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Abstract— Illumination changes in outdoor environments
under non-ideal weather conditions have a negative impact
on automotive scene understanding and segmentation perfor-
mance. In this paper, we present an evaluation of illumination-
invariant image transforms applied to this application domain.
We compare four recent transforms for illumination invariant
image representation, individually and with colour hybrid
images, to show that despite assumptions to contrary such
invariant pre-processing can improve the state of the art in
scene understanding performance. In addition, we propose a
robust approach based on using an illumination-invariant image
representation, combined with the chromatic component of a
perceptual colour-space to improve contemporary automotive
scene understanding and segmentation. By using an illumina-
tion invariant pre-process, to reduce the impact of environmen-
tal illumination changes, we show that the performance of deep
convolutional neural network based scene understanding and
segmentation can yet be further improved. This illuminating
result enforces the need for invariant (unbiased) training sets
within such deep network training and shows that even a well-
trained network may still not offer truly optimal performance
(if we ignore any prior data transforms attributable to a priori
insight). Our approach is demonstrated over a range of example
imagery where we show a notable improvement in performance
using pre-processed, illumination invariant, automotive scene
imagery.

I. INTRODUCTION

Automotive scene understanding and segmentation is an
active research topic requiring robust full scene understand-
ing, under uncontrolled and varying illumination conditions.
Understanding the entire scene for tasks such as image
classification and segmentation for automotive applications is
a very challenging task, made significantly more challenging
by exposure to illumination conditions and weather changes
in outdoor environments. Within this context, despite the
success of recent deep convolutional neural network (CNN)
techniques to achieve state-of-the-art performance for gen-
eralized automotive scene understanding [1]–[4], extreme
illumination variation can lead to inaccurate scene classi-
fication and segmentation [5]–[10]. To attempt to overcome
the impact of illumination conditions and isolate the outdoor
scenes from these effects, we evaluate the use of illumination
invariant image pre-processing as proposed in [5], [6], [7],
[9] to reduce illumination variations and improve object
classification and segmentation for automotive scenes.

To improve upon the recent advances in scene classifi-
cation and segmentation, here we look to expand, explore
and evaluate the use of illumination invariant transformations
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Fig. 1: Our evaluation framework using two types of inputs:
RGB and illumination invariant colour space (with and
without hybrid colour information, IIHS) (a) and relying on
deep fully convolutional neural network (CNN) architecture,
SegNet [1] (b), as a model for object classification and
semantic pixel-wise segmentation (c).

by assessing their impact as an initial pre-process prior to
use of an existing fully deep convolutional neural network
(CNN) architecture [1] for contemporary automotive scene
understanding and semantic segmentation. Figure 1 shows
our evaluation framework based on using an illumination-
invariant colour space. When using a hybrid illumination
invariant technique as a pre-process we find a significant
improvement for classification within individual class perfor-
mance and in overall semantic scene segmentation accuracy.

II. ILLUMINATION INVARIANT COLOUR SPACE

An illumination invariant colour space is a colour repre-
sentation computed from RGB that removes (or minimises)
scene colour variations due to varying scene lighting condi-
tions. This technique was introduced as an intrinsic image to
represent the illumination invariant and intrinsic properties
in the image [11] with illumination transforms generally
computed with reference to the physical properties behind
the capture and presence of colour within the scene.

The use of illumination invariant approaches in most
of the literature is predominantly for shadow removal [5],
[12], [13], [8], [14], and to improve scene classification and
segmentation [7], [6], [8]. Figure 2 shows an example of
an RGB image (A) from [15] followed by four different
illumination invariant images (B), (C), (D) and (E) generated
using the approaches of [7], [6], [9], and [5]. In Section
A we review recent approaches for illumination invariant
image representation. Section B introduces the illumination-
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Fig. 2: An example of an RGB image (A) from KITTI dataset
[15] followed by four different illumination invariant images,
(B) [7], (C) [6], (D) [9], and (E) [5] where all the illumination
variations such as shadows are significantly reduced within
the scenes.

invariant image representation, combined with the chromatic
components of a perceptual colour-space HSV [16].

