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Abstract: Wilson and Einbeck (2015, 2016) propose a test for zero-modification
relative to a stated model. The basis of the test is that the number of observed
zeros follows a Poisson-binomial distribution. The decision to reject, or otherwise,
the non zero–modified model is made by either (i) computing the mid p-value
corresponding to the number of observed zeros, or (ii) comparing the number of
observed zeros to the relevant “traditional” quantile of the appropriate Poisson–
binomial distribution. In general either approach will result in the same decision,
but occasionally discrepancies may occur. In this paper we investigate the use of
mid-distribution quantiles in approach (ii) above, and show that this reduces the
possibility of discrepancies.
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1 Introduction

Wilson and Einbeck (2015) proposed a new and intuitive test for zero-
modification that uses the observed number of zeros, n0, in a given sam-
ple y = y1, y2, . . . , yn from count variables Yi and a set of covariates xi,
i = 1, 2, . . . , n to establish whether the distributional assumption Yi|xi ∼
G(yi|µi) where µi is a pre-specified parametric function of the xi is con-
sistent with N0, the distribution of the number of zeros under G. This is
achieved by referencing the value of n0 to the appropriate Poisson-Binomial
distribution (Chen and Liu, 1997).
To illustrate, consider the case where G is a Poisson model, and thus pi =
p(0|µi) = e−µi and let Ti be a random variable which takes the value 1
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if yi = 0 and 0 otherwise. Clearly Ti is a Bernoulli random variable with
parameter pi and thus N0 may be formulated as the sum over independent
Bernoulli experiments T1, T2, . . . , Tn.
Based on this simple observation, consider the special case that there are
no covariates, that is µ1 = µ2 = · · · = µn = µ. In this case, the pi’s
are equal also, and so the distribution of N0 is a binomial distribution
Bin(n, p), where p = e−µ, and thus has mean np and variance np(1 − p).
Based on this distribution, one can immediately compute quantiles cor-
responding to a given significance level, and use these as critical values
for the test; alternatively one may determine the p-value corresponding to
n0, and reject or otherwise the Poisson model based upon this. If the µi
do depend on covariates, N0 is the sum of n independent Bernoulli ran-
dom variables T1, T2, . . . , Tn, and hence is a Poisson-Binomial distribution
with parameters p1, p2, . . . , pn and one proceeds by computing quantiles
or p-values relative to this distribution, using, for example, the R package
poibin (Hong, 2013).
Wilson and Einbeck (2016) proposed the use of mid p-values

α̂T,0.5(t) = P0[T > t] + 0.5P0[T = t] = 0.5 (P0 [T ≥ t] + P0[T ≥ t+ 1])

which Franck (1986) argues are more appropriate when the test statistic is
discrete. Note that if T were continuous, then P0[T = t] = 0 and the mid
p-value is equivalent to the “traditional” p-value. It may be shown that the
attainment rate of the proposed test when mid p-values are employed is
superior to that when traditional p-values are used.
Wilson and Einbeck (2015) utilise the “traditional” quantile Q(p) = inf{t |
F (t) ≥ p} where F (x) = P (X ≤ x) is the cumulative distribution function
of a random variable X. This may lead to discrepancies. An example, based
upon the one-sided version of the test (i.e. we are testing for zero-inflation
only), is the following:

1.1 Trajan Data

The data are the number of roots produced by n = 270 micropropagated
shoots of the columnar apple cultivar Trajan. During the rooting period, all
shoots were maintained under identical conditions, but the shoots them-
selves were cultured on media containing different concentrations of the
cytokinin BAP, in growth cabinets with an 8 or 16 hour photoperiod. Full
details of the experiment are to be found in Marin (1993). A striking fea-
ture of the data is that although almost all shoots produced under the 8
hour photoperiod rooted, only about half of those produced under the 16
hour photoperiod did. Overall n0 = 64 shoots produced zero roots, of which
only 2 were from the shorter photoperiod.
These data were analysed by Ridout and Demétrio (1992) and Ridout et
al. (1998). If the model of the null hypothesis is a negative binomial (type–
II) model, where both the mean and the size parameter are modelled by
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photoperiod, then a (mid) p-value of 0.0871 for the test of Wilson and
Einbeck (2015, 2016) is returned, indicating non-rejection of the negative
binomial model at α = 0.05. The traditional 5th and 95th quantiles of the
distribution of N0 are 47 and 66; the interval [47, 66] is referred to as a
90% fluctuation interval. As n0 = 64 is interior to this interval we conclude
that n0 is consistent with such a model (and inconsistent with the zero-
inflated model) at a level of significance of α = 0.05. An 80% fluctuation
interval however is [49, 64], and thus based upon this fluctuation interval
we would fail to reject the negative-binomial model in favour of the strictly
zero-inflated model at a level of significance of 0.10, but we would do so
under the “p–value criterion”.

