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Abstract
The Colouring problem is to decide if the vertices of a graph can be coloured with at most k
colours for a given integer k such that no two adjacent vertices are coloured alike. The complexity
of Colouring is fully understood for graph classes characterized by one forbidden induced
subgraph H. Despite a huge body of existing work, there are still major complexity gaps if two
induced subgraphs H1 and H2 are forbidden. We let H1 be the s-vertex cycle Cs and H2 be the t-
vertex path Pt. We show that Colouring is polynomial-time solvable for s = 4 and t ≤ 6, which
unifies several known results for Colouring on (H1, H2)-free graphs. Our algorithm is based on
a novel decomposition theorem for (C4, P6)-free graphs without clique cutsets into homogeneous
pairs of sets and a new framework for bounding the clique-width of a graph by the clique-width
of its subgraphs induced by homogeneous pairs of sets. To apply this framework, we also need to
use divide-and-conquer to bound the clique-width of subgraphs induced by homogeneous pairs
of sets. To complement our positive result we also prove that Colouring is NP-complete for
s = 4 and t ≥ 9, which is the first hardness result on Colouring for (C4, Pt)-free graphs.
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1 Introduction

Graph colouring has been a popular and extensively studied concept in computer science and
mathematics since its introduction as a map colouring problem more than 150 years ago due
to its many application areas crossing disciplinary boundaries and to its use as a benchmark
problem in research into computational hardness. The corresponding decision problem,
Colouring, is to decide, for a given graph G and integer k, if G admits a k-colouring, that
is, a mapping c : V (G) → {1, . . . , k} such that c(u) 6= c(v) whenever uv ∈ E(G). Unless
P = NP, it is not possible to solve Colouring in polynomial time for general graphs, not
even if the number of colours is limited to 3 [37]. To get a better understanding of the
borderline between tractable and intractable instances of Colouring, it is natural to restrict
the input to some special graph class. Hereditary graph classes, which are classes of graphs
closed under vertex deletion, provide a unified framework for a large collection of well-known
graph classes. It is readily seen that a graph class is hereditary if and only if it can be
characterized by a (unique) set H of minimal forbidden induced subgraphs. Graphs with no
induced subgraph isomorphic to a graph in a set H are called H-free.
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Over the years, the study of Colouring for hereditary graph classes has evolved into
a deep area of research in theoretical computer science and discrete mathematics (see, for
example, [6, 22, 31, 44]). One of the best-known results is the classical result of Grötschel,
Lovász, and Schrijver [24], who showed that Colouring is polynomial-time solvable for
perfect graphs. Faster, even linear-time, algorithms are known for subclasses of perfect
graphs, such as chordal graphs, bipartite graphs, interval graphs, and comparability graphs;
see for example [22]. All these classes are characterized by infinitely many minimal forbidden
induced subgraphs. Král’, Kratochvíl, Tuza, and Woeginger [35] initiated a systematic study
into the computational complexity of Colouring restricted to hereditary graph classes
characterized by a finite number of minimal forbidden induced subgraphs. In particular they
gave a complete classification of the complexity of Colouring for the case where H consists
of a single graph H. Their dichotomy result led to two natural directions for further research:

1. Is it possible to obtain a dichotomy for Colouring on H-free graphs if the number of
colours, k, is fixed (that is, k no longer belongs to the input)?

2. Is it possible to obtain a dichotomy for Colouring on H-free graphs if H has size 2?

We briefly discuss known results for both directions below and refer to [19] for a detailed
survey. Let Cs and Pt denote the cycle on s vertices and path on t vertices, respectively. We
start with the first question. If k is fixed, then we denote the problem by k-Colouring. It
is known that for every k ≥ 3, the k-Colouring problem on H-free graphs is NP-complete
whenever H contains a cycle [16] or an induced claw [28, 36]. Therefore, only the case when
H is a disjoint union of paths remains. In particular, the situation where H = Pt has been
thoroughly studied. On the positive side, 3-Colouring P7-free graphs and k-Colouring
P5-free graphs for any fixed k ≥ 1 are shown to be polynomial-time solvable [3, 26]. On the
negative side, Huang [29] proved NP-completeness for (k = 5, t = 6) and for (k = 4, t = 7).
The cases (k = 3, t ≥ 8) and (k = 4, t = 6) remain open, although some partial results are
known [9, 10].

In this paper we focus on the second question, that is, we restrict the input of Colouring
to H-free graphs for H = {H1, H2}. For two graphs G and H, we use G+H to denote the
disjoint union of G and H, and we write rG to denote the disjoint union of r copies of G.
As a starting point, Král’, Kratochvíl, Tuza, and Woeginger [35] identified the following
three main sources of NP-completeness: (i) both H1 and H2 contain a claw; (ii) both H1
and H2 contain a cycle; and (iii) both H1 and H2 contain an induced subgraph from the set
{4P1, 2P1 + P2, 2P2}. They also showed additional NP-completeness results by mixing the
three types. Since then numerous papers [1, 7, 8, 13, 14, 25, 27, 29, 33, 35, 38, 41, 42, 43, 47]
have been devoted to this problem, but despite all these efforts the complexity classification
for Colouring on (H1, H2)-free graphs is still far from complete, and even dealing with
specific pairs (H1, H2) may require substantial work.