A. Illumination Invariant Image Formulation

An illumination-invariant image I is a single channel im-
age calculated by combining the three RGB colour channels
in the image IRGB ∈ {IR, IG, IB}. For shadow removal
purposes, [5] propose an approach to compute illumination
invariant image by considering ρk as the response of a single
RGB image sensor, k ∈ {IR, IG, IB} colour. Therefore, the
illumination invariant images can be computed as follows:

ρk = σ

∫
E(λ)S(λ)Rk(λ)dλ, (1)

where E(λ) is the illumination of the surface, S(λ) is the
surface reflectance, Rk(λ) is the camera sensitivity of RGB
colour sensors, and λ is the wave length. Equation 1 can be
simplified to:

ρk = σE(λk)S(λk)qk, (2)

where qk is Planckian illuminant and infinitely narrow-band
color sensitivities.

The work of [5] approximate lighting by using Planck’s
law, which utilizes the Wien approximation by colour tem-
perature T as follows:

E(λ, T ) = Ic1λ
−5e
−
−c2
Tλ ,

(3)

where c1, c2 are constant and I characterizes the lighting
colour.

From Equation 3, the RGB colour is simply given by

ρk = σIc1λ
−5
k e
−
−c2
Tλ S(λk)qk.

(4)

Now the band-ratio 2-vector chromaticities c is calculated
as follows:

ck = ρk/ρp, (5)

where p is one of the channels, and k is the remaining
responses.

A straight line parametrized by T , can be obtained as
follows:

ρk ≡ log(ck) = log(sk/sp) + (ek − ep)/T. (6)

A sample illumination image IFinlayson (as shown in Fig.
2E) is thus computed by projecting 2D logs in the chromatic-
ity space into a direction on the illumination invariant vector
[5].

Inspired by [12] and focusing on one class problem,
[7], [17] proposes an approach for road detection and seg-
mentation relying on illumination invariant colour space, as
introduced by [12], to reduce the complicity of the scenes
when the shadows are present. Within [7] the illumination
invariant image I (a sample shown in Fig. 2D) is compute
by combining the RGB channels as follows:

IÁlvarez = cos(θ) logapprox(IR/IB)+

sin(θ) logapprox(IG/IB),
(7)

where IR, IG, IB are the three RGB channels, θ ∈ {0...180},
and logapprox() is the logarithmic approximation for the
division of two channels in an image x ∈ {R,G,B}, which
is computed as follows:

logapprox(x) = α((~x
1
α )− 1), (8)

where x is the value from dividing two channels, α = 5000.
In the work of [6], an illumination-invariant approach

is proposed to improve visual localization, mapping and
scene classification for autonomous road vehicles. In the
aforementioned approach, the illumination-invariant image
I (as shown in Fig. 2B) is computed by converting a 3-
channel floating point RGB image into the corresponding
illumination invariant image as follows:

IMaddern = 0.5 + log(IG)− αlog(IB)−
(1− α) log(IR),

(9)

where α = 0.48 for the reference camera in use (PointGrey
Bumblebee-2), and 0.5 for pixels normalised into the range
{0...1}. Unlike [5] and [7], the work of [6] addresses the
problem of multiple classes (e.g. buildings, road, vehicles,
vegetation and sky) for detection and semantic segmentation
tasks.

In order to improve mobile robot localization in outdoor
environments, [9] calculates the illumination-invariant image
I (see Fig. 2C) by projecting 3D log-chromaticity to a
2D log-chromaticity space ψ1,2 using a 3D to 2D space
transformation matrix U . Subsequently, knowing the suitable
estimated angle θ estimated based on the minimization
of Shannons entropy, the intrinsic image is computed as
follows:

IKrajnı́k = (ψ1 cos θ + ψ2 sin θ), (10)

where θ is a suitable estimated angle calculated based on the
minimization of Shannon entropy of the intrinsic image.

The related work of [8] proposes a street classification and
semantic segmentation approach based on using illumination
invariant transforms, which are able to significantly reduce
illumination variation in outdoor scenes. To compute the
illumination invariant images, [8] use a single channel feature



space I combined with three linear sensors {R,G,B} which
is very similar to [6] (IMaddern) as follows:

IUpcroft = log(IG)− αlog(IB)− (1− α) log(IR), (11)

where again α = 0.48 for the reference camera in use.
By contrast, here we evaluate the relative performance

of each of these available set of invariant transforms,
(IÁlvarez[7], IMaddern[6], IKrajnı́k[9], IFinlayson[5]), as a pre-
transformation prior to segmentation and semantic labeling
via a contemporary scene understanding methodology [1].

Fig. 3: An example image from the CamVid dataset [18]
along with its annotations.

