Independent Feedback Vertex Set for Ps-free
Graphs*!

Marthe Bonamy', Konrad K. Dabrowski?, Carl Feghali?,
Matthew Johnson?, and Daniél Paulusma®

1 CNRS, LaBRI, Université de Bordeaux, France,
marthe.bonamy@u-bordeaux.fr

2 Durham University, Durham, UK,
konrad.dabrowski@durham.ac.uk

3 IRIF & Université Paris Diderot, France,
feghali@irif.fr

4 Durham University, Durham, UK,
matthew. johnson2@durham.ac.uk

5 Durham University, Durham, UK,
daniel.paulusma@durham.ac.uk

—— Abstract

The NP-complete problem FEEDBACK VERTEX SET is to decide if it is possible, for a given integer
k > 0, to delete at most k vertices from a given graph so that what remains is a forest. The variant
in which the deleted vertices must form an independent set is called INDEPENDENT FEEDBACK
VERTEX SET and is also NP-complete. In fact, even deciding if an independent feedback vertex
set exists is NP-complete and this problem is closely related to the 3-COLOURING problem, or
equivalently, to the problem of deciding if a graph has an independent odd cycle transversal,
that is, an independent set of vertices whose deletion makes the graph bipartite. We initiate a
systematic study of the complexity of INDEPENDENT FEEDBACK VERTEX SET for H-free graphs.
We prove that it is NP-complete if H contains a claw or cycle. Tamura, Ito and Zhou proved that
it is polynomial-time solvable for Py-free graphs. We show that it remains in P for Ps-free graphs.
We prove analogous results for the INDEPENDENT ODD CYCLE TRANSVERSAL problem, which
asks if a graph has an independent odd cycle transversal of size at most k for a given integer
k> 0.

1998 ACM Subject Classification G.2.2 Graph Theory
Keywords and phrases feedback vertex set, odd cycle transversal, independent set, H-free graph

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.16

1 Introduction

Many computational problems in the theory and application of graphs can be formulated
as modification problems: from a graph G, some other graph H with a desired property
must be obtained using certain permitted operations. The number of graph operations used
(or some other measure of cost) must be minimised. The computational complexity of a
graph modification problem depends on the desired property, the operations allowed and the
possible inputs; that is, we can prescribe the class of graphs to which G must belong.

* This paper received support from EPSRC (EP/K025090/1), London Mathematical Society (41536), the
Leverhulme Trust (RPG-2016-258) and Fondation Sciences Mathématiques de Paris.
t A full version of the paper is available at https://arxiv.org/abs/1707.09402.

© Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniél Paulusma;
37 licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).

Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 16; pp. 16:1-16:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.16
https://arxiv.org/abs/1707.09402
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2

Independent Feedback Vertex Set for Ps-free Graphs

A set S of vertices in a graph G is a feedback vertex set of G if removing the vertices of S
results in an acyclic graph, that is, the graph G — S is a forest. The FEEDBACK VERTEX SET
problem asks if a graph has a feedback vertex set of size at most k for some integer k > 0
and is a well-known example of a graph modification problem: the desired property is that
the obtained graph is acyclic and the permitted operation is vertex deletion. The directed
variant was one of the original problems proven to be NP-complete by Karp. The proof of
this implies NP-completeness of the undirected version even for graphs of maximum degree 4.

In this paper, we consider the problem where we require the feedback vertex set to be an
independent set. We call such a set an independent feedback vertex set.

INDEPENDENT FEEDBACK VERTEX SET
Instance: a graph G and an integer k > 0.

Question: does G have an independent feedback vertex set of size at most k?

Many other graph problems have variants with an additional constraint that a set of vertices
must be independent. For example, see [6] for a survey on INDEPENDENT DOMINATING SET,
and [10] for INDEPENDENT ODD CYCLE TRANSVERSAL, also known as STABLE BIPARTIZA-
TION. We survey results on INDEPENDENT FEEDBACK VERTEX SET below.

Not every graph admits an independent feedback vertex set (consider complete graphs on
at least four vertices). Graphs that do admit an independent feedback vertex set are said to
be near-bipartite, and we can ask about recognising these graphs.

NEAR-BIPARTITENESS
Instance: a graph G.

Question: is G near-bipartite (that is, does G have an independent feedback vertex set)?

NEAR-BIPARTITENESS is NP-complete even for graphs of maximum degree 4 [15] or dia-
meter 3 [3]. Hence, by setting k = n, we find that INDEPENDENT FEEDBACK VERTEX SET
is NP-complete for these two graph classes. The INDEPENDENT FEEDBACK VERTEX SET
problem is even NP-complete for planar bipartite graphs of maximum degree 4 (see [14]).
As bipartite graphs are near-bipartite, this result shows that there are classes of graphs
where INDEPENDENT FEEDBACK VERTEX SET is harder than NEAR-BIPARTITENESS. To
obtain tractability results for INDEPENDENT FEEDBACK VERTEX SET, we need to make
some further assumptions.

One way is to consider the problem from a parameterized point of view; see [1, 11] for FPT
algorithms for INDEPENDENT FEEDBACK VERTEX SET when parameterized by k. Another
way to obtain tractability results is to restrict the input to special graph classes in order
to determine graph properties that make the problem polynomial-time solvable. Tamura
et al. [14] showed that INDEPENDENT FEEDBACK VERTEX SET is polynomial-time solvable
for chordal graphs, graphs of bounded treewidth and for cographs. The latter graphs are
also known as Pj-free graphs (P, denotes the path on r vertices and a graph is H-free if it
has no induced subgraph isomorphic to H), and this strengthened a result of Brandstadt et
al. [4], who proved that NEAR-BIPARTITENESS is in P for Py-free graphs.