One of the “mixed” results obtained in [35] is that Colouring is NP-complete for
(Cs, H)-free graphs when s ≥ 5 and H ∈ {4P1, 2P1 + P2, 2P2}. This, together with the
well-known result that Colouring can be solved in linear time for P4-free graphs, implies
the following dichotomy.

I Theorem 1 ([35]). Let s ≥ 5 be a fixed positive integer. Then Colouring for (Cs, Pt)-free
graphs is polynomial-time solvable when t ≤ 4 and NP-complete when t ≥ 5.

Theorem 1 raises the natural question: what is the complexity of Colouring on (Cs, Pt)-free
graphs when s ∈ {3, 4}? Huang, Johnson and Paulusma [30] proved that 4-Colouring, and
thus Colouring, is NP-complete for (C3, P22)-free graphs, while a result of Brandstädt,
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Klembt and Mahfud [5] implies that Colouring is polynomial-time solvable for (C3, P6)-free
graphs. For s = 4, it is only known that Colouring is polynomial-time solvable for (C4, P5)-
free graphs [41]. This is unless we fix the number of colours: for every k ≥ 1 and t ≥ 1, it is
known that k-Colouring is polynomial-time solvable for (C4, Pt)-free graphs [21].

Our Results. We first show, in section 3, that Colouring is polynomial-time solvable for
(C4, P6)-free graphs. This case was explicitly mentioned as a natural case to consider in [19].
Our result unifies several previous results on colouring (C4, Pt)-free graphs, namely: the
polynomial-time solvability of Colouring for (C4, P5)-free graphs [41]; the polynomial-time
solvability of k-Colouring for (C4, P6)-free graphs for every k ≥ 1 [21]; and the recent 3/2-
approximation algorithm for Colouring for (C4, P6)-free graphs [18]. It was not previously
known if there exists an integer t such that Colouring is NP-complete for (C4, Pt)-free
graphs. In section 4 we complement our positive result by giving an affirmative answer to
this question: already the value t = 9 makes the problem NP-complete.

Our Methodology. The general research aim of our paper is to increase, in a systematic
way, our insights in the computational hardness of Colouring and to narrow the complexity
gaps between hard and easy cases. Clique-width is a well-known width parameter and having
bounded clique-width is often the underlying reason for a large collection of NP-complete
problems, including Colouring, to become tractable on a special graph class; this follows
from results of [11, 17, 34, 45, 46]. However, the class of (C4, P6)-free graphs contains the
class of split graphs, which may have arbitrarily large clique-width [40]. Hence, if we want
to use clique-width to solve Colouring for (C4, P6)-free graphs, then we first need to
preprocess the input graph. An atom is a graph with no clique cut set. In this paper we
prove that (C4, P6)-free atoms have bounded clique-width. This implies a polynomial-time
algorithm for Colouring on (C4, P6)-free graphs, as it is well known that Colouring is
polynomial-time solvable on a hereditary graph class G if it is so on the atoms of G [49].

In order to prove that (C4, P6)-free atoms have bounded clique-width, we further develop
the approach of [18] that was used to bound the chromatic number of (C4, P6)-free graphs as
a linear function of their maximum clique size and to obtain a 3/2-approximation algorithm
for Colouring for (C4, P6)-free graphs. The approach of [18] is based on a decomposition
theorem for (C4, P6)-free atoms. For our purposes we derive a new variant of this decom-
position theorem for so-called strong atoms, which are atoms that contain no universal
vertices and no pairs of twin vertices. Another novel element in our approach is that we
show how to bound the clique-width of a graph by the clique-width of its subgraphs induced
by homogeneous pairs of sets, and this will be very useful for dealing with (C4, P6)-free
strong atoms. To apply this method, we also need to use divide-and-conquer to bound the
clique-width of subgraphs induced by homogeneous pairs of sets.

2 Preliminaries

For general graph theory notation we follow [2]. LetG = (V,E) be a graph. The neighbourhood
of a vertex v, denoted by NG(v), is the set of neighbours of v. For a set X ⊆ V (G), let
NG(X) =

⋃
v∈X NG(v) \ X. The degree of v, denoted by dG(v), is equal to |NG(v)|. For

x ∈ V and S ⊆ V , we denote by NS(x) the set of neighbours of x that are in S, i.e.,
NS(x) = NG(x) ∩ S. For X,Y ⊆ V , we say that X is complete (resp. anti-complete) to Y if
every vertex in X is adjacent (resp. non-adjacent) to every vertex in Y . A vertex subset
K ⊆ V is a clique cutset if G −K has more components than G and K induces a clique.
A vertex is universal in G if it is adjacent to all other vertices. For S ⊆ V , the subgraph
induced by S, is denoted by G[S].

STACS 2018
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A subset D ⊆ V is a dominating set if every vertex not in D has a neighbour in D. Let
u, v ∈ V be two distinct vertices. We say that a vertex x /∈ {u, v} distinguishes u and v if
x is adjacent to exactly one of u and v. A set H ⊆ V is a homogeneous set if no vertex in
V \H can distinguish two vertices in H. A homogeneous set H is proper if 1 < |H| < |V |.
A graph is prime if it contains no proper homogeneous set. We say that u and v are twins if
u and v are adjacent and they have the same set of neighbours in V \ {u, v}. Note that the
binary relation of being twins is an equivalence relation on V and so V can be partitioned
into equivalence classes T1, . . . , Tr of twins. The skeleton of G is the subgraph induced by a
set of r vertices, one from each of T1, . . . , Tr. A blow-up of a graph G is a graph G′ obtained
by replacing each vertex v of G with a clique Kv of size at least 1 such that Kv and Ku

are complete in G′ if u and v are adjacent in G, and anti-complete otherwise. Since each
equivalence class of twins is a clique and any two equivalence classes are either complete or
anti-complete, every graph is a blow-up of its skeleton.