B. Perceptual Colour-Space and Illumination-Invariant

For further evaluation, we use the illumination invariant
channel I proposed in [5], [6], [7], [9] combined with the
chromatic components of a perceptual colour-space HSV.
The only hue and saturation channels of an image IHSV ∈
{IH , IS , IV } are combined with the illumination-invariant
channel I to produce a new colour representation IIHS ∈
{II , IH , IS}. We evaluate the use of this transformation on
the performance of pixel-wise semantic scene segmentation.

III. EVALUATION METHODOLOGY

We evaluate the performance of automotive scene un-
derstanding and segmentation using the SegNet [1] CNN
architecture (Figure 4) with four illumination-invariant trans-
formations [6], [9], [7], [5]. Subsequently, we train the model
again using the IIHS formulation. We use the CamVid [18]
dataset with different pixels classes for the SegNet classifi-
cation task (Fig. 3 shows an example of the dataset along
with its annotations). CamVid datasets have been used with
eleven classes: {sky, building, pole, road, pavement, tree,
sign, fence, car, pedestrian, bicycle}. This dataset consists
of 367 training and 233 testing image examples (resolution
of 480× 360).

A. Network Training

For the segmentation task, we train the CNN model
SegNet [1] (the SegNet architecture is visualised in Fig.
4) on the CamVid dataset [18] with three different colour
transformations: (1) the original CamVid dataset only [18]
(i.e all are RGB images as per SegNet-Basic [1]); (2) the
generated illumination-invariant datasets (computed using
the approaches: [7], [6], [9], [5], reviewed in Section 2.1);
and (3) the colour transformation we propose, IIHS . We
use a VGG16 [19] network pre-trained on the ImageNet
[20] dataset, which is the encoder network within SegNet

Fig. 4: Architecture of the SegNet Convolutional Neural
Network [1].

[1]. An encoder network consists of convolution and pooling
layers followed by a decoder network contains of convolution
and upsampling layers. We employ a stochastic gradient
descent (SGD) [21] optimisation with an initial learning rate
of 1 × 10−3, weight decay of 5 × 10−4 and momentum of
0.9. We train the model for 40,000 iterations by using an
NVIDIA Tesla K40 GPU (with cuDNN v5) following the
work of [1].

B. Analysis

To see the impact of the illumination invariant trans-
formation on the original work of [1], we compare the
semantic scene segmentation of the SegNet trained by using
each of the illumination invariant transforms of [7], [6],
[9], [5] and IIHS with the original work of [1] using the
CamVid [18] dataset. For semantic accuracy evaluation, we
use the following evaluation measures: (1) class average
accuracy which is the mean of the predictive accuracy over
all classes, (2) global accuracy which measures overall scene
pixel classification accuracy, and (3) mean intersection over
union (mIoU). To supplement these measures, the following
performance metrics have been used: (4) recall and (5)
precision.

1) Illumination-invariant and RGB: We evaluate the
performance of scene understanding and segmentation first
on illumination-invariant transforms [7], [6], [9], [5] and
the original transform (RGB) using images obtained from
CamVid [18]. The reference results of [1] (shown in Table
I and referred as Original (RGB)) produce the highest
overall accuracy (80.76%), as well as when compared with
the transforms: IÁlvarez (68.63%), IMaddern (78.21%), IKrajnı́k
(80.06%) and IFinlayson (78.58%). However, the latter four
illumination-invariant transforms excel in several sub-classes.
For example, IKrajnı́k is distinct in each of the Road and
Bicyclist classes, where their accuracy values are (93.6%)
and (15.5%) respectively (Table I). In addition, IKrajnı́k has
the second highest overall accuracy (80.06%). Accordingly,
IMaddern has the highest accuracy for the Sky class (92.4%),
but its overall accuracy (78.21%) makes it the second
least accurate transformation (Table I). Furthermore, IFinlayson
overall accuracy is (78.58%) (shown in Table I), placing
it in the middle when compared with the other transform
methods. However, IFinlayson shows higher results in some
bands, such as Sky and Road, especially when compared
with the original results (with no pre-transform method).
IÁlvarez has the lowest overall accuracy (68.63%), making
it the worst performing method within the four illumination-
invariant transforms discussed (see Table I).
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Original (RGB) [1] 0.73 0.846 0.33 0.87 0.91 0.76 0.43 0.41 0.73 0.60 0.11 0.61 0.807 0.46 0.70 0.61
IÁlvarez [7] 0.67 0.73 0.22 0.69 0.67 0.75 0.35 0.28 0.63 0.26 0.017 0.46 0.68 0.33 0.46 0.48
IMaddern [6] 0.92 0.80 0.20 0.932 0.53 0.62 0.38 0.17 0.61 0.51 0.07 0.54 0.78 0.40 0.64 0.65
IFinlayson [12] 0.88 0.77 0.21 0.92 0.63 0.67 0.37 0.27 0.68 0.36 0.05 0.53 0.78 0.41 0.53 0.53
IKrajnı́k [9] 0.88 0.805 0.28 0.936 0.61 0.70 0.42 0.30 0.70 0.40 0.15 0.56 0.806 0.44 0.56 0.57
IÁlvarezHS 0.73 0.76 0.20 0.82 0.54 0.64 0.38 0.26 0.68 0.26 0.12 0.49 0.71 0.36 0.49 0.49
IMaddernHS 0.93 0.87 0.37 0.93 0.89 0.78 0.44 0.43 0.79 0.71 0.36 0.68 0.873 0.563 0.69 0.68
IFinlaysonHS 0.91 0.81 0.307 0.955 0.67 0.69 0.466 0.28 0.75 0.43 0.30 0.61 0.81 0.58 0.58 0.60
IKrajnı́kHS 0.92 0.86 0.39 0.94 0.86 0.83 0.55 0.45 0.78 0.73 0.39 0.70 0.872 0.567 0.68 0.70

