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Abstract
We apply the algebraic approach for Constraint Satisfaction Problems (CSPs) with counting
quantifiers, developed by Bulatov and Hedayaty, for the first time to obtain classifications for
computational complexity. We develop the consistency approach for expanding polymorphisms
to deduce that, if H has an expanding majority polymorphism, then the corresponding CSP
with counting quantifiers is tractable. We elaborate some applications of our result, in particular
deriving a complexity classification for partially reflexive graphs endowed with all unary relations.
For each such structure, either the corresponding CSP with counting quantifiers is in P, or it is
NP-hard.
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1 Introduction

The constraint satisfaction problem, CSP(B), originating in artificial intelligence, is known to
admit several equivalent formulations. Two of the best known consider the parameter B to
be a relational structure and may be phrased as the problem of query evaluation of primitive
positive (pp) sentences – those involving only {∃,∧,=} – on B, and the homomorphism
problem to B (see, e.g., [19]). For finite B, CSP(B) is NP-complete in general, and a great
deal of effort was expended in classifying its complexity in various different classes. It was
conjectured by Feder and Vardi [13] that all such CSP(B) are either in P or NP-complete
and this was finally proved last year independently by Bulatov [6] and Zhuk [23].

A popular generalisation of the CSP involves considering the query evaluation problem
for the logic involving only {∀,∃,∧,=}. (This logic admits various names but we will leave
it nameless in this work as was the case in the foundational [2].) The resulting Quantified
Constraint Satisfaction Problem, QCSP(B), allows for a broader class, used in artificial
intelligence to capture non-monotonic reasoning, whose complexities rise to Pspace-complete.

In this paper, we study counting quantifiers of the form ∃≥j , which allow one to assert the
existence of at least j elements such that the ensuing property holds. Thus, on a structure
B with domain of size n, the quantifiers ∃≥1 and ∃≥n are precisely ∃ and ∀, respectively.
Counting quantifiers have been fiercely studied in finite model theory (see [12, 22]), where
the focus is on supplementing the descriptive power of various logics. Of wider interest is
the majority quantifier ∃≥n/2 (on a structure of domain size n), which sits broadly midway
between ∃ and ∀. Majority quantifiers turn up across diverse fields of logic and have various
practical applications, e.g. in cognitive appraisal and voting theory [11].

We postulate variants of CSP(B) in which the input sentence to be evaluated on B (of
size |B|) remains positive conjunctive in its quantifier-free part, but is quantified by various
counting quantifiers from some non-empty set.
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11:2 Consistency for Counting Quantifiers

For X ⊆ {1, . . . , |B|}, X 6= ∅, the X-CSP(B), introduced in [21], takes as input a sentence
given by a conjunction of atoms quantified by quantifiers of the form ∃≥j for j ∈ X (this
logic is termed X-pp). It then asks whether this sentence is true on B. In the present paper,
we will mostly consider the situation in which all counting quantifiers are present, and we
will denote this problem CQCSP(B), instead of {1, . . . , |B|}-CSP(B). The corresponding
logic, involving only {∃≥1, . . . ,∃≥|B|,∧,=}, we will call cq-pp.

The algebraic method has been very potent in understanding the complexity of CSPs
and QCSPs [5, 6, 23, 10]. Recently, an algebraic theory tailored to counting quantifiers has
been given [8] (early version was [7]).

A polymorphism of a structure B is a homomorphism from Bk to B, for some k. Let {1} ⊆
X ⊆ {1, . . . , |B|}. Call a function f : Bk → B expanding on X if, for all X1, . . . , Xk ⊆ B

such that |X1| = . . . = |Xk| = j ∈ X, we have |f(X1, . . . , Xk)| ≥ j. This condition at j = 1
is trivial (it says that f is a function) and at j = |B| asserts surjectivity. If X = {1, . . . , |B|}
we simply term f expanding.

I Lemma 1 (Theorem 8 [7]; Corollary 14 [8]). The relations that are cq-pp-definable over B
are exactly those that are preserved by the expanding polymorphisms of B.

In this paper, we will only make use of the “easy” direction of Lemma 1, that is, any relation
that is cq-pp-definable over B is preserved by the expanding polymorphisms of B.