Our Contribution. The INDEPENDENT FEEDBACK VERTEX SET problem is equivalent to
asking for a (proper) 3-colouring of a graph such that one colour class has at most k vertices
and the union of the other two induces a forest. We wish to compare the behaviour of
INDEPENDENT FEEDBACK VERTEX SET with that of 3-COLOURING, which we observe is
equivalent to the problem of deciding if a graph has an independent odd cycle transversal,
that is, a set of vertices whose deletion makes the graph bipartite. However, so far very few

M. Bonamy, K. K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma

graph classes are known for which INDEPENDENT FEEDBACK VERTEX SET is tractable and
our goal is to find more of them. For this purpose, we consider H-free graphs and extend
the result [14] for Py-free graphs in a systematic way.

In Section 2, we consider the cases where H contains a cycle or a claw. We first prove that
NEAR-BIPARTITENESS, and thus INDEPENDENT FEEDBACK VERTEX SET, is NP-complete
on line graphs, which form a subclass of the class of claw-free graphs. We then prove that

INDEPENDENT FEEDBACK VERTEX SET is NP-complete for graphs of arbitrarily large girth.

Together, these results imply that INDEPENDENT FEEDBACK VERTEX SET is NP-complete
for H-free graphs if H contains a cycle or claw. Hence, only the cases where H is a linear
forest, that is, a disjoint union of paths, remain open. In particular, the case where H is a
single path has not yet been resolved. Due to the result of [14] for P,-free graphs, the first
open case to consider is when H = Ps.

The class of Ps-free graphs is a well-studied graph class. For instance, Hoang et al. [8]
proved that for every integer k, k-COLOURING is polynomial-time solvable for Ps-free graphs,
whereas Golovach and Heggernes [7] showed that CHOOSABILITY is fixed-parameter tractable
for Ps-free graphs when parameterized by the size of the lists of admissible colours. Lokshantov
et al. [9] solved a long-standing open problem by giving a polynomial-time algorithm for
INDEPENDENT SET restricted to Ps-free graphs.

Our main result is that INDEPENDENT FEEDBACK VERTEX SET is polynomial-time
solvable for Ps-free graphs and this is proved in Sections 3 and 4. In Section 3 we give a
polynomial-time algorithm for NEAR-BIPARTITENESS on Ps-free graphs. Then in Section 4
we show how to extend this algorithm to solve INDEPENDENT FEEDBACK VERTEX SET in
polynomial time for Ps-free graphs. Our results for INDEPENDENT FEEDBACK VERTEX SET

also hold for INDEPENDENT ODD CYCLE TRANSVERSAL (see the arXiv version of our paper).

2 Hardness When H Contains a Cycle or Claw

The line graph L(G) of a graph G = (V, E) has the edge set E of G as its vertex set, and two
vertices ey and ey of L(G) are adjacent if and only if e; and e share a common end-vertex
in G. The claw is the graph with vertices a, b, ¢, d and edges ab, ac, ad. It is well known
and easy to see that every line graph is claw-free. We omit the proof of Theorem 1.

» Theorem 1. NEAR-BIPARTITENESS is NP-complete for line graphs of planar subcubic
bipartite graphs.
FEEDBACK VERTEX SET is also NP-complete for line graphs of planar cubic bipartite

graphs [12]. Theorem 1 has the following immediate consequence (take k = n).

» Corollary 2. INDEPENDENT FEEDBACK VERTEX SET is NP-complete for line graphs of
planar subcubic bipartite graphs.

The length of a cycle C is the number of edges of C. The girth g(G) of a graph G is the
length of a shortest cycle of G. Proposition 3 follows from known results; we omit the proof.

» Proposition 3. For every constant g > 3, INDEPENDENT FEEDBACK VERTEX SET is
NP-complete for graphs of maximum degree at most 4 and girth at least g.

Recall that every line graph is claw-free. We also observe that for a graph H with a
cycle C, the class of graphs of girth at least |C|+ 1 is a subclass of the class of H-free graphs.
Hence, we can combine Corollary 2 and Proposition 3 to obtain the following result.

» Corollary 4. Let H be a graph that contains a claw or a cycle. Then INDEPENDENT
FEEDBACK VERTEX SET is NP-complete for H-free graphs of maximum degree at most 4.

16:3

ISAAC 2017

16:4

Independent Feedback Vertex Set for Ps-free Graphs

3 Near-Bipartiteness of Ps-free Graphs

In this section, we show that NEAR-BIPARTITENESS is in P for Ps-free graphs, i.e. we give a
polynomial-time algorithm for testing if a Ps-free graph has an independent feedback vertex
set. To obtain a minimum feedback vertex set we need to first run this algorithm (apart
from the step where we encode an instance of TROUBLE-FREE COLOURING as an instance of
2-SATISFIABILITY) and then do the additional work described in Section 4.

Our algorithm in this section solves a slightly more general problem, which is a special
variant of LIST 3-COLOURING. In the LisT 3-COLOURING problem each vertex v is assigned
a subset L(v) of colours from {1,2,3} and we must verify if a 3-colouring exists in which
each vertex v is coloured with a colour from L(v). We say that a 3-colouring of a graph G is
semi-acyclic if the vertices coloured 2 or 3 induce a forest, and we note that G has such a
colouring if and only if G is near-bipartite.