TABLE I: Quantitative results are shown as accuracy of the CNN SegNet approach on CamVid test data [18] for three
methods. First, the reference results of [1], followed by four illumination-invariant approaches of [7], [6], [5], [9], and our
approach IHS for the same set of transforms. The table shows the accuracy of predicted 11 classes, followed by class
average, global accuracy, mIoU, precision, and recall.
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(b) IKrajnı́k [9]

Sk
y

B
ui
ld
in
g

Po
le

R
oa
d

Pa
ve
m
en
t
Tr
ee

Si
gn

Fe
nc
e

C
ar

Pe
de
st
ria
n

B
ic
yc
le

Predicted label

Sky

Building

Pole

Road

Pavement

Tree

Sign

Fence

Car

Pedestrian

Bicycle

T
ru
e
la
b
el

0.94 0.02 0.01 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0

0.01 0.88 0.02 0.0 0.02 0.04 0.01 0.01 0.0 0.01 0.0

0.05 0.37 0.38 0.0 0.03 0.09 0.03 0.01 0.01 0.04 0.0

0.0 0.0 0.0 0.94 0.05 0.0 0.0 0.0 0.01 0.0 0.0

0.0 0.02 0.0 0.08 0.89 0.0 0.0 0.0 0.0 0.0 0.0

0.05 0.11 0.01 0.0 0.0 0.79 0.01 0.02 0.0 0.0 0.0

0.02 0.44 0.03 0.0 0.0 0.04 0.45 0.01 0.0 0.01 0.0

0.0 0.37 0.02 0.0 0.06 0.08 0.0 0.43 0.01 0.03 0.0

0.0 0.1 0.0 0.06 0.01 0.01 0.0 0.0 0.8 0.01 0.0

0.0 0.15 0.02 0.0 0.03 0.01 0.0 0.03 0.02 0.72 0.02

0.0 0.07 0.01 0.01 0.05 0.04 0.0 0.07 0.04 0.35 0.37

0.0

0.2

0.4

0.6

0.8

(c) IMaddernHS

Fig. 6: Normalized confusion matrices based on the three transforms that gave the highest performance within their class
categories (from Table I): (a) the reference results of [1] using RGB input, (b) the illumination-invariant method IKrajnı́k [9],
and (c) our transformed method (IMaddernHS).