The list homomorphism problem, which we will call List-CSP(B), is defined as CSP(B),
save that one gives lists for each input variable stating which elements of the domain B

that variable may be evaluated on. This is equivalent to CSP(B∗), where B∗ is B endowed
with additional unary relations for each subset of B. Indeed, this class of CSPs was among
the first to be proved in line with the Feder-Vardi dichotomy conjecture [4]. The key
class of polymorphisms here is known as conservative and the property they have is that
f(x1, . . . , xk) ∈ {x1, . . . , xk}, for all x1, . . . , xk in the domain. Let us give explicitly the
classification for this problem in the special case of graphs. We call a k-ary operation
near-unanimity, for k ≥ 3, if it returns the repeated argument when all but at most one of
its arguments is the same. Ternary near-unanimity operations are called majority. We refer
to a graph as partially reflexive to indicate that each vertex may or may not have a self-loop.

I Theorem 2 (From Theorem 5.3 [3] and Theorem 2.1 [15]). Let H∗ be a partially reflexive
graph expanded with all possible unary relations. Then either H∗ admits a conservative
majority polymorphism and CSP(H∗) is in P; or CSP(H∗) is NP-complete.

Contribution

It is easy to see, but does not appear to have been noted, that conservative polymorphisms
are expanding polymorphisms in excelsis. That is, they are the most natural examples of
such polymorphisms that one is likely to imagine.

I Lemma 3. Let f be a k-ary operation that is conservative. Then f is also expanding.

Proof. Consider k subsets of the domain A of f , A1, . . . , Ak, each of size m ≤ |A|. We need
to argue that |f(A1, . . . , Ak)| ≥ m. We proceed by induction on m where the base case m = 1
is trivial. Suppose it holds for m but does not hold for m+ 1. Take A′1, . . . , A′k, each of size
m+1 ≤ |A|. There must be a′1 ∈ A′1, . . . , a′k ∈ A′k so that none of a′1, . . . , a′k ∈ f(A′1, . . . , A′k),
since |f(A′1, . . . , A′k)| < m+ 1. By inductive hypothesis, |f(A′1 \ {a′1}, . . . , A′k \ {a′k})| ≥ m.
But f(a′1, . . . , a′k) ∈ {a′1, . . . , a′k} by conservativity, which is a contradiction. J
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We prove that if a finite structure B admits an expanding majority polymorphism, then
CQCSP(B) is in P. In doing so, we answer Question 1 of [21], for the case in the paragraph
immediately after it. The algorithm is rather more sophisticated than in the case of CSP or
QCSP. We note that a majority that is not expanding can appear as a polymorphism of B
despite that CQCSP(B) is NP-hard. We derive as a corollary a complexity classification for
CQCSP(H∗), where H∗ is a partially reflexive graph endowed with all unary relations. This
classification is in line with that of Theorem 2. We further derive a classification for successive
approximations to CQCSP(B), where B is a binary first-order expansion of (Z; succ), whose
relations (as digraphs) have bounded-degree. We then make some further observations on
the usefulness of expanding majority polymorphisms and relate our work to some recent
developments in surjective CSP involving the concept of endo-triviality.

Structure of the paper

This paper is organised as follows. After the preliminaries, Section 3 elaborates the consistency
algorithm, and Section 4 gives some applications of this algorithm to complexity classifications.
In Section 5, we close with some final remarks about the relationship between List-CSP and
CQCSP. Owing to reasons of space, some proofs are deferred to the appendix.

2 Preliminaries

The reader will probably already have picked up that, if B is a relational structure, then
B is its domain and |B| the size of its domain. A homomorphism, from a structure A
to a structure B over the same signature σ, is a function h : A → B such that, for each
relation R ∈ σ, if (x1, . . . , xr) ∈ RA, then (h(x1), . . . , h(xr)) ∈ RB. A k-ary polymorphism
of B is a k-ary operation f on B so that, (x1

1, . . . , x
1
r), . . . , (xk1 , . . . , xkr ) ∈ RB, then also

(f(x1
1, . . . , x

k
1), . . . , f(x1

r, . . . , x
k
r )) ∈ RB.

Given a set B, and an integer i ≥ 0, we denote its ith power by Bi (B0 being
∅). For an integer c ≥ 1 We write

(
B
c

)
for the following set of subsets of B : {S ⊆

B such that S has c elements}. A Skolem (partial) function gx for a variable x quantified
as ∃≥cx in the sentence is a partial function to

(
B
c

)
, whose arity is the number of variables

coming before x in the quantifier prefix of the formula.
The Skolem functions gi from Bi−1 to

(
B
ci

)
(1 ≤ i ≤ m) witness that ϕ holds in B iff

∀b1 ∈ g1∀b2 ∈ g2(b1) . . . ∀bn ∈ gn(b1, b2, . . . , bn−1) B |= ϕ(b1, b2, . . . , bm). If there are such
Skolem functions then B models ϕ.

