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Abstract

In this paper, we explore and enhance importance sampling techniques for calculating lower and upper
expectations with respect to sets of probability distributions. We formalize an iterative algorithm
that we proposed in earlier work, by formulating the algorithm as a procedure for identifying a fixed
point. We show how the algorithm can break down under poor coverage of the sampling distribution,
and explore simple methods to increase coverage and thereby improve the algorithm.
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1 Introduction
In many engineering problems, it can be hard to specify full probability densities for all parameters, due
to lack of data and expert information. In such cases, we may prefer to work with partial probability
specifications, or equivalently, sets of probability densities [1–3]. Typically, we may wish to estimate
the lower expectation (lower prevision) θ∗ := mint∈T

∫
h(x)ft(x) dx of some function h with respect to

some parametrized family of probability density functions ft, over all t ∈ T . For example, in reliability
engineering, h might be an indicator function of a failure region described by a limit state function g and
then θ∗ is the lower probability of failure. Upper probabilities of failure can be treated in the same way.

In earlier work [4–8] we studied how to estimate θ∗ through importance sampling. In this paper, we
formalize our work further by describing the sample as a parametrized function xt(V ) of a fixed random
variable V , so that xt(V ) has the distribution ft. This enables better control of the error, reduces the
bias as shown in [8], and formalizes the technique of ‘fixing the seed’ across iterations of the optimisation
steps [7]. Here, we study the convergence of the iterative importance sampling estimator developed in
[6, 7] by formulating it as a fixed point of an operator. We contrast the iterative procedure with standard
sampling, and we investigate how increased coverage of the sampling region can substantially improve
the accuracy of the estimates. Examples demonstrate our approach.

2 Importance Sampling
Let ft be a density parameterized by t ∈ T . We are interested in estimating the lower and/or upper
expectation of some function h with respect to ft over all t ∈ T :

θ(t) :=

∫
h(x)ft(x) dx, (1)

θ∗ := min
t∈T

θ(t), θ∗ := max
t∈T

θ(t). (2)

We assume that samples from ft can be generated as follows. We start from a random variable V
(e.g. uniform in [0, 1]k), and a function xt of V , such that

xt(V ) ∼ ft. (3)

For example, if t = (µ, σ) and ft is N(µ, σ2), then V = (U1, U2) could be a standard bivariate uniform
on [0, 1]2, and

xt(V ) = µ+ σ
√
−2 lnU1 cos(2πU2) (4)

will have the desired distribution [9]. Similar transformation methods are available for all standard
distributions, and, in general, can be obtained for instance via inverse transform sampling. Specifically, if
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Ft is the cumulative distribution function for the density ft, and V is a standard uniform random variable
on [0, 1], then

xt(V ) = F−1
t (V ) ∼ ft. (5)

The reason for making the function xt explicit is that we need to control the randomness throughout the
algorithm that we will describe next. More specifically, we will need to describe the sample itself as a
deterministic function of the parameter t.

Imagine that we can start from an i.i.d. sample Ω := (V1, V2, . . . , Vn), to obtain an i.i.d. sample

xs(V1), . . . , xs(Vn) (6)

from fs, for some fixed s ∈ T . Now, because∫
h(x)ft(x) dx =

∫
ft(x)

fs(x)
h(x)fs(x) dx, (7)

we can use this sample from fs to estimate the expectation of h with respect to ft, for any t ∈ T :

θ̂Ω,s(t) :=
1

n

n∑
i=1

wst(xs(Vi))h(xs(Vi)) (8)

where

wst(x) :=
ft(x)

fs(x)
. (9)

Note that θ̂Ω,s(t) is an unbiased estimator for θ(t):

E(θ̂Ω,s(t)) = θ(t). (10)

If this normalisation constant of the probability density ft is expensive to calculate, then there is sub-
stantial gain by only evaluating it once for each desired t (or s), and to reuse it across all terms in the
sum. Alternatively, self-normalised importance sampling can be used:

θ̂′Ω,s(t) :=

∑n
i=1 w

′
st(xs(Vi))h(xs(Vi))∑n
i=1 w

′
st(xs(Vi))

(11)

where w′st(x) are defined in the same way as the weights wst(x) but only up to a normalisation constant of
the densities involved. This has the downside that the resulting estimate is only asymptotically unbiased
[8].