2) Illumination-invariant, RGB, and IIHS: The sec-
ond evaluation is performed on datasets with the colour
transformation IIHS. This approach achieved the highest
overall segmentation accuracy (87.3%) specifically with
(IMaddernHS) when compared with the aforementioned ap-
proaches (RGB and illumination-invariant) (see Table I).
Furthermore, (IKrajnı́kHS) (87.2%), and (IFinlaysonHS) (81%)
come the second and third highest overall accuracy. In
addition to the results we gained in the overall accuracy, we
attained the highest results in (class average, mIoU, Recall)
(70%, 56%, 70%) respectively, using (IKrajnı́kHS). However,
the reference results of [1] excels in precision where it
represents (70%). For per-class comparison, our proposed ap-
proach offers superior performance in ten out eleven classes.
In particular, IMaddernHS has the highest accuracy in each of
the {Sky, Building, Pole, Car} classes where they represent
(93%, 87%, 95%, 79%) respectively whilst IFinlaysonHS) is
distinct in each of the {Road, SignSymbol} classes with
accuracy values (95%, 46.6%) respectively. Lastly, IKrajnı́kHS
excels in each of the {Tree, Fence, Pedestrian, Bicyclist}
classes where they represent (83%, 45%, 73%, 39%) respec-
tively while the only distinction by the reference results of [1]
within this context is in the class Pavement (91%). Figure 5

shows a comparison of classification predictions on CamVid
dataset [18] with three different colour transformations:- (1)
RGB (no transform method) (2) the illumination invariant
transformations in [7], [6], [9], [5] (3) and our outlined ap-
proach (IIHS) computed using aforementioned illumination-
invariant transformations for six scenarios. Figure 6 shows
three normalized confusion matrices that depict per-class
accuracy based on implementing the aforementioned trans-
forms and representing the transformations that achieve the
highest performance within their class categories (from Table
I).

C. Discussion

In exploring the use of the illumination invariant technique
for scene understanding and pixel-wise semantic segmen-
tation, as compared with RGB, we find that illumination
invariant transformations show significant improvement in
prediction certain classes such as {Road, Sky}. However, the
illumination-invariant techniques fail to achieve the overall
accuracy (in our case where we are segmenting eleven
classes). Most of the literature illumination-invariance within
the context of scene understanding and semantic segmenta-
tion predominantly uses the illumination invariant technique



for a one class problem, Road in [7], [22], and [23], or
for limited number of classes in [6], [8] (seven classes). By
contrast, this study presents an extended evaluation over an
extended set of classes and illumination invariant transforms
in a side-by-side comparison.

On the other hand, the use of an illumination-invariant im-
age representation, combined with the chromatic components
of a perceptual colour-space HSV has improved robustness
for scene understanding and semantic segmentation in both
per-class and overall class accuracy using our proposed IIHS
transform (with IMaddern [6], IFinlayson [5], and IKrajnı́k [9]).
Future work could additionally investigate the use of other
perceptual colour spaces with invariant image transforms,
following from the improved accuracy observed here.

Overall, we observe that the illumination invariant pre-
transforms of [7], [6], [9], [5], and our outlined approach do
impact the SegNet architecture performance either in the per-
class accuracy, when using the illumination-invariant trans-
formation (I), or in the overall class accuracy, when using
IIHS transform (with IMaddern[6], IFinlayson [5], and IKrajnı́k
[9]). This reinforces the notation that even a well trained
CNN approach can be improved by initial pre-processing
against current conventional wisdom within the field on end-
to-end semantic scene understanding architectures.

IV. CONCLUSION

In this paper, we present the impact of illumination-
invariant image pre-transformation on contemporay automo-
tive semantic scene understanding using deep convolutional
neural networks (SegNet [1]). By examining the illumina-
tion invariant image transforms of [7], [6], [9], [5], and
our outlined approach IIHS as alternative inputs to SegNet
based scene understanding and segmentation we are able
to show that pre-processing can influence trained network
performance. More notably, we achieve the highest (overall
accuracy, class average, mIoU, recall) (87%, 70%, 56%,
70%) respectively for automotive scene segmentation by
using our novel scene colour representations IIHS with
IMaddernHS giving the overall highest global accuracy. In
addition, our approach demonstrates superior class accuracy
in each of the {Sky, Building, Pole, Road, Tree, SignSymbol,
Fence, Car, Pedestrian, Bicyclist}, (93%, 87%, 95%, 83%,
46.6%, 45%, 79%, 73%, 39%) respectively.

Hence, we are able to show that, contrary to conventional
wisdom, the performance of deep convolutional neural net-
work based scene understanding and segmentation can yet
be further improved and influenced by input pre-processing.
This shows that even a well trained network may still not
offer truly optimal performance, and the impact of pre-
processing in terms of dimensionality reduction and invariant
feature representation may still offer performance gains. Ulti-
mately, the internal feature representation within the network
may not be truly optimal when compared to established a
priori (recognised) insights on invariant scene understanding.
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