LisT SEMI-ACYCLIC 3-COLOURING
Instance: a graph G and a function L : V(G) — {S | S C {1,2,3}}.
Question: does G have a semi-acyclic 3-colouring c such that c(v) € L(v) for allv € V(G)?

A graph G is near-bipartite if and only if (G, L), with L(v) = {1,2,3} for all v € V(G),
is a yes-instance of L1ST SEMI-ACYCLIC 3-COLOURING. To recognise near-bipartite Ps-free
graphs in polynomial time, we will show the stronger statement that LisT SEMI-ACYCLIC
3-COLOURING is polynomial-time solvable for Ps-free graphs. A set of vertices in a graph G
is dominating if every vertex of G is either in the set or has at least one neighbour in it. We
will use a lemma of Bacsé and Tuza.

» Lemma 5 ([2]). Fvery connected Ps-free graph admits a dominating set that induces either
a clique or a Ps.

Lemma 5 implies that every connected 3-colourable Ps-free graph has a dominating set
of size at most 3 (since it has no clique on more than three vertices). This was used by
Randerath et al. [13] to show that 3-COLOURING is polynomial-time solvable on Ps-free
graphs. Their algorithm tries all possible 3-colourings of a dominating set of size at most 3.
It then adjusts the lists of the other vertices (which were originally set to {1,2,3}) to lists
of size at most 2. As shown by Edwards [5], 2-LisT COLOURING can be translated to an
instance of 2-SATISFIABILITY, which is solvable in linear time. Hence this approach results in
a polynomial (even constant) number of instances of the 2-SATISFIABILITY problem. Our goal
is also to apply Lemma 5 on a connected Ps-free graph G and to reduce an instance (G, L) of
LisT SEMI-AcYycLIC 3-COLOURING to a polynomial number of instances of 2-SATISFIABILITY.
However, this is less straightforward than in the case of 3-COLOURING restricted to Ps-free
graphs: the restriction of LisST SEMI-AcYCLIC 3-COLOURING to lists of size 2 turns out to
be NP-complete for general graphs even if every list consists of either colours 1 and 3 or only
colour 2. We omit the proof of the next theorem.

» Theorem 6. LisT SEMI-ACYCLIC 3-COLOURING is NP-complete even if
L(v) € {{1,3},{2}} for every vertex v in the input graph.

By Theorem 6, to prove that LisT SEMI-ACcYcCLIC 3-COLOURING is in P on Ps-free graphs,
we need to refine our analysis and exploit Ps-freeness beyond the use of Lemma 5. We adapt
the approach used by Hoang et al. [8] to show that k-COLOURING is in P on Ps-free graphs
for all k > 4 (extending the analogous result of Randerath et al. [13] for 3-COLOURING). Let
us outline the proof of [8]. Lemma 5 implies that every k-colourable Ps-free graph G has

M. Bonamy, K. K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma

a dominating set D of size at most k (as the clique number is at most k). Fix an ordering
D = {v1,...,vpi}. Then decompose the set of vertices not in D into |D| “layers” so that the
vertices in a layer ¢ are adjacent to v; (and possibly to v; for j > 4) but not to any v, with
h < i. Using the Ps-freeness of G to analyse the adjacencies between different layers, it is
possible to branch in such a way that a polynomial number of instances of (k—1)-COLOURING
are obtained. Hence, by repetition, a polynomial number of instances of 3-COLOURING are
reached, which can be solved in polynomial time due to the result of [13].

The algorithm of [8] works by considering the more general LisT k-COLOURING problem,
where each vertex v is assigned a list L(v) C {1,...,k} of permitted colours and the question
is whether there is a colouring in which each vertex is assigned a colour from its list. The
algorithm immediately removes any vertices whose lists have size 1 at any point (and then
adjusts the lists of admissible colours of all neighbours of such vertices). We will follow the
approach of [8], but cannot remove any vertices whose lists contain a singleton colour if this
colour is 2 or 3. To overcome this extra complication we carefully analyse the 4-vertex cycles
in the graph after observing that these cycles are the only obstacles that may prevent a
3-colouring of a Ps-free graph from being semi-acyclic.

For a subset S C V(G) of a graph G, we let G[S]| denote the subgraph of G induced by S.

» Theorem 7. LiST SEMI-ACYCLIC 3-COLOURING is solvable on Ps-free graphs in O(n')
time.

Proof. Consider an input (G, L) for the problem such that G is Ps-free. Since the problem
can be solved component-wise, we may assume that G is connected. If G contains an
induced Ky then it is not 3-colourable and the input is a no-instance. As we can test
whether G contains an induced K4 in O(n?*) time, we now assume that G is Ky-free. We may
also assume that G contains at least three vertices, otherwise the problem can be trivially
solved.

For i€ {1,2,3} let G, = G[{v € V(G) | i ¢ L(v)}]. We apply the following propagation
rules exhaustively, and, later in the proof, every time we branch on possibilities, we assume
that these rules are again applied exhaustively immediately afterwards.

Rule 1. If u,v € V(G) are adjacent and |L(u)| =1, set L(v) := L(v) \ L(u).

Rule 2. If L(v) = {) for some v € V(G), return no.

Rule 3. If G; is not bipartite for some i € {1,2, 3}, return no.

Rule 4. If G; contains an induced Cy, return no.

Rule 5. If G contains an induced C4, and exactly one vertex v of this cycle has a list
containing the colour 1, set L(v) = {1}.