For a r-ary relation R in σ and sets B1, B2, . . . , Br, we write that R(B1, B2, . . . , Br) holds
in B iff for every 1 ≤ i ≤ r and every bi in Bi, it is the case that R(b1, b2, . . . , br) holds in B.

Let us note that counting quantifiers of the same cardinality do not in general commute.
In particular, for every choice of 1 < i < n, there exists a structure B over the signature of
digraph (a single binary predicate E) of size |B| = n, such that ∃≥ix∃≥iy E(x, y) holds in B
but ∃≥iy∃≥ixE(x, y) does not. For more on this, see [21].

3 An algorithm for consistency

In this section we will prove the following main theorem.

I Theorem 4. Suppose B has an expanding majority polymorphism. Then CQCSP(B) is
in P.

MFCS 2018



11:4 Consistency for Counting Quantifiers

Just as in the case of CSP and QCSP, by monotonicity, a sentence does not hold if any
subsentence does not. Here, by subsentence we mean the sentence induced by selecting some
variables. This means that for any structure, a not necessarily complete but polynomial
algorithm consists in selecting some subsentences of bounded size and checking whether they
hold : if one subsentence fails to hold, then we may answer no. A slightly cleverer way of
doing this consists in propagating a potential solution from subsentences with overlapping
variables. This is a basic approach known as enforcing local consistency, which is known
to imply global consistency for CSP whenever the constraint language is closed under a
majority operation [16, 18]. Our algorithm is a careful adaptation to our context.

The consistency argument will be somewhat more fiddly than for CSP. This is due to the
fact that quantifiers do not commute and also that we have counting quantifiers and need to
keep track of Skolem functions that witness (un)satisfiability of a sentence with counting
quantifiers.

The consistency algorithm for establishing our Theorem 4 that we propose does this
for the constraints induced by subsentences obtained by selecting up to 3 variables of the
prefix and the atoms involving them in the quantifier-free part (we assume w.l.o.g. that
the sentence is in prenex form) and maintaining consistency between the witnesses. These
witnesses are sets of suitable size, namely the range of the Skolem functions corresponding
to the counting quantifiers.

In the following and unless specified otherwise, subset means subset of the domain B of
the structure B. We assume some arbitrary order over B and subsets are ordered accordingly.

3.1 Sentences with three variables
Let us examine first a 3 variable sentence ϕ of the following form:

∃≥c1x1∃≥c2x2∃≥c3x3R1,2(x1, x2) ∧R2,3(x2, x3) ∧R1,3(x1, x3).

For a subset S of size c1, and subsets Ti of size c2, we write OK1,2(S, T1, . . . , Tc1) whenever
R1,2(si, Ti) holds for all si in S (recall that sets are ordered). We proceed similarly to define
the c1 + 1-ary predicate OK1,3 between a subset of size c1 and c1 subsets of size c3 and the
c2 + 1-ary predicate OK2,3 between a subset of size c2 and c2 subsets of size c3. The sentence
ϕ holds whenever there is a subset S of size c1, subsets Ti of size c2 with 1 ≤ i ≤ c1, subsets
Ui,j of size c3 with 1 ≤ j ≤ c2 such that :

OK1,2(S, T1, . . . , Tc1) ∧
∧

1≤i≤c1
OK2,3(Ti, Ui,1, . . . , Ui,c2) ∧

∧
1≤j1≤c2

. . .
∧

1≤jc1≤c2
OK1,3(S,U1,j1 , . . . , Uc1,jc1

).

3.2 Data structure
With this small example in mind, the following data structure used by our algorithm should
become clearer.

Each variable ∃≥cixi is represented by a domain that consists of subsets S of size ci.
We maintain a ci + 1-ary predicate OKi,j as in the above example between the domains
of any pair of variables xi, xj as long as xj comes after xi in the prefix of quantification
and that xi and xj occur both in some atom.

3.3 Binary Predicates Only
Of course, unlike in our small example, the input sentence ϕ′ may well have non binary
atoms and the parameter structure B′ corresponding relations of arity 3 or more. We project
almost in the usual fashion all atoms/relations involving two variables x1 and x2 into a single
binary constraint Rx1,x2 (if there are constraints, otherwise there is no binary constraint).
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Unlike in the CSP case, we check that counting requirements induced by the sentence are met.
Formally, for every pair of distinct variables x1, x2 quantified as ∃≥c1x1∃≥c2x2, we consider
the binary constraint Rx1,x2 to be the intersection of the binary relations R′x1,x2

induced by
atoms R′(ȳ) such that both x1 and x2 occur in ȳ as follows. R′x1,x2

(b1, b2) holds whenever
for any variable y distinct from both x1 and x2 with quantifier prefix ∃≥cyy occurring at
position i in ȳ (to distinguish the potentially many occurrences of y, we will write yi for the
occurrence of y at position i) there exists a set Bi of size at least cy such that R′(π(ȳ)) holds
where π(x1) = b1, π(x2) = b2 and π(yi) = Bi.