2 Quantiles based on mid-distribution functions

LetX be a discrete random variable with distinct values v1 < v2 < · · · < vd,
let P (X = vi) = pi. Ma et al. (2011) recommend the following quantile
function for discrete distributions:

Q(p) = F−1
mid(p) =



v1 if p < p1/2

vk if p = πk, k = 1, . . . , d

λvk + (1− λ)vk+1 if p = λπk + (1− λ)πk+1

0 < λ < 1, k = 1, . . . , d− 1

vd if p > πd

Where πk =
∑k−1
i=1 pi + pk/2, that is, πk is a lower-tailed mid-p-value.

2.1 Example: Mid Quantiles for a Binomial Distribution

Let X ∼ Bin(7, 0.35), and thus X has pmf and cdf:

x 0 1 2 3 4 5 6 7

P (X = x) 0.049 0.185 0.298 0.268 0.144 0.047 0.008 0.001
P (X ≤ x) 0.049 0.234 0.532 0.800 0.944 0.991 0.999 1.000

and hence the “traditional” 90th quantile of X is 4.
We determine the “mid–quantile” as follows:
v5 = 4, v6 = 5, p5 = 0.144, p6 = 0.047.
Hence π4 = 0.800 + 0.144/2 = 0.8720, π5 = 0.944 + 0.047/2 = 0.9675.
Note that 0.9 = 0.707π4 + (1− 0.707)π5, hence:

Q(0.9) = F−1
mid(0.9) = 0.707v4 + (1− 0.707)v5 = 3.213
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2.2 Example: Simulated Poisson Data

The 25 data of Table 1 are a random draw from a random variable W that
is believed to follow a Poisson distribution. It is wished to test this belief.

TABLE 1.
0 1 2 3

16 4 4 1

It is estimated, using the adaptive mixture estimator of Wilson and Einbeck
(2016), that the mean of W is µ = 1.171, and hence under the null (Pois-
son) model P (W = 0) = exp(−1.171) = 0.310. Hence the observed number
of zeros in random samples of size 25 drawn from W will be Bin(25, 0.310)

distributed. The “traditional” 2.5th and 97.5th quantiles of such a dis-
tribution are 7 and 16 respectively, and hence a 95% fluctuation interval
for the number of observed zeros under the Poisson distribution is [7, 16]
indicating non-rejection of the Poisson model at a level of significance of
α = 0.05, consistent with the traditional p-value of 0.064, but inconsistent
with the mid p-value of 0.045. The 95% fluctuation interval based upon
the mid quantiles is however [6.52, 15.57], consistent with the mid p-value.
These results are summarised in Table 2.2.

TABLE 2. n = 25, H0:Poisson

n0 = 16 p-value 95%FI

traditional 0.064 [7, 16]
mid 0.045 [6.52, 15.57]

2.3 Example: Trajan Data Revisited

Here we re-compute the 80% fluctuation interval for the negative binomial
model fitted to the Trajan data of Section 1.1 using the mid-distribution
quantiles defined above. (Recall, here we are testing for strict zero-inflation,
and thus the upper bound of the fluctuation interval serves as a test statistic
for a one-sided test). We find that π47 = 0.073 and π48 = 0.101, thus
0.1 = 0.069π47 + (1 − 0.069)π48 and hence Q(0.1) = (0.069 × 47) + ((1 −
0.069) × 48) = 47.931. Similarly π63 = 0.882 and π64 = 0.913, thus 0.9 =
0.419π63 + (1− 0.419)π64 and hence Q(0.9) = (0.419× 63) + ((1− 0.419)×
64) = 63.581. Thus, using the mid-distribution quantile we obtain a 80%
fluctuation interval of (47.931, 63.581), and hence n0 = 64 is exterior to the
confidence interval, and we reject the negative-binomial model in favour of
the zero-inflated negative binomial model under both criteria. These results
are summarised in Table 2.3.
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TABLE 3.

n0 = 64 p-value 90% FI 80% FI

traditional 0.1010 [47, 66] [49, 64]
mid 0.0871 [46.902, 65.679] [47.931, 63.581]

3 Conclusion

Decisions based upon mid-distribution quantiles as defined above will agree
with those based upon mid p-values unless p < p1/2 or p > πd. With respect
to the test proposed in Wilson and Einbeck (2015, 2016) these exceptions
correspond to the observed data either containing no zeros, or consisting
entirely of zeros, and hence the adoption of quantiles based upon mid-
distribution functions results in fluctuation intervals that nearly entirely
removes discrepancies that may sometimes occur between decisions based
upon fluctuation intervals and mid p–values. Given that the power and at-
tainment rates of the test when based upon mid p-values are excellent, such
alignment is desirable. The adoption of such quantiles is straightforward. In
this paper we only discuss the use of mid-distribution quantiles in relation
to the test of Wilson and Einbeck (2015, 2016), but their application to
other tests with discrete test statistics is worthy of investigation.
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