We must show that these rules are safe. That is, that when they modify the instance they
do not affect whether or not it is a yes-instance or a no-instance, and when they return the
answer no, this is correct and no semi-acyclic colouring that respects the lists can exist. This
is trivial for Rules 1 and 2. We may apply Rule 3 since in any 3-colouring of G every pair of
colour classes must induce a bipartite graph. We may apply Rules 4 and 5 since in every
solution, every induced C; must contain at least one vertex coloured with colour 1. In fact,
if there is a 3-colouring of G with a cycle made of vertices coloured only 2 and 3, then this
cycle must be an even cycle. Since G is Ps-free, such a cycle must in fact be isomorphic to Cjy.
Hence the problem, when restricted to Ps-free graphs, is equivalent to testing whether G has
a 3-colouring respecting the lists such that every induced Cy contains at least one vertex
coloured with colour 1.

16:5

ISAAC 2017

16:6

Independent Feedback Vertex Set for Ps-free Graphs

By Lemma 5, G has a dominating set S that either is a clique or induces a P3. If it is a
clique, then it has at most three vertices, as G is Ky-free, so we can find such a set in O(n?)
time. Thus, adding vertices arbitrarily if necessary, we may assume S = {aj,as,a3}. We
consider all possible combinations of colours that can be assigned to the vertices in .S, that
is, we branch into at most 3% cases, in which a;, as and a3 have each received a colour, or
equivalently, have had their list of permissible colours reduced to size exactly 1. In each case
we proceed as follows.

Assume that L(a;) = {c1}, L(az) = {c2} and L(as) = {c3} and again apply the
propagation rules above. Partition the vertices of V'\ S into three parts Vi, Vo, V: let V; be
the set of neighbours of a; in V' \ S, let V5 be the set of neighbours of as in V'\ S that are
not adjacent to a1, and let V3 = V(G) \ (S UV, UV2). Each vertex in V3 is non-adjacent
to a1 and asq, so it is adjacent to as, as S is dominating. For ¢ € {1,2,3}, if v € V;, then
L(v) C {1,2,3} \ {¢;} by Rule 1, so each vertex has at most two colours in its list. For
i € {1,2,3} let V/ be the subset of vertices v in V; with L(v) = {1,2,3} \ {c¢;}. Recall that
for i € {1,2,3}, we defined G; = G[{v € V(G) | i ¢ L(v)}]. As for every i € {1,2,3}, every
vertex of V; belongs to G.,, V1, V2 and V3 each induce a bipartite graph in G by Rule 3.
Therefore, we may partition each V; into two (possibly empty) independent sets V" and V.

Our strategy is to reduce the instance (G, L) to a polynomial number of instances (G, L'),
in which there are no edges between any two distinct sets V; and Vj’ (defined with respect
to L"). We will do this by branching on possible partial colourings in such a way that
afterwards there are no edges between V;” and V/”, no edges between V;” and V]’ and no
edges between V" and V[for every pair i,j € {1,2,3} with i # j. As the branching
procedure is similar for each of these possible combinations, we pick an arbitrary pair,
namely V" and VJ’. As we shall see, we do not remove any edges between V;’" and V.
Instead, we decrease the lists of some of their vertices to size 1, so that these vertices will
leave V{ U VJ by definition of VY, V4§ (and thus leave V{" and V;’ by definition of V', V3").

Suppose that G[V{" U V'] contains an induced 2P, with edges v’ and vv’ for u,v € V{’
and v',v" € V3'. Then G[{v/,u,a1,v,v'}] is a Ps, a contradiction. It follows that G[V{" U VY|
is a 2P,-free bipartite graph, that is, the edges between V{” and V3’ form a chain graph, which
means that the vertices of V{ can be linearly ordered by inclusion of neighbourhood in V3’
In other words, we fix an ordering V{" = {u1,...,ux} such that Ny (u1) 2 --- 2 Nyy (ug).

We choose an arbitrary colour ¢ € {1,2,3} \ {c1,c2}. Note that if ¢; # co then this
choice is unique and otherwise there are two choices (as we will show, it suffices to branch on
only one choice). Also note that every vertex in V/” and V;’ has colour ¢ in its list.

We now branch over k + 1 possibilities, namely the possibilities that vertex w; is the first
vertex coloured with colour ¢’ (so vertices uq, ..., u;_1, if they exist, do not get colour ¢') and
the remaining possibility that no vertex of V{ is coloured with colour ¢/. To be more precise,
for branch i = 1 we set L(u;) = {¢'}, for each branch 2 < i < k we remove colour ¢’ from
each of L(uq),...,L(u;—1) and set L(u;) = {¢'} and for branch ¢ = k4 1 we remove colour ¢/
from each of L(uq),..., L(ug). If i = k + 1, all vertices of V{” will have a unique colour in
their list and thus leave V{ and thus V{” by definition of V;. Hence, V{’ becomes empty and
thus we no longer have edges between V{” and V3’. Otherwise, if ¢ < k, then all of uq,...,u;
will have a list containing exactly one colour, so they will leave V] and therefore V/'. By
Rule 1 all neighbours of u; in V3’ will have ¢/ removed from their lists, so they will leave V4
and therefore V4’. By the ordering of neighbourhoods of vertices in V{’, this means that no
vertex remaining in V{” has a neighbour remaining in V4’, so if i < k, then it is also the case
that we no longer have edges between V{” and V3.

M. Bonamy, K. K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma

Note that removing all the edges between distinct sets V; and Vj’ in the above way
involves branching into O(n'?) cases. We consider each case separately, and for each case we

proceed as below.

