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Abstract—Power system operation considering an 

increasingly complex cyber infrastructure may be one of the key 

factors of the next generation power systems. The effective 

operation of a power system in a massively deployed cyber 

network environment will be affected by cyber network reliability. 

Therefore, it is vital not only to understand the operation of a 

cyber network and its reliability, but also it is critical to integrate 

the interdependency of cyber and power systems into power 

system planning and operations. This requires a three-layer 

approach to reliability modeling and evaluation. The cyber and 

power layers are interconnected by the information layer. The 

objective of this paper is to define the three-layer model and report 

a generalized framework for combined reliability modeling.  
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I. INTRODUCTION 

Modernization of the power system has gained substantial 

momentum in the last decade. As part of this modernization, 

automation and increased dependency on real-time tools are 

expected to improve power delivery [1]. This requires the 

availability of information and communication technologies at 

every level. For example, at the bulk level, grid operators can 

replace preventive control actions by corrective actions on the 

basis of grid visibility and real-time control actions. 

Distribution system operations can be improved by aggregators 

establishing virtual power plants with contracted distributed 

resources and end-user appliances to optimize their behavior 

according to price and control signals.  

The objective of the power system is to supply the entire 

load on a system at all times [2] and a measure of fulfilling this 

objective is defined as reliability. The communication and 

decision tools are expected to improve the reliability of the 

power system. This should be achieved by both increasing the 

speed of reaction and improving preventative decisions in the 

anticipation of abnormal events. 

The resulting system combining power and cyber layers is 

known as the cyber-physical power system (CPPS), and the 

availability of communication and decision tools will affect the 

reliability of the power network. The emerging CPPS is much 

more complex than traditional power systems, and traditional 

methods for assessing its reliability needs to be reviewed [3]. 

Traditional power system reliability modeling and 

evaluation considers the failure of various components as 

independent events. Communication and decision tools can be 

sources of failure for the following reasons: 

 Component Failure: Both cyber and decision tools, such 

as routers and servers, can fail. When this happens, 

communication may be interrupted, or decisions may not 

be made appropriately in the power system operation, thus 

affecting power system reliability.  

 Cyber Unavailability: Even without physical failure of 

cyber equipment, communication may not be interrupted 

due to packet loss, link unavailability, and packet delay. 

This could negatively affect the decision process, thereby 

deteriorating power system reliability.  

 Cyber Intrusion: Malicious manipulation of information 

could disrupt the decision process. Therefore, the effect of 

cyber intrusion on power system reliability needs to be 

incorporated.  

Contrary to the power carrying components, 

communication and decision equipment cannot be modeled as 

independent components. For example, a communication link 

failure could result in multiple sensors not being able to send 

real-time information to decision centers, thereby resulting in 

an impact on decisions made by the control center. Therefore, 

cause-effect modeling could be utilized to model the CPPS by 

evaluating the following: (i) threats: external factors that could 

impact the reliability of the CPPS, (ii) vulnerability: the extent 

to which threats will affect the power system operation, and (iii) 
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consequence: impacts to power system customers [5]. 

Reliability modeling and evaluation of the future power grid 

must take all of these into consideration.  

The objective of this paper is to suggest approaches that 

could facilitate the reliability modeling and identify future 

needs. Different methods used in interdependent CPPS 

modeling for power system reliability computation are 

summarized in this work. Component-level and system-level 

reliability evaluation approaches are presented, and the future 

needs for CPPS reliability modeling along with industry 

standards, as defined by the North American Electric 

Reliability Corporation (NERC), are identified.  

II. CYBER-POWER SYSTEM MODEL 

The need for sensors, communication, and real-time 

decision making are intensifying in order to meet future needs, 

especially those involving system automation. In addition, 

external information affects, directly or indirectly, the control 

decisions of the power system. To better understand the 

interconnected complex CPPS network, a multi-dimensional 

heterogeneous system similar to [6] can be utilized, the 

framework for which is shown in Fig. 1.  

 
Fig. 1: Framework for cyber-physical power system 

The CPPS-based analysis focuses on whether decision-

making functions are performed to enhance the performance of 

the power system. For better understanding the interaction, 

three heterogeneous layers are utilized. The middle layer, 

consisting of the communication network, sensors and 

actuators bridges the decision-making (control) functions (top 

layer) and the physical power systems (bottom layer). The 

operational decision functions (EMS, protection, stability 

control, AGC/AVC, etc.) are included in the model through the 

top decision layer. The following subsections provide details 

for each layer: 

A. Power (Physical) Layer 

The power layer, which consists of all physical devices 

(e.g., generators, power lines, transformers, circuit breakers, 

power electronic devices, energy storage, loads, smart 

appliances, etc.), is connected to the communication and 

coupling layer through state awareness (sensors) and command 

execution devices. Conventional reliability modeling 

techniques can be used to model reliability of the power layer. 