The clique-width of a graph G, denoted by cw(G), is the minimum number of labels
required to construct G using the following four operations:

i(v): create a new graph consisting of a single vertex v with label i;
G1 ⊕G2: take the disjoint union of two labelled graphs G1 and G2;
ηi,j : join each vertex with label i to each vertex with label j (for i 6= j);
ρi→j : rename label i to j.

A clique-width expression for G is an algebraic expression that describes how G can
be recursively constructed using these operations. A k-expression for G is a clique-width
expression using at most k distinct labels. For instance, this is a 3-expression for the induced
path on four vertices a, b, c, d:

η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))).

Clique-width is of fundamental importance in computer science since all problems express-
ible in monadic second-order logic using quantifiers over vertex subsets but not over edge
subsets become polynomial-time solvable for graphs of bounded clique-width [11]. Although
this meta-theorem does not directly apply to Colouring, a result of Kobler and Rotics
[34], combined with the approximation algorithm of Oum and Seymour [45] for finding a
p-expression, showed that Colouring can be added to the list of such problems.

I Theorem 2 ([34]). Colouring can be solved in polynomial time for graphs of bounded
clique-width.

3 The Polynomial-Time Result

In this section, we shall prove that the chromatic number of any (C4, P6)-free graph can be
found in polynomial time.

I Theorem 3. Colouring is polynomial-time solvable on the class of (C4, P6)-free graphs.

A graph is called an atom if it contains no clique cutset. The main ingredient for proving
Theorem 3 is a new structural property of (C4, P6)-free atoms below which asserts that
(C4, P6)-free atoms have bounded clique-width.

I Theorem 4. Every (C4, P6)-free atom has bounded clique-width.
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The proof of Theorem 4 is deferred to subsection 3.3.
Proof of Theorem 3 (assuming Theorem 4). Let G be a (C4, P6)-free graph. We find the
clique decomposition of Tarjan [49] in O(mn) time and this gives a binary decomposition tree
T where the root of T is G and the leaves are induced subgraphs of G without clique cutsets.
Tarjan [49] showed that there are at most O(n) leaves and that the chromatic number of any
node in T is the maximum of the chromatic numbers of its children. Therefore, determining
χ(G) reduces to determining the chromatic number of atoms. Now it follows from Theorem 4
that each atom has bounded clique-width and thus the chromatic number can be found in
polynomial time by Theorem 2. J

The remainder of the section is organized as follows. In subsection 3.1, we present the key
tools on clique-width that play an important role in the proof of Theorem 4. In subsection 3.2,
we list structural properties around a 5-cycle in a (C4, P6)-free graph that are frequently used
in later proofs. We then present our main proof, the proof of Theorem 4, in subsection 3.3.

3.1 Clique-width
Let G = (V,E) be a graph and H be a proper homogeneous set in G. Then V \ H is
partitioned into two subsets N and M where N is complete to H and M is anti-complete
to H. Let h ∈ H be an arbitrary vertex and Gh = G− (H \ {h}). We say that H and Gh

are factors of G with respect to H. Suppose that τ is a k1-expression for Gh using labels
1, . . . , k1 and σ is a k2-expression for H using labels 1, . . . , k2. Then substituting i(h) in τ
with ρ1→i . . . ρk2→iσ results in a k-expression for G where k = max{k1, k2}.

I Lemma 1 ([12]). The clique-width of any graph G is the maximum clique-width of any
prime induced subgraph of G.

A bipartite graph is a chain graph if it is 2P2-free. A co-bipartite chain graph is the
complement of a bipartite chain graph. Let G be a (not necessarily bipartite) graph such
that V (G) is partitioned into two subsets A and B. We say that a k-expression for G is nice
if all vertices in A end up with the same label i and all vertices in B end up with the same
label j with i 6= j. It is well-known that any co-bipartite chain graph whose vertex set is
partitioned into two cliques has a nice 4-expression.

I Lemma 2 (Folklore). There is a nice 4-expression for any co-bipartite chain graph.

We now use divide-and conquer to show that a special graph class has clique-width at
most 4. This plays a crucial role in our proof of the main theorem (Theorem 4).

I Lemma 3. Let G be a C4-free graph such that V (G) is partitioned into two subsets A and
B that satisfy the following conditions: (i) A is a clique; (ii) B is P4-free; (iii) no vertex in
A has two non-adjacent neighbours in B; (iv) there is no induced P4 in G that starts with a
vertex in A followed by three vertices in B. Then there is a nice 4-expression for G.

