprocessing for
Bipartite Matching. In particular, we show a linear-time computable polynomial-size
kernel with respect to the parameter distance k to chain graphs. In the first part of this
section, we provide the definition of chain graphs and describe how to compute the parameter.
In the second part, we discuss the kernelization algorithm.

Definition and computation of the parameter. We first define chain graphs and we show
that we can 4-approximate the parameter set in linear time.

I Definition 13 ([5]). Let G = (A,B,E) be a bipartite graph. Then G is a chain graph if
each of its two color classes A,B admits a linear order w.r.t. neighborhood inclusion.

I Lemma 14. There is a linear-time factor-4 approximation for the problem of deleting a
minimum number of vertices in a bipartite graph in order to obtain a chain graph.

Kernelization. Due to lack of space, we defer the details of our kernelization algorithm
to the full version and provide in the following a high-level overview. In contrast to the
kernelization in the previous section, here it is easy to bound the number of neighbors of each
vertex in the deletion set X but complicated to shrink the remaining graph. Let G = (A,B,E)
be the given bipartite graph and let X a vertex subset such that G−X is a chain graph.
First compute a maximum matching MG−X in G−X where the edges in MG−X are “parallel
to each other”, see Figure 1 for an illustration. Using Observation 1, we obtain the following.

I Reduction Rule 3.1. If |MG−X | ≥ s, then return a trivial yes-instance; if s > |MG−X |+k,
then return a trivial no-instance.

The next step of our kernelization algorithm is to bound the degree of each vertex in X. It
suffices to keep for each x ∈ X its k neighbors with smallest degree in A and in B, respectively.
Due the small degree, such a vertex v is either free or matched to high-degree vertex u, see
Figure 1. The correctness proof in the latter case uses the observation that there are a lot
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of possibilities to continue an augmenting path x, v, u as u has high degree. The reason for
keeping k neighbors for each x ∈ X is that at most k − 1 neighbors might be “matched”
(either directly or via an augmenting path) to other vertices in X.

After having bounded the degree of the vertices, we can show that for each vertex v in
G−X that is adjacent to a vertex in X we need to keep at most k neighbors right of v and k
neighbors left of v (with respect to the linear ordering in each color class). Proving that this
is indeed correct is the most technical part and relies heavily on the facts that G−X is a
chain graph and that the edges in MG−X are “parallel”.

Since for each of the k vertices in X we keep at most 2k neighbors in G −X, and for
each of these neighbors, we keep 2k vertices, we arrive at the following.

I Theorem 15. Matching on bipartite graphs admits a linear-time computable cubic-vertex
kernel with respect to the vertex deletion distance to chain graphs.

Applying the O(n2.5)-time algorithm for Bipartite Matching [16] on the kernel yields:

I Corollary 16. Matching can be solved in O(k7.5 + n + m) time, where k is the vertex
deletion distance to chain graphs.

Using the randomized O(nω)-time bipartite matching algorithm based on matrix multi-
plication [21], one would obtain a randomized algorithm with running time O(k3ω + n+m),
where ω < 2.373 is the matrix multiplication exponent.

4 Conclusion

We focused on kernelization results for Matching. In ongoing work, we are testing the
practical relevance of our data reduction rules. There remain numerous challenges for future
research as discussed in the second part of this concluding section. First, however, let us
discuss the closely related issue of FPTP algorithms for Matching. There is a generic
augmenting path-based approach to provide FPTP algorithms for Matching: One can find
an augmenting path in linear time [2, 12, 20]. So the solving FPTP algorithm for Matching
parameterized by some vertex deletion distance k works as follows:
1. Use a constant-factor linear-time (approximation) algorithm to compute a vertex set X

such that G−X is a “trivial” graph (where Matching is linear-time solvable).
2. Compute in linear time an initial maximum matching M in G−X.
3. Start with M as an initial matching in G and increase its size at most |X| = k times to

obtain in O(k · (n+m)) time a maximum matching for G.
From this we can directly derive that Matching can be solved in O(k(n+m)) time, where k is
one of the following parameters: feedback vertex number, feedback edge number, vertex cover
number. Moreover, Bipartite Matching can be solved in O(k(n+m)) time, where k is the
vertex deletion distance to chain graphs. Using our kernelization results, the multiplicative
dependence of the running time on parameter k can now be made an additive one. For
instance, in this way the running time for Bipartite Matching parameterized by vertex
deletion distance to chain graphs “improves” from O(k(n+m)) to O(k7.5 + n+m).

We conclude with listing some questions and tasks for future research. Can the running
time of the kernelization with respect to feedback vertex set (see Section 2) be improved to
linear time? Moreover, can the exponential upper bound on the kernel size be decreased
to a polynomial upper bound? Is there a linear-time computable kernel for Matching
parameterized by the treewidth t (assuming that t is given)? This would complement the
recent randomized O(t4n logn) time algorithm [10]. Can one extend the kernel of Section 3
from Bipartite Matching to Matching parameterized by the distance to chain graphs?
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