B. Communication and Coupling Layer 

The communication and coupling layer is composed of 

interface devices (e.g., remote terminal units-RTU) and a 

communication network. The measurement from the power 

layer and the control command to the power layer are both 

carried by interface devices. The decision-making functions in 

the decision layer are also carried by these devices. The 

communication network, which connects the interface devices, 

consists of various communication devices and the links 

between them. The failure or malfunction of the interface 

devices and communication network will impact the accuracy 

of the decision-layer functions. Therefore, modeling the impact 

of communication and coupling layer is key for effectively 

operating a CPPS. 

To illustrate the importance of the communication and 

coupling layer, synchro-phasor measurement units (PMUs) are 

considered as an example. PMUs, which are installed in 

selected buses [7] for providing related measurements, are used 

to monitor the entire power grid operation. By building on this 

infrastructure, potential smart grid applications, such as real-

time stability management [8], can be facilitated [9]. To 

guarantee power system reliability, it is very important to 

maintain a certain degree of redundancy in terms of the 

placement of PMUs in order to address their random failures. 

For example, a primary and backup (P&B) method proposed in 

[9] involves two independent sets of PMUs, both of which can 

provide full observability of the entire power grid. In order to 

ensure that PMU data is useful, it is also important to improve 

the freshness of acquired data; thus, a stringent latency (time 

delay) requirement is involved. Delay in the arrival of 

measurements could result in lowering the value of data and 

potentially impact grid performance. However, time delay 

cannot be avoided in practical communication systems, 

including both wireless and wired systems [11]. In addition to 

the component failure, the delay in data arrival beyond the 

threshold and data loss should be considered as data 

unavailability for reliability modeling purposes. 

Another illustrative example is the supervisory control and 

data acquisition (SCADA) system, which relies on information 

and communication systems [12]. SCADA interface modules 

can be treated as part of the communication and coupling layer 

for reliability modeling, with similar issues in terms of failure 

and data unavailability.  

C. Decision Layer 

The decision layer contains a variety of functions (e.g., 

renewable generation control, energy management system, 

demand management, etc.), which are desired for seamless 

operation of a power system. Estimated conditions of operating 

states from real-time measurements are used for this purpose 

[13]. Failure of the decision tools, including servers, will affect 

power system reliability.  

Furthermore, the modernization of the grid involves 

automation via a communication infrastructure. An attacker 



with malicious intention may launch cyber-attacks by hacking 

a few sensors and distort the measurements. Moreover, 

communication links are vulnerable to false data-injection 

attacks, where measurements may be altered during data 

transmission [14]. This could lead to incorrect decisions that 

can cause major malfunctions or even a blackout. It is important 

to model the malicious data injection into the network and 

ensure that it is not utilized in decision processes [15].  

In addition to failure of the decision equipment, correctness 

of the decision can also affect power system reliability. The 

effect of cyber intrusion on power system decisions must be 

considered as a decision error for reliability modeling purposes.  

Based on the discussion about each CPPS layer, reliability 

modeling for the heterogeneous framework could be modeled 

as shown in Fig. 2. This state transition diagram shows the 

different possible states of each layer. It should be noted that 

the power system is a combination of these three layers. 

Therefore, a detailed modeling is needed to include all possible 

states. This kind of modeling can be done at the component 

level or at the system level.  

 
Fig. 2: Framework for cyber-physical power system reliablity modeling 

III. CYBER UNAVAILABILITY VS. VULNERABILITY 

A. Cyber Unavailability 

Communication may undergo a forced outage, even if the 

communication and coupling layer components are operating. 

This could occur for several reasons, including signal 

attenuation, loss of communication packet, time delay in 

communication packets, or jitter. Fig. 3 shows such forced 

outages for four different PMUs at different times in a day 

during a four-minute window from a U.S. utility [16].  

 
Fig. 3: Data unavailablity from different PMU units  

From Fig. 3, it can be seen that the forced outage duration is 

typically shorter than a power equipment failure. However, the 

frequency of occurrence is relatively very high. Based on PMU 

data from 261 units for a 13-month period, the average rates are 

provided in Table 1.  