We denote by ϕ this sentence with binary atoms and by ψ(x̄) its subsentence induced
naturally by the variables x̄. We write B for the structure with binary relations. Note that
these relations are cq-pp interpretations of the relations of B′.

I Proposition 1. If B′ has an expanding majority f , then
(i) B has also f as an expanding majority
(ii) B models ϕ (binary setting) iff B′ models ϕ′ (general setting).

Proof. Since B was obtained by cq-pp interpretation from B′, it follows that B has also a
majority polymorphism f (via the easy direction of the Galois connection of Lemma 1).

We now show that a collection of Skolem functions witnesses ϕ iff it does also for ϕ′. The
right to left implication holds by construction and for any structure B′. We only need to
establish the left to right implication in the presence of an expanding majority f .

Let g1, g2, . . . , gn be a collection of Skolem functions witnessing that B |= ϕ. Let
b1 ∈ g1, b2 ∈ g2(b1) . . . bn ∈ gn(b1, b2, . . . , bn−1). We write gi(b̄) as an abbreviation for
gi(b1, b2, . . . , bi−1).

Let R(xi1 , xi2 , . . . , xir ) be some r-ary atom of ϕ′ with r ≥ 3. We write cij to denote the
counting requirement on variable ij for 1 ≤ j ≤ r.

Since Rxi1 ,xi2
(gi1(b̄), gi2(b̄)) holds in B, by construction there are some set of values

Si3 , Si4 , . . . , Sir of respective sizes ci3 , ci4 , . . . , cir . Similarly, there are some sets of the
correct count such that R(gi1(b̄), S′i2 , gi3(b̄), S′i4 , . . . , S

′
ir

) and R(S′′i1 , gi2(b̄), gi3(b̄), S′′i4 , . . . , S
′′
ir

).
Applying f , since it is a majority, it means the following holds.

R(gi1(b̄), gi2(b̄), gi3(b̄), f(Si4 , S′i4 , S
′′
i4), . . . , f(Sir , S′ir , S

′′
ir )).

Since it is expanding, we may select arbitrarily subsets S̃i4 ⊆ f(Si4 , S′i4 , S
′′
i4

) . . . S̃ir ⊆
f(Sir , S′ir , S

′′
ir

) of respective sizes ci4 , . . . , cir such that the following holds.

R(gi1(b̄), gi2(b̄), gi3(b̄), S̃i4 , . . . , S̃ir ).

Note that there is nothing special about the position 1, 2 and 3 within the tuple R. The
same argument applies to any choice of three positions. Furthermore, there is nothing special
in our argument using the fact that we have only three positions that agree with the value of
the Skolem functions. So we can bootstrap the same argument to extend progressively the
tuple by one position and show eventually that : R(gi1(b̄), gi2(b̄), gi3(b̄), . . . , gir (b̄)) holds. J

From now on, instead of considering a structure B′, in the light of Proposition 1, we will
concentrate on the corresponding binary structure B (to fulfill this we may need to expand
the signature but it will still remain finite).

MFCS 2018



11:6 Consistency for Counting Quantifiers

3.4 The Algorithm: path consistency for counting quantifiers (PCCQ)
Initialisation

The domain of xi contains all subsets that are consistent with all unary atoms involving
xi, that is {S ∈

(
B
ci

)
such that S ⊆MB for every unary atom M(xi) of ϕ}

For every binary relation Ri,j , the predicate OKi,j holds between any set S in the domain
of xi and ci sets T1, . . . , Tci

in the domain of xj whenever Ri,j(sk, Tk) holds for any
1 ≤ k ≤ ci

Maintaining consistency

Do
For all triples of variables xi1 , xi2 , xi3 (in the order of quantification),
For every distinct k, l in {i1, i2, i3},
For every S in the domain of xk,
If there are no OK tuple OKk,l mentioning S (in the first coordinate), then
discard S and all other OK tuples that mention S.

For every OKk,l tuple t
if there are no additional OK tuples witnessing that t participates in a solution to

ϕ(xi1 , xi2 , xi3)
Remove the OKk,l tuple t.
If there are no more OKk,l tuples then reject.