Thus we may assume that there are no edges between any two distinct sets V; and Vj’ .

We say that an induced Cy is tricky if there exists a (proper) colouring of it (not necessarily
extendable to all of G) using only the colours 2 and 3 such that every vertex receives a
colour from its list. We say that a vertex in an induced Cy is good for this Cy if its list
contains the colour 1. By definition of tricky, every good vertex for a tricky C4 must belong

to VY U V5 U V. By Rules 4 and 5, every tricky Cy must contain at least two good vertices.

If a C4 contains two good vertices that are adjacent, then they must belong to the same
set V; (since there are no edges between any two distinct sets V" and V), so they must have
the same list. This means that in every colouring of this Cy that respects the lists, one of the

good vertices in this Cy will be coloured with colour 1, contradicting the definition of tricky.

We conclude that every tricky Cy must contain exactly two good vertices, which must be
non-adjacent.

Suppose G contains a tricky induced Cy on vertices vy, vs,v3,v4, in that order, such
that v; and v3 are good. Since the Cj is tricky, we must either have:

2 € L(v1), 3 € L(v2), 2 € L(vs) and 3 € L(v4) or

3 € L(v1), 2 € L(va), 3 € L(vs) and 2 € L(vy).

Since vy and vy are not good, and there are no edges between distinct sets of the form V;,
the above implies that one of the following must hold:

L(vy) = {1,2}, L(ve) = {3}, L(vs) = {1,2} and L(vs) = {3} or

L(vy) = {1, 3}, L(ve) = {2}, L(vs) = {1,3} and L(vs) = {2}.

We say that an induced CYy is strongly tricky if its vertices have lists of this form. Note that,
by the above arguments, we may assume that all tricky induced Cys in the instances we
consider are in fact strongly tricky. For S C {1,2,3}, let Lg denote the set of vertices v with
L(v) = S (to simplify notation, we will write L; instead of L;; and L; ; instead of Ly; j;
wherever possible). Note that for distinct sets S, T C {1,2,3} with |S| = |T| = 2, no vertex
in Lg can have a neighbour in Ly, because such vertices would be in different sets V/,
and therefore cannot be adjacent by our branching. By Rule 1, if S C T C {1,2,3} with
|S| =1 and |T| = 2, then no vertex in Lg can have a neighbour in Lz. From the above two
arguments it follows that if a vertex is in Ly 2, Lo 3 or Ly 3, then all its neighbours outside
this set must be in L3, Ly or Lo, respectively.

Recall that every tricky induced Cy is strongly tricky, and is therefore entirely contained
in either G[Ly UL 3] or G[L3U L4 2]. By Rule 3, G; and therefore G[Ls 3] is bipartite. Hence
we can colour the vertices of Lo 3 with colours from their lists such that no vertex in Lo 3 is
adjacent to a vertex of the same colour in G and no induced Cys are coloured with colours
alternating between 2 and 3 (indeed, recall that induced Cys cannot exist in G(Lg3) by
Rule 4). It therefore remains to check whether the vertices of G[Ly U Ly 3] (and G[L3 U L1 2])
can be coloured with colours from their lists so that no pair of adjacent vertices in L 3
(respectively Lj o) receive the same colour and every strongly tricky C4 has at least one

vertex coloured 1. By symmetry, it is sufficient to show how to solve the G[Ly U Ly 3] case.

Hence we have reduced the original instance (G, L) to a polynomial number of instances of a
new problem, which we define below after first defining the instances.

» Definition 8. A graph G = (V, E) is troublesome if every vertex v in G has list either
L(v) = {2} or L(v) = {1, 3}, such that Lo is an independent set and L; 3 induces a bipartite
graph.

16:7

ISAAC 2017

16:8

Independent Feedback Vertex Set for Ps-free Graphs

In particular, for each of our created instances the set L, is independent due to Rule 1
and L 3 induces a bipartite graph by Rule 3. Note that by definition of troublesome, all
tricky induced Cys in a troublesome graph are strongly tricky.

» Definition 9. Let G be a troublesome graph. A 3-colouring of the graph G is trouble-free
if each vertex receives a colour from its list, no two adjacent vertices of G are coloured alike
and at least one vertex of every strongly tricky induced Cy of G receives colour 1.

This leads to the following problem.

TROUBLE-FREE COLOURING
Instance: a troublesome Ps-free graph G

Question: does G have a trouble-free colouring?

It is easy to verify that TROUBLE-FREE COLOURING can be encoded as an instance of
2-SATISFIABILITY. So, by branching, we have reduced the original instance (G, L) of L1sT
SEMI-ACYCLIC 3-COLOURING to a polynomial number of instances of 2-SATISFIABILITY. If
we find that one of the instances of the latter problem is a yes-instance, then we obtain a
corresponding yes-instance of TROUBLE-FREE COLOURING. We therefore solve TROUBLE-
FREE COLOURING on G[Ly U Ly 3] and (after swapping colours 2 and 3) on G[L3 U Ly o]. If
one of these two instances of TROUBLE-FREE COLOURING is a no-instance, then we return
no for this branch and try the next one. If both of these are yes-instances, then we return
yes and obtain a semi-acyclic 3-colouring by combining the colourings on G[L; U Lo 3],
G[L2 U Ly 3] and (after swapping colours 2 and 3 back) G[L3 U L o). If every branch returns
no then the original graph has no semi-acyclic 3-colouring. This completes the proof of the
correctness of the algorithm. We omit the runtime analysis. |

We obtain the following corollary.
» Corollary 10. NEAR-BIPARTITENESS can be solved in O(n'®) time for Ps-free graphs.