TABLE 1: MISSING DATA STATISTICS 

Data Availability  0.96 

Missing Data Rate 3.22 failures per day 

Recovery Rate 0.36 second 

Based on this data, the frequency of missing data is very 

high compared to the power component failure. One of the 

challenges here is that the missing data rate does not follow an 

exponential distribution. It is important to further investigate 

and develop appropriate data unavailability model. Fig. 4 shows 

the missing data rate for certain PMUs.  

 
Fig. 4: Missing data rate for different PMUs in system 

Furthermore, even for a single PMU, the missing data rate 

is not constant as shown in Fig. 5.  

 
Fig. 5: Missing data rate for sample PMUs 

Since the missing data rate is not consistent with different 

PMUs, it is critical to further analyze the data outage and 

develop more reasonable models for CPPS reliability analyses.  

B. CyberAttack Modeling 

Malicious intrusion into the cyber infrastructure has the 

ability to affect control decisions in power systems. Cyber 

intrusion could occur through either communication and 

coupling layer or the decision layer. However, for the purpose 

of efficient reliability modeling, the cyber intrusion needs to be 

modeled as a part of the decision error.  

Cyber-attacks can be classified as follows: 

 Availability: An attack may impact data availability by 

interfering with the original source or its transmission, for 

example, due to loss of communication (which includes 

detected data corruption). 

 Integrity: Attacks to data integrity are those that could 

result in undetected modification and insertion of data. 

This could cause anything from data corruption to remote 

control of breakers. 

 Confidentiality: Data confidentiality is compromised when 

data are accessed without permission. This usually has no 

direct impact on power system performance, but the threat 

to long-term performance is substantial. This includes 

reconnaissance attacks, which observe weak points in the 

cyber infrastructure, or attempts to intercept passwords and 

encryption keys. Also, leaks of privacy-sensitive material 

may result in severe regulatory consequences. 

The models for cyber security (malicious attacks initiated 

on the cyber infrastructure) are presented in [17]. The most 



common analytical method applied to cyber security threat 

models is the concept of the attack tree [18]. Attack trees work 

backwards from a goal that the attacker wishes to achieve, by 

identifying steps that lead to that goal. By assigning 

probabilities to the rate or probability of initial threats and the 

transitions, an attack graph is constructed, which can be 

analyzed numerically.  

The threat of an intelligent attacker makes it difficult to 

deduce which specific threats are imposed to a model. It is also 

difficult to assign probabilities to the successful exploitation of 

vulnerabilities. As a result, risk modeling is often done using a 

high-level conceptual model such as the ISO/IEC Common 

Criteria standard. Recently, the domain-specific modelling 

language CySeMol [19] was developed as an alternative that 

allows better expression of causal relations and the likelihood 

of transitioning between attack steps.  

CPPS constitute both discrete and continuous control and 

operational decisions, which are best captured by a hybrid 

control model [20]. Hybrid control models capture the normal 

operation of power systems, which can be used to detect attacks 

or anomalies on the system [20], [20]. 

An analytical framework using a generalized stochastic 

Petri net model is proposed in [22] to quantify vulnerabilities of 

the SCADA system for cyber security investigations. It 

systematically evaluates the SCADA vulnerabilities at three 

levels: system, scenarios, and access points. Then 

vulnerabilities are computed using the steady-state probabilities 

that the SCADA system is attacked through specific access 

points and the impact factors.  

A modified semi-Markov process is used in [23] to model 

cyber-attacks against a substation. The success probabilities 

and mean time to compromise are calculated using the Colonel 

Blotto game [23]. Bayesian attack graphs are used in [24] to 

model attack procedures and quantitatively evaluate the 

probabilities and average frequencies of successful attacks. 

IV. CYBER-POWER RELIABILITY MODELING 

A Single failure in the communication and coupling layer 

or the decision layer could affect multiple devices in the power 

layer. Therefore, it is critical to model the sequence of 

consequences from events in the communication and coupling 

layer or the decision layer to power system layer failures. 

Steps in the reliability computation process should include:  

i. Model the communication and coupling or decision layer 

event propagation using section III.  

ii. Develop an interdependency framework for the impact of 

communication and coupling layer or decision layer events 

on power system components (a transition from a sequence 

of cyber events to power layer events) 

iii. Using the interdependency framework, determine the 

power system reliability matrices.  