Proof. We use induction on |B|. If B contains at most one vertex, then G is a co-bipartite
chain graph and the lemma follows from Lemma 2. So, we assume that B contains at least
two vertices. Since B is P4-free, either B or B is disconnected [48]. Suppose first that B is
disconnected. Then B can be partitioned into two nonempty subsets B1 and B2 that are
anti-complete to each other. Let A1 = N(B1)∩A and A2 = A \A1. Clearly, G[Ai ∪Bi] with
the partition (Ai, Bi) satisfies all the conditions of the lemma for each 1 ≤ i ≤ 2. Note also
that, by (iii), A1 is anti-complete to B2 and A2 is anti-complete to B1. By the inductive
hypothesis there is a nice 4-expression τi for G[Ai ∪Bi] in which all vertices in Ai and Bi

have labels 2 and 4, respectively. Now ρ1→2(η1,2(τ1 ⊕ ρ2→1τ2)) is a nice 4-expression for G.

STACS 2018
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B1B2

A1 \N(B2)A1 ∩N(B2)

A2

Figure 1 The case B is disconnected. Shaded circles represent cliques. A thick line between two
sets represents that the two sets are complete, and a dotted line represents that the edges between
the two sets can be arbitrary. Two sets are anti-complete if there is no line between them.

Suppose now that B is disconnected. This means that B can be partitioned into two
subsets B1 and B2 that are complete to each other. Since G is C4-free, either B1 or B2 is a
clique. Without loss generality, we may assume that B1 is a clique. Moreover, we choose
the partition (B1, B2) such that B1 is maximal. Then every vertex in B2 is not adjacent to
some vertex in B2 for otherwise we could have moved such a vertex to B1. If B2 = ∅ then G
is a co-bipartite chain graph and so the lemma follows from Lemma 2. Therefore, we assume
in the following that B1, B2 6= ∅. Let A1 = N(B1) ∩ A and A2 = A \ A1. Note that A2 is
anti-complete to B1.

We claim thatN(B2)∩A is complete to B1. Suppose, by contradiction, that a ∈ N(B2)∩A
and b1 ∈ B1 are not adjacent. By definition, a has a neighbour b ∈ B2. Recall that b is not
adjacent to some vertex b′ ∈ B2. Now a, b, b1, b

′ induces either a P4 or a C4, depending on
whether a and b′ are adjacent. This contradicts (iv) or the C4-freeness of G. This proves the
claim. Therefore, A2 is anti-complete to B2 and N(B2) ∩ A = N(B2) ∩ A1 (see Figure 1).
Consequently, G[(A1 ∩ N(B2)) ∪ B2] with the partition (A1 ∩ N(B2), B2) satisfies all the
conditions of the lemma. By the inductive hypothesis there is a nice 4-expression τ for
G[(A1 ∩N(B2)) ∪B2] in which all vertices in A ∩N(B2) = A1 ∩N(B2) and B2 have labels
2 and 4, respectively. In addition, note that (A1 \N(B2), B1) is a co-bipartite chain graph.
It then follows from Lemma 2 that there is a nice 4-expression ε for it in which all vertices in
A1 \N(B2) and B1 have labels 1 and 3, respectively. Then

σ = ρ3→4(ρ1→2(η3,4(η2,3(η1,2(ε⊕ τ)))))

is a nice 4-expression for G − A2. Let δ be a 2-expression for A2 in which all vertices in
A2 have label 1. Then ρ1→2(η1,2(δ ⊕ σ)) is a nice 4-expression for G. This completes the
proof. J

Let G = (V,E) be a graph and X and Y two disjoint subsets of V (G). We say that
(X,Y ) is a homogeneous pair of sets in G if no vertex in V \ (X ∪ Y ) distinguishes two
vertices in X or in Y . If both X and Y are cliques then (X,Y ) is a homogeneous pair of
cliques. Note that homogeneous sets are special cases of homogeneous pair of sets where one
of X and Y is empty. We establish a novel framework via existing results on clique-width
for bounding the clique-width of a graph by the clique-width of its subgraphs induced by
homogeneous pairs of sets.

I Lemma 4. Let G be a graph such that V (G) can be partitioned into a subset V0 of vertices
of constant size, a constant number of pairs of sets (Si, Ti) for 1 ≤ i ≤ r and a subset
V ′ of vertices such that (i) for each 1 ≤ i ≤ r, (Si, Ti) is a homogeneous pair of sets in
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G− (V0 ∪
⋃i−1

j=1(Sj ∪ Tj); (ii) for each 1 ≤ i ≤ r, G[Si ∪ Ti] has bounded clique-width; and
(iii) G[V ′] has bounded clique-width. Then G has bounded clique-width.

Proof. Let G1 = G− V0 and Gi+1 = Gi − (Si ∪ Ti) for 1 ≤ i ≤ r. Note that Gr+1 = G[V ′].
First of all, it follows from [39] that G has bounded clique-width if and only if G1 has bounded
clique-width. In addition, (i) says that (Si, Ti) is a homogeneous pair of sets in Gi. Let Ni

and Mi be sets of vertices in Gi that are complete to Si and Ti, respectively. For each i we
do in Gi two bipartite complementations on the pairs (Si, V (Gi) \Ni) and (Ti, V (Gi) \Mi),
which means that we interchange edges and non-edges between the pairs. This results in a
graph G′ on the same vertex set as G1 that is the disjoint union of G[Si ∪ Ti] and G[V ′]. It
follows from [32] that G1 has bounded clique-width if and only if each G[Si ∪ Ti] and G[V ′]
have bounded clique-width. Now the lemma follows from our assumptions (ii) and (iii). J

3.2 Structure around a 5-Cycle
Let G = (V,E) be a graph and H be an induced subgraph of G. We partition V \ V (H)
into subsets with respect to H as follows: for any X ⊆ V (H), we denote by S(X) the set of
vertices in V \ V (H) that have X as their neighbourhood among V (H), i.e.,

S(X) = {v ∈ V \ V (H) : NV (H)(v) = X}.