Proof. Let G be a graph. Set L(v) = {1,2,3} for all v € V(G). Then G is near-bipartite if
and only if (G, L) is a yes-instance of LIST SEMI-ACYCLIC 3-COLOURING. In particular, the
vertices coloured 1 by a semi-acyclic colouring of G form an independent feedback vertex set
of G. The corollary follows by Theorem 7. <

4 Independent Feedback Vertex Sets of Ps-free Graphs

In this section we prove that INDEPENDENT FEEDBACK VERTEX SET is polynomial-time
solvable for Ps-free graphs by extending the algorithm from Section 3. We omit the proof
of Lemma 11, which uses the proof of Theorem 7. As such, we heavily use Definitions 8
and 9. Let G = (V, E) be a troublesome Ps-free graph. For a trouble-free colouring ¢ of G,
let t.(G) = [{u € V' | ¢(u) = 1}| denote the number of vertices of G coloured 1 by ¢. Let ¢(G)
be the minimum value ¢.(G) over all trouble-free colourings ¢ of G.

» Lemma 11. Let G be a near-bipartite Ps-free graph. In O(n'®) time it is possible to
reduce the problem of finding the smallest independent feedback vertex set of G to finding the
value t(G') of O(n'?) instances of TROUBLE-FREE COLOURING, all on induced subgraphs
of G.

By Lemma 11, it suffices to prove the following lemma (in its proof we again use the
terminology introduced in the proof of Theorem 7).

M. Bonamy, K. K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma

» Lemma 12. Let G be a troublesome Ps-free graph on n vertices. Determining t(G) can be
done in O(n*) time.

Proof. Let G = (V, E) be a troublesome Ps-free graph. Note that in G, an induced Cy on

vertices v, Vg, U3, v4, in that order, is strongly tricky if v1,v3 € L1 3 and va,v4 € Lo.

We construct an auxiliary graph H as follows. We let V(H) = L; 3. Every edge of G[L1 3]
belongs to H. We say that such edges are red. For non-adjacent vertices vq,vs € Ly 3, if
there is a strongly tricky induced C4 on vertices vy, va, v3, v4 With vo, vy € Lo, we add the
edge v1vs to H. We say that such edges are blue. Note that H is a supergraph of G[L; 3]
and that there exists at most one edge, which is either blue or red, between any two vertices
of H. We call a colouring of H feasible if the following two conditions are met:

1. no red edge is monochromatic, that is, the two end-vertices of every red edge must be
coloured 1&3 respectively or 3&1 respectively;

2. the two end-vertices of every blue edge must be coloured, respectively, 1&3, 3&1 or
1&1 (the only forbidden combination is 3&3, as in this case we obtain a strongly tricky
induced C4 in G with colours 2 and 3).

We note that there is a one-to-one correspondence between the set of trouble-free colourings

of G and the set of feasible colourings of H. Hence, we need to find a feasible colouring

of H that minimises the number of vertices coloured 1. Let Ri,..., R, be the components
of G[L; 3], or equivalently, of the graph obtained from H after removing all blue edges. We
call these components red. As G[L; 3] is bipartite and Ps-free, all red components of H are
bipartite and Ps-free. We denote the bipartition classes of each R; by X; and Y;, arbitrarily

(note that these classes are unique, up to swapping their order). We apply the following five

rules on H exhaustively (we omit proofs of correctness for these rules)

Rule 1. If there is a blue edge in H between two vertices u,v € X; or two vertices u,v € Y;,
then assign colour 1 to w and v.

Rule 2. If there is a blue edge e in H between a vertex u € X; and a vertex v € Y, then
delete e from H.

Rule 3. If there are blue edges uv and uv’ where u € X; UY;, v € X; and v’ € Y] (j # i),
then assign colour 1 to u.

Rule 4. If an uncoloured vertex u is adjacent to a vertex with colour 3 via a blue edge, then
assign colour 1 to u.

Rule 5. If an uncoloured vertex u is adjacent to a coloured vertex v via a red edge, then
assign colour 1 to w if v has colour 3 and colour 3 to u otherwise.

Rule 6. If there is a red edge with end-vertices both coloured 1 or both coloured 3, or a blue
edge with end-vertices both coloured 3, then return no.

Rule 7. Remove all vertices that have received colour 1 or colour 3, keeping track of the
number of vertices coloured 1.

By Rules 1 and 2, if two vertices are in the same red component R;, we may assume
that they are not connected by a blue edge. Hence, we may assume from now on that red
components contain no blue edges in H. By Rule 3, we may also assume that no vertex in
V(H) \ V(R;) is joined via blue edges to both a vertex in X; and a vertex in Y.

From H we construct another auxiliary graph H* as follows. First, we replace each red
component R; on more than two vertices by an edge x;y;, which we say is a red edge. Hence,
the set of red components of H is reduced to a set of red components in H* in such a way
that each red component of H* is either an edge or a single vertex. Next, for ¢ # j we add
an edge, which we say is a blue edge, between two vertices x; and x; if and only if there is a

16:9

ISAAC 2017

16:10

Independent Feedback Vertex Set for Ps-free Graphs

blue edge between a vertex in X; and a vertex in X;. We add blue edges between vertices y;
and y;, and between vertices x; and y; in the same way.