The following sections describe the modeling of parts ii 

and iii: 

A. Cyber-Power Interdependacy Modeling 

Because of the dimensionality and complexity, it is 

difficult to directly incorporate cyber components into the 

power grid reliability evaluation. A methodology that 

decouples the analysis of the cyber part from the physical part 

with the use of a cyber-physical interface matrix (CPIM) has 

been proposed in [25]. The CPIM can be described as follows. 

𝐶𝑃𝐼𝑀 = [

𝑝1,1 𝑝1,2 ⋯ 𝑝1,𝑛

𝑝2,1 𝑝2,2 ⋯ 𝑝2,𝑛

⋮ ⋮ ⋱ ⋮
𝑝𝑚,1 𝑝𝑚,2 ⋯ 𝑝𝑚,𝑛

] 

where, rows represent the various initiating contingencies (in 

the physical system), and the columns correspond to the final 

outcomes, once possible cyber-failures have been taken into 

account. Elements of the matrix are therefore conditional 

probabilities of physical outcomes, given a specific initiating 

event. As a result, the probabilities in each row must add up to 

1. With this methodology, reliability analysis is first performed 

at the substation level to evaluate cyber failures and their impact 

on the physical system. Such impact is summarized as 

probabilities in the CPIM. The cyber components do not 

directly appear in the matrix. The matrix summarizes the 

probability of possible causes and outcomes.   

The resulting CPIM is utilized in the transmission system-

level reliability evaluation without the need to consider cyber 

configuration details. In practical applications, another matrix 

called the consequent event matrix (CEM) is used to identify 

the specific physical components affected in each event. An 

implementation on the extended Roy Billinton Test System 

(RBTS) has been presented in [26]. The results clearly show the 

impact of cyber failures on power grid reliability. Studies in 

[25] and [26] mainly focus on the aspect of protection because 

protection hidden failures are common causes of cascading 

outages [27], [28]. A similar conditional probability matrix was 

used in [29] to model the effects of failures in generation 

rejection schemes, and to determine their impact on optimal 

system operation.  

B. Component-Level Modeling 

Component-level modeling requires a better understanding 

of the cyber power interaction. A general framework for cyber 

power interaction has been developed in [26] using the concept 

of smart components. Here, the power layer and the 

communication and coupling layer are combined to develop the 

smart component. In the work presented in [26], the decision 

layer is included with the communication and coupling layer. 

The electrical equipment could be in four states (normal, failed, 

preventive, and maintenance), and the communication layer has 

three states (normal, failed, unavailable). Markov model for the 

smart component with state transition rates is shown in Fig. 5.  

 
Fig. 5: State model for smart components [30] 



This model needs to be further enhanced to incorporate the 

cyber unavailability and cyber-attack to better represent the 

communication and coupling layer and the decision layer. One 

of the challenges of the CPPS state model is the higher number 

of possible states. Once the state model is developed, it is 

necessary to develop reduced state models for computational 

effectiveness. Due to the dissimilarity in the operation of the 

smart components, a single framework will not be sufficient. 

For example, the communication and coupling layer and the 

decision layer have a dissimilar impact on a device used for 

health monitoring compared to real-time measurements.  

C. System-Level Modeling  

Enhanced component models demand improved CPPS 

reliability modeling and analysis. Two approaches are proposed 

in the literature.  

The first approach is to use a combined state-space model 

for each component and then evaluate the power system 

reliability [31]. Several communication and coupling layer 

devices could fail for the same reason. The work presented in 

[31] uses common-cause failure (CCF) based probabilistic 

reliability assessment. Two main factors are required for a CCF 

to occur: a root cause and a coupling factor that makes multiple 

components susceptible to the same cause. The set of 

equipment affected by a single cause is known as the common 

cause component group [31]. A probabilistic method similar to 

the alpha factor model [32] can be used to determine 

simultaneous failure probability of an equipment. A four-step 

approach to determine a component failure rate with basic event 

probability of occurrence is presented in [31]. This method 

needs to be further improved for the large system analysis.  

The CCF power system reliability analysis requires the 

following considerations: (i) the probability of a large number 

of components failing for a single cause is low, and (ii) when 

an event occurs in the power system, the component close to 

the event will act first, and if it fails, then the adjacent 

components will react 

In the case where exact power system reliability is 

impossible to determine, the worst-case reliability can be 

computed [33]. Minimal cut sets for data transmission from one 

node to another can be computed. In order to reduce the 

complexity, the worst-case probability can be determined by 

placing all minimal cut sets in a series [33]. This method is very 

useful for very large networks.  