For 0 ≤ j ≤ |V (H)|, we denote by Sj the set of vertices in V \ V (H) that have exactly j
neighbours among V (H). Note that Sj =

⋃
X⊆V (H):|X|=j S(X). We say that a vertex in

Sj is a j-vertex. Let G be a (C4, P6)-free graph and C = 1, 2, 3, 4, 5 be an induced C5 in
G. We partition V \ C with respect to C as above. All indices below are modulo 5. Since
G is C4-free, there is no vertex in V \ C that is adjacent to vertices i and i+ 2 but not to
vertex i + 1. In particular, S(1, 3), S4, etc. are empty. The following properties of S(X)
were proved in [25] using the fact that G is (C4, P6)-free.

(P1) S5 ∪ S(i− 1, i, i+ 1) is a clique.
(P2) S(i) is complete to S(i+ 2) and anti-complete to S(i+ 1). Moreover, if neither S(i) nor

S(i+ 2) are empty then both sets are cliques.
(P3) S(i, i+ 1) is complete to S(i+ 1, i+ 2) and anti-complete to S(i+ 2, i+ 3). Moreover, if

neither S(i, i+ 1) nor S(i+ 1, i+ 2) are empty then both sets are cliques.
(P4) S(i− 1, i, i+ 1) is anti-complete to S(i+ 1, i+ 2, i+ 3).
(P5) S(i) is anti-complete to S(j, j + 1) if j 6= i+ 2. Moreover, if a vertex in S(i+ 2, i+ 3) is

not anti-complete to S(i) then it is universal in S(i+ 2, i+ 3).
(P6) S(i) is anti-complete to S(i+ 1, i+ 2, i+ 3).
(P7) S(i− 2, i+ 2) is anti-complete to S(i− 1, i, i+ 1).
(P8) Either S(i) or S(i+ 1, i+ 2) is empty. By symmetry, either S(i) or S(i− 1, i− 2) is empty.
(P9) At least one of S(i− 1, i), S(i, i+ 1) and S(i+ 2, i− 2) is empty.

3.3 Proof of Theorem 4
In this section, we give a proof of Theorem 4. A graph is chordal if it does not contain any
induced cycle of length at least 4. The following structure of (C4, P6)-free graphs discovered
by Brandstädt and Hoàng [4] is of particular importance in our proofs below.

I Theorem 5 ([4]). Let G be a (C4, P6)-free atom. Then the following statements hold:
(i) every induced C5 is dominating; (ii) if G contains an induced C6 which is not dominating,
then G is the join of a blow-up of the Petersen graph (Figure 2) and a (possibly empty)
clique.

STACS 2018
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Figure 2 The Petersen graph.
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Figure 3 Two special graphs F1 and F2.

We say that an atom is strong if it has no pair of twin vertices or universal vertices. Note
that a pair of twin vertices and a universal vertex in a graph give rise to two special kinds of
proper homogeneous sets such that one of the factors decomposed by these homogeneous
sets is a clique. Therefore, removing twin vertices and universal vertices does not change
the clique-width of the graph by Lemma 1. So, to prove Theorem 4 it suffices to prove the
theorem for strong atoms. We follow the approach in [18]. In [18], the first and second
authors showed how to derive a useful decomposition theorem for (C4, P6)-free atoms by
eliminating a sequence F1, C6, F2 and C5 (see Figure 3 for the graphs F1 and F2) of induced
subgraphs and then employing Dirac’s classical theorem [15] on chordal graphs. Here we
adopt the same strategy and show in Lemma 5–Lemma 8 below that if a (C4, P6)-free strong
atom G contains an induced C5 or C6, then it has bounded clique-width. The remaining
case is therefore that G is chordal and so G is a clique by Dirac’s theorem [15]. Since cliques
have clique-width 2, Theorem 4 follows. It turns out that we can easily prove Lemma 5
and Lemma 6 via the framework formulated in Lemma 4 using the structure of the graphs
discovered in [18]. The difficulty is, however, that we have to extend the structural analysis
in [18] extensively for Lemma 7 and Lemma 8 and provide new insights on bounding the
clique-width of certain special graphs using divide-and-conquer (see Lemma 3).

I Lemma 5. If a (C4, P6)-free strong atom G contains an induced F1, then G has bounded
clique-width.

I Lemma 6. If a (C4, F1, P6)-free strong atom G contains an induced C6, then G has bounded
clique-width.

I Lemma 7. If a (C4, C6, F1, P6)-free strong atom G contains an induced F2, then G has
bounded clique-width.

I Lemma 8. If a (C4, C6, F1, F2, P6)-free strong atom G contains an induced C5, then G

has bounded clique-width.