Recall that, by Rules 1 and 2, no two vertices in any R; are connected by a blue edge. So
every feasible colouring of H corresponds to a feasible colouring of H* and vice versa. To keep
track of the number of vertices coloured 1, we introduce a weight function w : V(H*) — Z4
by setting w(z;) = | X;| and w(y;) = |Y;|. Our new goal is to find a feasible colouring ¢ of H*
that minimises the sum of the weights of the vertices coloured 1, which we denote by w(c).

Since for each i no vertex in V(H) \ V(R;) is joined via blue edges to both a vertex in X;
and a vertex in Y;, we find that H* contains no triangle consisting of one red edge and two
blue edges. As red edges induce a disjoint union of isolated edges, this means that the only
triangles in H* consist of only blue edges. Let B, ..., B, be the components of the graph
obtained from H* after removing all red edges. We call these components blue (even in the
case where they are singletons). We need the following claim (we omit its proof).

» Claim 13. Fach B; is a complete graph.

By Claim 13, H* is the disjoint union of several blue complete graphs with red edges
between them. Recall that we allow the case where these blue complete graphs contain only
one vertex. On H* we apply the following rule exhaustively in combination with Rules 4-7.
While doing this we keep track of the weights of the vertices coloured 1.

Rule 8. If there exist (red) edges uivy and ugvs for ui,us € B; and v1,vs € B; (i # j), then
assign colour 1 to every vertex in (B; U B;) \ {u1, ug,v1,v2}.

Since Rules 4 and 5 can be safely applied on H, they can be safely applied on H*. It
follows that Rules 6 and 7 can also be safely applied on H*. We may also safely apply Rule 8:
the red edges ujvy and usvy force u; and v; to have different colours for i € {1,2}, whereas
the blue components forbid w1, us both being coloured 3 and v, v both being coloured 3.
Hence, exactly one of uj,us and exactly one of vy,vs must be coloured 3. Because at
most one vertex in any blue component may be coloured 3, this implies that all vertices in
(B; U Bj) \ {u1,u2,v1,v2} must be coloured 1.

As every vertex is incident with at most one red edge in H*, we obtain a resulting graph
that is an induced subgraph of H* with the following property: if there exist (red) edges ujvy
and ugvg for ui, up € B; and vy, vy € By, then {uy,u2,v1,v2} induces a connected component
of H*. We can colour such a 4-vertex component in exactly two ways and we remember
the colouring with minimum weight (either w(u1) + w(v2) or w(uz) + w(v1) depending on
whether u; gets colour 1 or 3, respectively). Hence, from now on we may assume that the
resulting graph, which we again denote by H*, does not have such components. That is,
there is at most one red edge between any two blue components of H*. As we can colour H*
component-wise, we may assume without loss of generality that H* is connected.

For each B; we define the subset B, to consist of those vertices of B; not incident with
a red edge, and we let B) = B; \ B.. We note the following. If we colour every vertex
of some B! with colour 1, then every neighbour of every vertex of B in any other blue
component B; must be coloured 3 by Rule 5 (recall that vertices in different blue components
are connected to each other only via red edges). As soon as one vertex u in some blue
component B; has colour 3, all other vertices in B; — u must get colour 1 by Rule 4. In this
way we can use Rule 4 and 5 exhaustively to propagate the colouring to other vertices of H*
where we have no choice over what colour to use.

Recall that no vertex of H* is incident with more than one red edge. This is a crucial
fact: it implies that propagation to other blue components of H* happens only via red
edges vw between two blue components, one end-vertex of which, say v, is first coloured 1,

M. Bonamy, K. K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma

which implies that the other end-vertex w of such an edge must get colour 3; this in turn
implies that all other vertices in the blue component containing w must get colour 1 and
so on. Hence, as H* was assumed to be connected, colouring every vertex of a set B; with
colour 1 propagates to all vertices of H* except for the vertices of Bj. Note that we may still
colour (at most) one vertex of B] with colour 3.

Due to the above, we now do as follows for each i € {1,...,¢} in turn: We colour every

vertex of B} with colour 1 and propagate to all vertices of H* except for the vertices of Bj.

If we obtain a monochromatic red edge or a blue edge whose end-vertices are coloured 3,
we discard this option (by Rule 6). Otherwise, we assign colour 3 to a vertex u € B} with
maximum weight w(u) over all vertices in B} (if B} # (). We store the resulting colouring ¢;
that corresponds to this option.

After doing the above for all g options, it remains to consider the cases where every BY
contains (exactly) one vertex coloured 3. Before we can use another propagation argument
that tells us which vertices get colour 3, we first perform the following steps, only applying a
step when the previous ones have been applied exhaustively. These steps follow immediately
from the assumption that every B} contains a vertex coloured 3.

(i) Colour all vertices of every B; with colour 1 (doing this does not cause any propagation).
(ii) If some B! consists of a single vertex, then colour this vertex with colour 3, and
afterwards propagate by using Rule 5 exhaustively.

(iii) Remove coloured vertices using Rule 7.
If due to (ii) we obtain a monochromatic red edge or a blue edge whose end-vertices are
coloured 3, we discard this option (using Rule 6). Otherwise, we may assume from now on
that B, = (), so B/ = B; due to (i) and that |B;| > 2 due to (ii). Note that doing (iii) does
not disconnect the graph: the vertices in the vertices in B} that are coloured in (i) only
have neighbours in the clique B; (and these are via blue edges) and if a vertex of v € B} is
coloured with colour 3 in (ii), then its only neighbour w (via a red edge) is in a set B/ and
since (i) has been applied exhaustively, the only other neighbours of w are in BJ'»’ (via blue
edges), so the propagation stops there and the graph does not become disconnected.