The second approach uses the characteristic matrix 

method. Similar to [25], the characteristic matrix for both the 

communication and coupling layer and the decision layer can 

be modeled. For the communication and coupling layer, 

element (i,j) of the interface matrix corresponds to the 

performance of cyber-link between nodes i and j and given by  

11 1 1

1

1

               1

1  
 
 
 
 
 
 
 

j m

i ij im

m mj mm

j m

C C C

C i C C C

m C C C

 

The diagonal elements in C correspond to the performance 

of the node. Each element is comprised as cij = (T, Pa, Pm), 

where T is the time delay, Pa is the interruption probability, and 

Pm is the disruption probability. The decision-layer interface 

matrix will be represented by S. Each element comprises S = 

(T, P), where T is the delay, and P is the decision error 

probability. Similar to the communication and coupling layer, 

the diagonal elements correspond to the device performance. If 

there are no connections, then all elements are zeros (cij = (0, 0, 

0) or Sij = (0, 0)). Similarly, the interaction between layers can 

be modeled using the interface matrix, which can be used for 

reliability computation.  

V. ENHANCING RELIABILITY STANDARDS 

Power system reliability modeling requires a modification 

to its standardization due to the complexity of CPPS. The 

enhancement to monitoring, control, and protection through 

CPPS changes the means of failure and recovery of power 

system components. Both bulk and distribution system 

reliability modelling must be changed.  

A. Bulk Industry Standards  

The planning and operation of bulk power systems have 

been traditionally driven by reliability criteria and standards 

(NERC standards, regional reliability criteria) [34]. The North 

American Electric Reliability Corporation has developed 

mandatory and enforceable standards for planning (e.g., TPL-

001-4) and operation (e.g., TOP-002-4, IRO-017-1) to ensure 

reliable operation of the power grid. Critical infrastructure 

protection (CIP) standards (e.g., CIP-002-5), which deal with 

the cyber side of the power system, are mandatory and 

enforceable [34]. 

Developed methodologies and tools to assess system 

performance have served the industry very well in the past [35]-

[37]. However, it is becoming more apparent that reliable 

operation of the power system is highly dependent on the 

reliability of the associated cyber system, and failure in the 

cyber system can result in undesirable consequences. New 

reliability tools for joint modeling and performing the reliability 

analysis by taking into account the performance of “cyber” and 

“physical” elements are needed. Contingencies on the cyber 

side may lead to inappropriate control commands, which will 

influence the physical power system. 

B. CPPS Standadization Approach  

In addition to the power system failure and recovery 

measures, it is vital to determine the direct effects of the CPPS 

on power system operations. Some of the measures that could 

quantify the direct effect of CPPS on the power system are 

identified in the literature [1], [38]–[39]. Some examples are 

presented as follows.  

The effect of the cyber infrastructure on power system 

reliability can be modeled similar to IEEE Std. 1366 [40] based 

on the following indices proposed by [1]: 

 Average Cyber Failure Frequency Index: The number of 

missed decisions on the power layer due to failure of the 

communication and coupling layer and the decision layer 

as a fraction of the total decision: 

𝐴𝐶𝐼𝐹𝐼 =
Total missed decsions

Total decisions in a unit time
 



 Energy Not Served due to Cyber Failure: The amount of 

energy not served due to failure of the communication and 

coupling layer and the decision layer as a fraction of the 

total energy not served at the same time:  

𝐸𝑁𝑆𝐶 =
Total energy not served due to missed decisions

Total energy not served in a unit time
 

On the other hand, indices for specific applications should 

be developed. For example, when the power system operations 

are managed via the CPPS, transient stability of the system 

could be detected via the measurements. The ability to detect 

the transient stability against faults is developed in [38] as part 

of the power system reliability evaluation.  

 Expected Transient Instability Index: The measure for the 

probability of the system being in an unstable state: 

𝐸𝑇𝐼 = ∑ 𝑝{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑢}

𝑛𝑢

𝑖=1

 

 where 𝑝{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑢}  is the probability of the 

system being unstable while transitioning from state 𝑥𝑖−1,𝑖 

to state 𝑥𝑖 , 𝑥𝑖  is the system new state, 𝑋𝑢  is the set of 

unstable transitions (𝑋𝑢 ⊂ 𝑋), 𝑋  is the set of all system 

states, and 𝑛𝑢 is the number of unstable transitions. 