We illustrate our techniques by giving a proof of Lemma 7 below and omit the proofs of
the other lemmas.
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Proof of Lemma 7. Let G be a (C4, C6, F1, P6)-free strong atom that contains an induced
subgraph H that is isomorphic to F2 with V (H) = {1, 2, 3, 4, 5, t, x, y} such that 1, 2, 3, 4, 5, 1
induces the underlying 5-cycle C, and t is adjacent to 5, 1 and 2, x is adjacent to 4, 5 and y is
adjacent to 2 and 3. Moreover, t is adjacent to both x and y, see Figure 3. We partition V (G)
with respect to C. We choose H such that C has |S2| maximized. Note that x ∈ S(4, 5),
y ∈ S(2, 3) and t ∈ S(5, 1, 2).

The overall strategy is to first decompose G into a subset V0 of constant size, constant
number of homogeneous pairs of sets, and a subset V ′, and then finish off the proof via
Lemma 4 by showing that each homogeneous pair of sets and G[V ′] have bounded clique-width
where Lemma 3 is employed.

We start with the decomposition. Since S(2, 3) and S(4, 5) are not empty, it follows from
(P8) that S1 = S(2)∪S(5). If both S(2) and S(5) are not empty, say u ∈ S(2) and v ∈ S(5),
then u, 2, 3, 4, 5, v induces either a P6 or a C6, depending on whether u and v are adjacent.
This shows that S1 = S(i) for some i ∈ {2, 5}. Now we argue that S2 = S(2, 3) ∪ S(4, 5). If
S(3, 4) contains a vertex z, then z is adjacent to x and y by (P3) but not adjacent to t by
(P7). This implies that t, x, z, y induces a C4, So, S(3, 4) = ∅. If S(1, 2) contains a vertex z,
then z is adjacent to y by (P3) and so 1, z, y, 3, 4, 5, 1 induces a C6, a contradiction. This
shows that S(1, 2) = ∅. By symmetry, S(5, 1) = ∅. Therefore, S2 = S(2, 3) ∪ S(4, 5). The
following properties among subsets of G were proved in [18].

(a) Each vertex in S(5, 1, 2) is either complete or anti-complete to S2.
(b) S(2, 3) and S(4, 5) are cliques.
(c) Each vertex in S(3, 4, 5) ∪ S(4, 5, 1) is either complete or anti-complete to S(4, 5). By

symmetry, each vertex in S(1, 2, 3) ∪ S(2, 3, 4) is either complete or anti-complete to
S(2, 3).

(d) S(4, 5) is anti-complete to S(2, 3, 4). By symmetry, S(2, 3) is anti-complete to S(3, 4, 5).
(e) S(1, 2, 3) is complete to S(5, 1, 2). By symmetry, S(5, 1, 2) is complete to S(4, 5, 1).
(f) S(4, 5) is complete to S(4, 5, 1). By symmetry, S(2, 3) is complete to S(1, 2, 3).
(g) S(1, 2, 3) is complete to S(2, 3, 4). By symmetry, S(3, 4, 5) is complete to S(4, 5, 1).
(h) S5 is complete to S2.

Recall that S1 = S(i) for some i ∈ {2, 5}. By symmetry, we may assume that S1 = S(5).
Note that S(5) is complete to S(4, 5, 1) by Theorem 5 and anti-complete to S(1, 2, 3) by
(P6). It follows from (P1), (P4), (P7), (e), (f) and (g) that S(i − 1, i, i + 1) ∪ {i} is a
homogeneous clique in G and therefore S(i− 1, i, i+ 1) = ∅ for i = 2, 5. Similarly, S(4, 5)
is a homogeneous clique in G by (P7), (a)-(d), (f) and (h) and so S(4, 5) = {x}. Let
T = {t ∈ S(5, 1, 2) : t is complete to S2}.

(1) S(5) is anti-complete to S(5, 1, 2) \ T .
Let u ∈ S(5) and t′ ∈ S(5, 1, 2) \ T . If u and t′ are adjacent, then u, t′, 2, 3, 4, x induces
either a P6 or a C6, depending on whether u and x are adjacent. �

By (1) and (d), (S(5, 1, 2) \ T ) ∪ {1} is a homogeneous set in G and so S(5, 1, 2) \ T = ∅.
In other words, S(5, 1, 2) is complete to S2. We now partition S(5) into X = {v ∈ S(5) :
v has a neighbour in S(2, 3)} and Y = S(5) \X.

(2) X is anti-complete to S(3, 4, 5).
Let v ∈ X and s ∈ S(3, 4, 5) be adjacent. By the definition of X, v has a neighbour
y′ ∈ S(2, 3). By (d), y′ is not adjacent to s and so v, y′, 3, s induces a C4. �
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(3) X is complete to S(5, 1, 2).
Assume, by contradiction, that v ∈ X and t′ ∈ T are not adjacent. By the definition of
X, v has a neighbour y′ ∈ S(2, 3). Since t′ is adjacent to y′, v, 5, t′, y′ induces a C4. �

(4) X is anti-complete to Y .
Suppose that u ∈ X and v ∈ Y are adjacent. Let y′ ∈ S(2, 3) be a neighbour of u.

Note that x is adjacent to neither u nor v by (P5). But now x, 4, 3, y′, u, v induces a P6. �

(5) X is complete to S5.
Suppose that v ∈ X and u ∈ S5 are not adjacent. Let y′ ∈ S(2, 3) be a neighbour of v.
By (h), y′ and u are adjacent. Then u, 5, v, y′ induces a C4. �

It follows from (P1)-(P7), (a)-(d), (f), (h) and (2)-(5) that (X,S(2, 3)) is a homogeneous
pair of sets in G.