By our procedure, every vertex of every blue component B; is incident with a red edge,
so the total number of outgoing red edges for each B; is equal to |B;| > 2, and all outgoing
red edges go to |B;| different blue components. Hence the graph H' obtained from H* by
contracting each blue component to a single vertex has minimum degree at least 2. As H’
has minimum degree at least 2, we find that H’ contains an edge that is not a bridge (a
bridge in a connected graph is an edge whose removal disconnects the graph). Let uv be the
corresponding red edge in H*, say v belongs to B; and v belongs to B;.

We have two options to colour v and v, namely by 1,3 or 3,1. We try them both. Suppose
we first give colour 1 to u. Then we propagate in the same way as before. Because uv is not a
bridge in H’, eventually we propagate back to B; by giving colour 3 to an uncoloured vertex
of B;. When that happens we have “identified” the colour-3 vertex of B; and then need to
colour all other vertices of B; with colour 1. This means that we can in fact propagate to
all blue components of H*, just as before. If at some point we obtain a monochromatic red
edge or a blue edge with end-vertices coloured 3, then we discard this option (by Rule 6).
Next, we give colour 1 to v and proceed similarly.

At the end we have at most ¢ 4+ 2 different feasible colourings of H*. We pick the one
with minimum weight and translate the colouring to a feasible colouring of H. Finally, we
translate the feasible colouring of H to a trouble-free colouring of the original graph G. We
omit the analysis of the runtime. <

» Theorem 14. The size of a minimum independent feedback vertex set of a Ps-free graph
on n vertices can be computed in O(n'%) time.

16:11

ISAAC 2017

16:12

Independent Feedback Vertex Set for Ps-free Graphs

Proof. Let G be a Ps-free graph on n vertices. As we can check in O(n'®) time if G is
near-bipartite, we may assume without loss of generality that G is near-bipartite. Then,
by Lemma 11, in O(n'®) time we can reduce the problem finding the value t(G’) of O(n'?)
instances of TROUBLE-FREE COLOURING, all on induced subgraphs of G (which have at
most n vertices). By Lemma 12 we can compute t(G’) in O(n?) time for each such instance.
This gives a total runtime of O(n'®). <

» Remark 15. From our proof, we can find in polynomial time not just the size of a minimum
independent feedback vertex set, but also the set itself. The corresponding algorithm can
also be adapted to find in polynomial time a maximum independent feedback vertex of a
Ps-free graph, or an independent feedback vertex set of arbitrary fized size (if one exists).
Our algorithm can also be adapted to solve INDEPENDENT ODD CYCLE TRANSVERSAL in
O(n'%) time.

—— References

1 Akanksha Agrawal, Sushmita Gupta, Saket Saurabh, and Roohani Sharma. Improved
algorithms and combinatorial bounds for independent feedback vertex set. Proc. IPEC
2016, LIPIcs, 63:2:1-2:14, 2017.

2 Gabor Bacsé and Zsolt Tuza. Dominating cliques in Ps-free graphs. Periodica Mathematica
Hungarica, 21(4):303-308, 1990.

3 Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniél
Paulusma. Recognizing graphs close to bipartite graphs. Proc. MFCS 2017, LIPIcs, 83:70:1—
70:14, 2017.

4 Andreas Brandstddt, Synara Brito, Sulamita Klein, Loana Tito Nogueira, and Fabio Protti.
Cycle transversals in perfect graphs and cographs. Theoretical Computer Science, 469:15—
23, 2013.

5 Keith Edwards. The complexity of colouring problems on dense graphs. Theoretical Com-
puter Science, 43:337-343, 1986.

6 Wayne Goddard and Michael A. Henning. Independent domination in graphs: A survey
and recent results. Discrete Mathematics, 313(7):839-854, 2013.

7 Petr A. Golovach and Pinar Heggernes. Choosability of Ps-free graphs. Proc. MFCS 2009,
LNCS, 5734:382-391, 2009.

8 Chinh T. Hoang, Marcin Kaminski, Vadim V. Lozin, Joe Sawada, and Xiao Shu. Deciding
k-colorability of Ps-free graphs in polynomial time. Algorithmica, 57(1):74-81, 2010.

9 Daniel Lokshantov, Martin Vatshelle, and Yngve Villanger. Independent set in Ps-free
graphs in polynomial time. Proc. SODA 2014, pages 570-581, 2014.

10 Daéniel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time
via treewidth reduction. ACM Transactions on Algorithms, 9(4):30:1-30:35, 2013.

11 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On paramet-
erized independent feedback vertex set. Theoretical Computer Science, 461:65-75, 2012.

12 Andrea Munaro. On line graphs of subcubic triangle-free graphs. Discrete Mathematics,
340(6):1210-1226, 2017.

13 Bert Randerath, Ingo Schiermeyer, and Meike Tewes. Three-colourability and forbidden
subgraphs. II: polynomial algorithms. Discrete Mathematics, 251(1-3):137-153, 2002.

14 Yuma Tamura, Takehiro Ito, and Xiao Zhou. Algorithms for the independent feedback
vertex set problem. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E98-A(6):1179-1188, 2015.

15 Aifeng Yang and Jinjiang Yuan. Partition the vertices of a graph into one independent set
and one acyclic set. Discrete Mathematics, 306(12):1207-1216, 2006.

	Introduction
	Hardness When H Contains a Cycle or Claw
	Near-Bipartiteness of P_5-free Graphs
	Independent Feedback Vertex Sets of P_5-free Graphs