A special case obtains when s = t. In that case, we have standard sampling:

θ̂Ω(t) := θ̂Ω,t(t) :=
1

n

n∑
i=1

h(xt(Vi)) (12)

because wtt(x) = 1 for all x. This leads to the following estimators for θ∗ and θ∗ [8]:

θ̂∗Ω := θ̂Ω(T∗Ω) = min
t∈T

θ̂Ω(t) and θ̂∗Ω := θ̂Ω(T ∗Ω) = max
t∈T

θ̂Ω(t), (13)

where

T∗Ω := arg min
t∈T

θ̂Ω(t) and T ∗Ω := arg max
t∈T

θ̂Ω(t). (14)

The estimates θ̂Ω(t) will be highly correlated for different values of t, which helps reducing the bias, as
shown in [8].

A difficulty with calculating T∗Ω or T ∗Ω is that we need to evaluate h at points xt(Vi), and these points
will arbitrarily shift around as we optimize over t. With importance sampling, however, for fixed s, we
only need to evaluate h for the points xs(Vi), independently of t. So if h is expensive to evaluate, then
importance sampling is particularly useful, because we do not need to re-evaluate h for different t when
optimizing over t. In addition, we retain the benefit that the estimates θ̂Ω,s(t) will be highly correlated
for different values of t, helping to reduce the bias [8].

With importance sampling, for each s, we have the following estimators for θ∗ and θ∗ [8]:

θ̂∗Ω(s) := θ̂Ω,s(τ∗Ω(s)) = min
t∈T

θ̂Ω,s(t) and θ̂∗Ω(s) := θ̂Ω,s(τ
∗
Ω(s)) = max

t∈T
θ̂Ω,s(t), (15)

where

τ∗Ω(s) := arg min
t∈T

θ̂Ω,s(t) and τ∗Ω(s) := arg max
t∈T

θ̂Ω,s(t). (16)

The quality of the importance sampling estimates can be verified in the standard way via confidence
intervals that are constructed through repeated sampling [8].
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3 Iterative Importance Sampling
An issue with the importance sampling estimates is that their quality can be very poor if τ∗Ω(s) is far
from s. A procedure for iteratively improving the choice of s was proposed in [6, 7]. The procedure
essentially iteratively applies the operator τ∗Ω. Under the assumption that this iterative application

s(k+1) = τ∗Ω(s(k)), k = 1, 2, . . . (17)

of the operator τ∗Ω reaches a unique fixed point, say S∗Ω, our improved lower estimator is:

θ̂†∗Ω := θ̂Ω,S∗Ω(S∗Ω) =
1

n

n∑
i=1

h(xS∗Ω(Vi)). (18)

In numerical examples discussed in [6–8], normally, a fixed point is indeed obtained after few steps. As
we shall see, however, τ∗Ω is not necessarily continuous, and therefore it is not guaranteed that a fixed
point exists. Even if it is continuous, τ∗Ω is not necessarily contracting, and therefore it is not guaranteed
that a fixed point can be found by repeated application of τ∗Ω on itself.

However, asymptotically, as the sample size n increases, we are tempted to conjecture that, under
suitable conditions, τ∗Ω should have a fixed point S∗Ω, and both T∗Ω and S∗Ω should converge, in
probability, to

t∗ := arg min
t
θ(t). (19)

The intuition behind this conjecture is that θ̂Ω,s converges in probability to θ as the sample size goes to

infinity. In similar way we get the upper estimator θ̂∗Ω
†.

Example 1 Here we consider the estimation of the upper probability of the event

D = [−4,−3] ∪ [−1, 1] ∪ [3.1, 4.7], (20)

with respect to the set of normal distributions with mean t ∈ T = [−7, 7] and variance σ2 = 2. The
probability of D, for each value of t, is depicted in fig. 1. The values of t where local maxima are achieved
are indicated by vertical dotted lines. Note that the upper probability of D is simply the upper expectation
of

h(x) :=

{
1 if x ∈ D,
0 otherwise.

(21)

The probability θ(t) =
∫
D
ft(x) dx =

∫
R h(x)f(x) dx, is depicted in fig. 1 (left) for each value t ∈ T . The

exact maximum (upper probability) θ∗ is equal to 0.5488524 and is achieved for t = −0.0011136.

Since the function h is not continuous, the approximation θ̂Ω, eq. (12), of θ is not continuous either.

It is a step function with step sizes 1/n. As we can see in fig. 1 (left) θ̂Ω is a quite good approximation
(n = 1000), but it is expensive to compute.