(6) For each connected component A of Y , each vertex in S(5, 1, 2) ∪ S(3, 4, 5) is either
complete or anti-complete to A.
Let A be an arbitrary component of Y . Suppose that s ∈ S(5, 1, 2) ∪ S(3, 4, 5) distin-
guishes an edge aa′ in A, say s is adjacent to a but not adjacent to a′. we may assume
by symmetry that s ∈ S(5, 1, 2). Then a′, a, s, 2, 3, 4 induces a P6, a contradiction. �

(7) Each component of Y has a neighbour in both S(5, 1, 2) and S(3, 4, 5).
Suppose that a component A of Y does not have a neighbour in one of S(5, 1, 2) and
S(3, 4, 5), say S(5, 1, 2). Then S5 ∪ S(3, 4, 5) ∪ {5} is a clique cutset of G by (4). �

(8) Each component of Y is a clique.
Let A be an arbitrary component of Y . By (7), A has a neighbour s ∈ S(5, 1, 2) and
r ∈ S(3, 4, 5). Note that s and r are not adjacent. Moreover, {s, r} is complete to A by
(6). Now (8) follows from the fact that G is C4-free. �

(9) Y is complete to S5.
Suppose, by contradiction, that v ∈ Y and u ∈ S5 are not adjacent. By (7), v has a

neighbour s ∈ S(5, 1, 2) and r ∈ S(3, 4, 5). Then v, s, u, r induces a C4. �

It follows from (P1), (h), (5) and (9) that each vertex in S5 is a universal vertex in G

and so S5 = ∅. Let S′(3, 4, 5) = {s ∈ S(3, 4, 5) : s has a neighbour in Y } and S′′(3, 4, 5) =
S(3, 4, 5) \ S′(3, 4, 5). Note that S′′(3, 4, 5) is anti-complete to Y . We now show further
properties of Y and S′(3, 4, 5).

(10) S′(3, 4, 5) is complete to S(2, 3, 4).
Suppose, by contradiction, that r′ ∈ S′(3, 4, 5) is not adjacent to s ∈ S(2, 3, 4). By the
definition of S′(3, 4, 5), r has a neighbour v ∈ Y . Then v, r, 4, s, 2, 1 induces a P6. �

(11) Each vertex in S(5, 1, 2) is either complete or anti-complete to Y .
Let t′ ∈ S(5, 1, 2) be an arbitrary vertex. Suppose that t′ has a neighbour u ∈ Y . Let A
be the component of Y containing u. Then t′ is complete to A by (6). It remains to show
that t′ is adjacent to each vertex u′ ∈ Y \ A. By (7), u has a neighbour s ∈ S(3, 4, 5).
Note that C ′ = u, t,′ y, 3, s induces a C5. Moreover, x and s are not adjacent for otherwise
x, s, u, t′ induces a C4. This implies that x is adjacent only to t′ on C ′. On the other
hand, u′ is not adjacent to any of u, 3 and y. This implies that u′ is adjacent to either s
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or t′ by Theorem 5. If u′ is not adjacent t′, then u′ is adjacent to s. This implies that
u′, s, 3, y, t′, x induces a P6 or C6, depending on whether u′ and x are adjacent. Therefore,
u′ is adjacent to t′. Since u′ is an arbitrary vertex in Y \A, this proves (11). �

(12) S′(3, 4, 5) is anti-complete to x.
Suppose not. Let s ∈ S′(3, 4, 5) be adjacent to x. By definition, s has a neighbour
y′ ∈ Y . Note that x and y′ are not adjacent by (P5). By (6) and (7), y has a neighbour
t ∈ T = S(5, 1, 2). So, t is adjacent to x. But now s, y′, t, x induces a C4. �

It follows from (P1)-(P7), (d), (2), (4), (10), (11) and (12) that (Y, S′(3, 4, 5)) is a
homogeneous pair of sets in G. Let S′(5, 1, 2) = {s ∈ S(5, 1, 2) : s is complete to Y }. Then
S(5, 1, 2) \ S′(5, 1, 2) is anti-complete to Y by (11). It follows from (3) that both S′(5, 1, 2)
and S(5, 1, 2) \ S′(5, 1, 2) are homogeneous cliques in G. So, |S(5, 1, 2)| ≤ 2. Now V (G) is
partitioned into a subset V0 = C∪S(5, 1, 2)∪{x} of vertices of size at most 8, two homogeneous
pairs of sets (X,S(2, 3)) and (Y, S′(3, 4, 5)), and a subset V ′ = S′′(3, 4, 5) ∪ S(2, 3, 4).