 Expected Transient Stability Robustness Index: The 

measure of the ability of a system to withstand the 

following fault events: 

𝐸𝑇𝑆𝑅 = ∑ 𝑝{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑠𝑡}. 𝐸𝑀{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑠𝑡}

𝑛𝑠𝑡

𝑖=1

 

where 𝑝{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑠𝑡}  is the probability of the 

system being stable while transitioning from state 𝑥𝑖−1,𝑖 to 

state 𝑥𝑖, 𝐸𝑀{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑠𝑡} is the energy margin of a 

stable transition from state 𝑥𝑖−1,𝑖 to state 𝑥𝑖, 𝑋𝑠𝑡 is the set 

of stable transitions (𝑋𝑠𝑡 ⊂ 𝑋), and 𝑛𝑠𝑡  is the number of 

stable transitions. 

 Expected System Risk of Instability Index: The measure of 

the risk of a system being unstable against fault events: 

𝐸𝑆𝑅𝐼 = ∑ 𝑝{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑢}. |𝐸𝑀{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑢}|

𝑛𝑢

𝑖=1

 

where |𝐸𝑀{𝑥𝑖−1,𝑖: 𝑥𝑖−1,𝑖 ∈ 𝑋𝑢}| is the energy margin of an 

unstable transition from state 𝑥𝑖−1,𝑖 to state 𝑥𝑖. 

VI. FUTURE NEEDS  

Cyber-physical interdependencies exist extensively in 

various aspects of the power grid. To further enhance existing 

reliability evaluation models and methodologies, considerable 

research effort and input from both academia and industry are 

needed. 

Two challenges for improved reliability analysis of the 

CPPS are as follows: (i) test systems that allow standardization 

of results and (ii) simulation tools that address the needs of 

modeling CPPS interactions.  

A. Test Systems 

The IEEE Reliability Test System [41] and the Roy 

Billinton Test System [42] are used for modeling and analysis 

of power system reliability. However, due to the lack of 

appropriate failure models for cyber- and decision-layer 

equipment, the authors use customized models, which limit the 

ability to compare the CPPS reliability framework. The 

following need to be incorporated into the test systems:  

 Possible states for communication and coupling-layer 

equipment, 

 Possible states for decision-layer equipment,  

 State transition rates for new states from communication 

and coupling layer and also the decision layer, 

 Cyber-physical interface matrix model.  

B. Simulation Tool 

Software developed for the power system domain is rarely 

flexible enough to enable customization using complex 

modules. A notable exception for distribution system analysis 

is the open-source package GridLAB-D [43]. Since this is an 

open-source software, the reliability analysis component could 

be incorporated. Simulation tools should allow users to 

incorporate possible communication architecture and decision 

schemes because they are critical for effective reliability 

calculations. Two separate models for an interconnected 

transmission system and possible extension to a software tool, 

such as GE MARS, are necessary. Similarly, the second model 

should focus on the distribution system reliability computation.  

It is vital that the simulation tools should be able to model 

seven layer OSI communication model, associated 

vulnerabilities, and possible defense mechanism including 

different possible communication and data exchange protocols. 

C. CPPS Resiliency 

In extreme events, it is not possible to keep up the 

reliability of power grids and the emphasis changes to enhance 

the grid resiliency. Keeping the power on to critical facilities 

such as hospitals and fire department during extreme events is 

essential and, additionally, the ability of the system to supply 

power to the critical loads can be defined as resiliency.  

It is important to analyze the impact of possible cyber-

attacks on the power grid and develop defense mechanisms. 

Cyber-physical resiliency analysis needs to be performed to 

minimize the impact of the potential cyber-attacks on the grid.  

Similar to CPPS reliability, there is a need for formal 

metrics to quantify resiliency of the CPPS and a tool to study 

the cyber-physical resiliency. 

VII. CONCLUSION  

This paper summarizes the current status and needs for 

cyber-physical power systems reliability evaluation. It is 

essential to standardize the CPPS modeling for reliability 

computation based on three layers: power layer, 

communication and coupling layer, and decision layer. The 

possible states of each model and the interaction between layers 

can to be captured using an interface matrix, for example. It is 

also vital to develop test systems and simulation platforms to 

enhance future CPPS reliability studies to benefit the industry.  
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