In fig. 2, we show the contour plots of θ̂Ω,s(t) as a function of s and t, for three different sample sizes

n. We also overlay the function τ∗Ω(s) = arg maxt∈T θ̂Ω,s(t) as a function of s. Finally, we also show the
result of iteratively applying τ∗Ω, starting from s(1) = 6. For smaller sample sizes, in this case, we have
cycling. For larger sample sizes, we no longer have cycling. We can see in the intermediate case that
we only pick up the local maximum through the iterative procedure, although it is the global maximum of
θ̂Ω,S∗

Ω
where S∗Ω = 3.6494. Table 1 provides the full numerical results of each iteration.

4 Increased Sampling Coverage
Unfortunately, in some already quite simple cases, the sample size required for θ̂Ω,s to converge to θ can

be excessively large. In particular, θ̂Ω,s may not reflect at all the shape of θ especially when s is far from
t. The cause of this behaviour is that sampling from fs may not cover regions where ft is located. We
can address this by modifying the sampling distribution fs in order to increase this coverage. There are
various ways of doing this: we can use a convex mixture of the original distribution and an additional
distribution with large variance, or if possible we may also simply inflate the variance of the distribution
directly.

For example, imagine that we wish to ensure that our sampling distribution covers the entire interval
[a, b] on the real line. For this purpose, we modify our sampling distribution to:

fRs (x) := (1− α)fs(x) +
α

b− a
Ix∈[a,b] (22)
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Figure 1: Exact probability θ, standard Monte Carlo estimation θ̂Ω, and estimation θ̂Ω,s for a fixed value of
s = 3.6494 where θ has a local maximum, as a function of t ∈ T = [−7, 7] (left). Contour plot of exact function
ϑ(s, t) := θ(t) and its maximum τ∗(s) (right), for comparison with the contour plots of the estimators in fig. 2.

Figure 2: Contour plots of ϑ̂Ω(s, t) := θ̂Ω,s(t) and depiction of τ∗Ω(s) = arg maxt∈T θ̂Ω,s(t) (blue line) for three
different sample sizes n = 1000, 10000, and 100000. The path of the iteration with starting value s(1) = 6 is
plotted as a red line. We have cycling (left), convergence to a local maximum (middle), and convergence to the
global maximum (right).

N = 1000, s(1) = 6

k s(k) τ∗Ω(s(k)) θ̂Ω,s(k)(τ∗Ω(s(k)))

1 6.0000 3.8500 0.4954

2 3.8500 3.5560 0.4432

3 3.5560 0.4760 0.5098

4 0.4760 3.9900 0.7443

5 3.9900 3.6540 0.4321

6 3.6540 0.5880 0.4958

7 0.5880 4.0740 0.7670

8 4.0740 3.6960 0.4388

9 3.6960 0.6160 0.4749

10 0.6160 4.0880 0.7775

N = 10000, s(1) = 6

k s(k) τ∗Ω(s(k)) θ̂Ω,s(k)(τ∗Ω(s(k)))

1 6.0000 3.5700 0.4581

2 3.5700 3.6960 0.4488

3 3.6960 3.6960 0.4467

4 3.6960 3.6960 0.4467

N = 100000, s(1) = 6

k s(k) τ∗Ω(s(k)) θ̂Ω,s(k)(τ∗Ω(s(k)))

1 6.0000 0.0420 0.5527

2 0.0420 -0.0140 0.5496

3 -0.0140 -0.0140 0.5497

4 -0.0140 -0.0140 0.5497

Table 1: Iteration steps.
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where Ix∈[a,b] = 1 if x ∈ [a, b] and 0 otherwise. To generate a sample from this distribution, we let

xRs (U, V ) :=

{
a+ (b− a)Uα if U < α

xs(V ) if U ≥ α
(23)

where U is a uniform [0, 1] variable, and V is as before.
Now, we start from an i.i.d. sample Ω := (U1, V1, . . . , Un, Vn) to obtain an i.i.d. sample

xRs (U1, V1), . . . , xRs (Un, Vn) (24)

from fRs , for some fixed s ∈ T . As before, we can use this sample from fs to estimate the expectation of
h with respect to ft, for any t ∈ T :

θ̂Ω,s(t) :=
1

n

n∑
i=1

wst(x
R
s (Ui, Vi))h(xRs (Ui, Vi)) (25)

where

wst(x) :=
ft(x)

fRs (x)
. (26)

Here too, θ̂Ω,s(t) is an unbiased estimator for θ(t):

E(θ̂Ω,s(t)) = θ(t). (27)

Obviously, we should choose a and b in a way that we are sure to generate samples that cover the
range of ft across all t ∈ T . For α, if we choose it too small, then we may not generate sufficient samples
across the desired interval [a, b]. If we choose it too large, then fRs may be too far away from ft regardless
of our choice of s, thereby removing the opportunity to increase the accuracy of the estimate through the
iterative procedure, as the estimator will no longer depend on s. A suggestion is to choose α in a way
that for every t ∈ T , there are at least a handful of samples that cover ft.