We now apply Lemma 4 to finish off the proof by showing that each of G[X ∪ S(2, 3)],
G[Y ∪ S′(3, 4, 5)], and G[V ′] has bounded clique-width. First of all, G[V ′] has clique-width 4
by Lemma 2. Secondly, note that no vertex in S(1, 2) can have two non-adjacent neighbours
in X since G is C4-free. If there is an induced P4 = y′, x1, x2, x3 such that y′ ∈ S(2, 3) and
xi ∈ X, then x3, x2, x1, y

′, 3, 4 induces a P6 in G. Now if P = x1, x2, x3, x4 is an induced P4
in G[X], any neighbour y1 of x1 is not adjacent to x3 and x4. But then P ∪ {y1} contains
such a labelled P4 in G[X ∪S(2, 3)]. Therefore, G[X ∪S(2, 3)] with the partition (X,S(2, 3))
satisfies all the conditions of Lemma 3 and so has clique-width at most 4. Finally, note that
each vertex in S(3, 4, 5) can have neighbours in at most one component of Y due to (7),
(11) and the fact that G is C4-free. It then follows from (6)-(8) that G[Y ∪ S′(3, 4, 5)] with
the partition (Y, S′(3, 4, 5)) satisfies all the condition in Lemma 3 (where A = S′(3, 4, 5) and
B = Y ) and so has clique-width at most 4. This completes our proof. J

We are now ready to prove our main theorem.

Proof of Theorem 4. Let G be a (C4, P6)-free atom. Let G′ be the graph obtained from
G by removing twin vertices and universal vertices. It follows from Lemma 5–Lemma 8
that if G′ contains an induced C5 or C6, then G′ has bounded clique-width. Therefore,
we can assume that G′ is also (C5, C6)-free and therefore G′ is chordal. It then follows
from a well-known result of Dirac [15] that G′ is a clique whose clique-width is 2. Finally,
cw(G) = cw(G′) by Lemma 1 and this completes the proof. J

4 The Hardness Result

A graph is a split graph if its vertex set can be partitioned into two disjoint sets C and I
such that C is a clique and I is an independent set. The pair (C, I) is called a split partition
of G. A split graph is complete if it has a complete split partition, that is, a partition (C, I)
such that C and I are complete to each other. A list assignment of a graph G = (V,E) is
a function L that prescribes, for each u ∈ V , a finite list L(u) ⊆ {1, 2, . . . } of colours for
u. The size of a list assignment L is the maximum list size |L(u)| over all vertices u ∈ V .
A colouring c respects L if c(u) ∈ L(u) for all u ∈ V . The List Colouring problem is to
decide whether a given graph G has a colouring c that respects a given list assignment L.
We sketch a proof of our hardness result, in which we construct a graph G′ that is neither
(sP2 + P8)-free nor (sP2 + P4 + P5)-free for any s ≥ 0. Hence, a different construction is
needed for tightening our hardness result (if possible).
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I Theorem 6. Colouring is NP-complete for (C4, 3P3, P3 + P6, 2P5, P9)-free graphs.

Proof Sketch. We reduce from List Colouring on complete split graphs with a list
assignment of size at most 3. It is known that List Colouring is NP-complete for this
graph class [20].

Let G be a complete split graph with a list assignment L of size at most 3. From (G,L)
we construct an instance (G′, k) of Colouring as follows. Let k ≤ 3|V (G)| be the size
of the union of all lists L(u). Let (C, I) be a complete split partition of V (G). Let G′ be
the graph of size O(|V (G)|k) obtained from G as follows. Take a clique X on k vertices
x1, . . . , xk. For each u ∈ V (G), introduce a clique Yu of size k−|L(u)| such that every vertex
of Yu is adjacent to u and to every xi with i ∈ L(u) (so, each vertex in every Yu is adjacent
to exactly one vertex of V (G), namely vertex u). By construction, G has a colouring that
respects L if and only if G′ has a k-colouring. Moreover, it can be readily checked that G′ is
(C4, 3P3, P3 + P6, 2P5, P9)-free. �

5 Conclusions

We gave an almost complete dichotomy for Colouring restricted to (C4, Pt)-free graphs
and leave open only the cases when 7 ≤ t ≤ 8. We believe the techniques developed in this
paper could be useful for solving open questions regarding Colouring on other hereditary
graph classes. The natural candidate class for a polynomial-time result of Colouring
is the class of (C4, P7)-free graphs. However, this may require significant efforts for the
following reason. Lozin and Malyshev [38] determined the complexity of Colouring for
H-free graphs for every finite set of graphs H consisting only of 4-vertex graphs except when
H is {K1,3, 4P1}, {K1,3, 2P1 + P2}, {K1,3, 2P1 + P2, 4P1} or {C4, 4P1}. Solving any of these
open cases would be considered as a major advancement in the area. Since (C4, 4P1)-free
graphs are (C4, P7)-free, polynomial-time solvability of Colouring on (C4, P7)-free graphs
implies polynomial-time solvability for Colouring on (C4, 4P1)-free graphs. As a first step,
we aim to apply the techniques of this paper to (C4, 4P1)-free graphs.

We recall that the complexity of Colouring on (Cs, Pt)-free graphs is known for all
s ≥ 5 and t ≥ 1 (Theorem 1) and that the complexity of Colouring on (C3, Pt)-free
graphs is also known due to the results of [5] and [30] except if 7 ≤ t ≤ 21. The class of
(C3, P7)-free graphs is also a natural class to consider. Interestingly, every (C3, P7)-free graph
is 5-colourable. This follows from a result of Gravier, Hoàng and Maffray [23] who proved
that for any two integers r, t ≥ 1, every (Kr, Pt)-free graph can be coloured with at most
(t− 2)r−2 colours. On the other hand, 3-Colouring is polynomial-time solvable for P7-free
graphs [3]. Hence, in order to solve Colouring for (C3, P7)-free graphs we may instead
consider 4-Colouring for (C3, P7)-free graphs. This problem seems also highly non-trivial.
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