For more general cases, a convex mixture of target distributions ft could also be used. For example,
if T = [0, 1], then we could take

fRs (x) := (1− α)fs(x) + α

∫ 1

0

ft(x) dt (28)

and

xRs (U, V ) :=

{
xU/α(V ) if U < α

xs(V ) if U ≥ α
(29)

where U is a uniform [0, 1] variable, and V is as before. If need be, the integral can be approximated by
a finite sum, and the sampling function can be adjusted accordingly. Theoretical arguments and further
proposals for convex mixtures have been given in [10, §4.3].

The next example shows how we can improve coverage using variance inflation of the sampling distri-
bution.

Example 2 We consider the estimation of the lower probability of the event D = (−∞,−1]∪ [1,∞) with
respect to the set of normal distributions with mean t ∈ [−7, 7] and variance σ2 = 2.

The probability θ(t) is depicted in fig. 3 (left) for each value t ∈ T . The minimum (lower probability)
θ∗ is equal to 0.4795 and is achieved for t∗ = 0.

First, we consider fRs = fs, that is, no increased coverage from the sampling distribution. The cheaper

function θ̂Ω,s=0 using reweighting based on density fRs=0 provides a good approximation near the solution

t∗ = 0 but not far away from t∗. In this example, θ̂Ω,s=0 leads to a completely wrong global minimum
0.0282 achived at t = −7, as seen from the dashed curve in fig. 3 (left). The reason why this approximation
is bad for t far away from t∗ = 0 is that there are no or almost no sample points of the reweighting density
fRs=0 in areas in D with high density of ft for t going to ±7.

Figures 5 and 6 show what happens if instead we take fRt to be normally distributed with mean t but

with increased variance σ2 = 10. We observe that θ̂Ω,s provides a reasonably good approximation for
θ across a much wider range of values for s and t. For the lowest sample size, 1000, we still observe
cycling in the iterative method, as the variance is not sufficiently inflated to cover the more extreme ends
of the range of the distributions that we are interested in. For larger sample sizes, the coverage becomes
sufficient, and the iterative procedure produces a correct value.
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Figure 3: Exact probability θ, standard Monte Carlo estimation θ̂Ω and estimation θ̂Ω,s for a fixed value of s, as
a function of t ∈ T = [−7, 7] (left). Contour plot of exact function ϑ(s, t) := θ(t) and its minimum τ∗(s) := t∗

(right), for comparison with the contour plots of the estimators in figs. 4 and 6.

Figure 4: Contour plots of ϑ̂Ω(s, t) := θ̂Ω,s(t) and depiction of τ∗Ω(s) = arg mint∈T θ̂Ω,s(t) (blue line) for three
different sample sizes n = 1000, 10000, and 100000. The path of the iteration with starting value s(1) = 6 is
plotted as a red line. We have cycling in all cases, due to lack of coverage of the sampling distribution in regions
where t is far from s.

Figure 5: Exact probability θ, standard Monte Carlo estimation θ̂Ω and estimation θ̂Ω,s for a fixed value of s = 0,
as a function of t ∈ T = [−7, 7].
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Figure 6: Contour plots of ϑ̂(s, t) := θ̂Ω,s(t) and depiction of τ∗Ω(s) = arg mint∈T θ̂Ω,s(t) (blue line) for three
different sample sizes n = 1000, 10000, and 100000. The path of the iteration with starting value s(1) = 6 is
plotted as a red line. We still have cycling for sample size 1000, although θ̂Ω,s(t) is clearly already a lot closer to
θ(t) for a much wider range of values for s and t. For the larger sample sizes, the iterative procedure converges
quickly.

5 Conclusion
We set out to explore importance sampling techniques for calculating lower and upper expectations with
respect to sets of probability distributions. We revisited the iterative algorithm proposed in [6, 7], and put
it on a better mathematical foundation, by formulating it as a fixed point of an operator. We provided
some intuition under which this operator has a fixed point, and thereby provides a good estimator.

We explored some numerical examples, and found that the procedure breaks down when the sampling
distribution provides insufficient coverage. We proposed three simple methods to increase coverage.
Nevertheless, quantifying the conditions under which importance sampling can provide a sufficiently
accurate estimate under a wide range of importance sampling distributions remains an important open
question.
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