Loop until no further OK tuples are deleted.

3.5 Properties of the PCCQ algoritm
I Proposition 2. PCCQ runs in polynomial time.

Proof. Let ]v denote the number of variables of ϕ. The data structure needs to store at
most |B|j ≤ 2|B| sets of size at most j ≤ |B| for each variable associated with a count j.
One OK tuple originating from this variable with count j to a variable with count k will
relate at most j + 1 sets, one of size j and the others of size k. There are therefore at most
2j .(2k)j ≤ (2|B|)|B|+1 such OK tuples for one binary constraint. There are at most ]v(]v− 1)
such constraints. The algorithm runs clearly in time polynomial in these quantities, and
(2|B|)|B|+1 is a constant since |B| is fixed. J

Let OKi,j(S, T1, . . . , Tci
) be a list of some OK tuples, as many as the arity of an expanding

polymorphism f . Applying f coordinate wise, as we would for an ordinary tuple, we have
f(S) = S′ and f(Tj) = T ′j for any 1 ≤ j ≤ ci. However, the images S′, T ′1, . . . , T ′ci

may be
too large to feature in an OK tuple. We will say that an OK tuple (with aptly sized sets)
OKi,j(S′′, T ′′1 , . . . , T ′′ci

) belongs to f(OKi,j(S, T1, . . . , Tci)), whenever S′′ ⊆ S′, T ′′j ⊆ T ′j for
all 1 ≤ j ≤ ci.

We say that a set R of OK tuples are preserved by f if, and only if, for any OK
tuples OKi,j(S, T1, . . . , Tci

) in R, any OK tuple that belongs to f(OKi,j(S, T1, . . . , Tci
)),

also belongs to R.

I Proposition 3. Let f be an expanding polymorphism of B. If the algorithm PCCQ does
not reject, the OK tuples that remain when the algorithm stops are preserved by f .

Proof. Let OKi,j(S′′, T ′′1 , . . . , T ′′ci
) be an OK tuple in the image f(OKi,j(S, T1, . . . , Tci

))
under f of remaining OK tuples OKi,j(S, T1, . . . , Tci). We prove that OKi,j(S′′, T ′′1 , . . . , T ′′ci

)
can not be removed by the algorithm as follows.
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Initially, the relations are preserved under f , so it is straightforward to verify that OK
tuples are also closed under f . So this removal of OKi,j(S′′, T ′′1 , . . . , T ′′ci

) must happen after
initialisation. We shall assume further that OKi,j(S′′, T ′′1 , . . . , T ′′ci

) is the first OK tuple in
the image of f of remaining OK tuples that is removed by the algorithm PCCQ.

Assume further that OKi,j(S′′, T ′′1 , . . . , T ′′ci
) is removed by the algorithm while checking

the sentence with some other variable k. Assume for now that the order of quantification
induces the order i, j, k over the indices.

Since the tuples OKi,j(S, T1, . . . , Tci) are remaining OK tuples, there must be remaining
tuples OKi,k and OKj,k witnessing that each of them participate in a solution to ϕ(xi, xj , xk).

Taking the image of these witnesses under f provide us with OKi,k and OKi,k witnessing
that OKi,j(S′′, T ′′1 , . . . , T ′′ci

) participate in a solution to ϕ(xi, xj , xk).
By time minimality of the removal of OKi,j(S′′, T ′′1 , . . . , T ′′ci

), these last witnesses may not
be remaining tuples but they must remain at the time of removal of OKi,j(S′′, T ′′1 , . . . , T ′′ci

).
This contradicts the fact that the algorithm could remove OKi,j(S′′, T ′′1 , . . . , T ′′ci

).
To conclude the proof, note further that the above argument applies independently of

the quantification order of i, j and k. J

I Proposition 4. If B has an expanding majority f and the algorithm PCCQ does not reject,
then B models ϕ.

Proof. Let x1, x2, . . . , xn be the variables occurring in ϕ. For any choice of variables x in
{x1, x2, . . . , xn}, we denote by ψ(x) the subsentence of ϕ induced by the variables x.

We prove by induction on 2 ≤ i < n that : for any choice of i variables x, for any
additional variable z occurring after the variables x in the order of quantification, any Skolem
witnesses {g1, g2, . . . , gi} for ψ(x) can be extended by an i-ary Skolem function gz for the
variable z such that {g1, g2, . . . , gi, gz} witnesses that ϕ(x, z) holds. Moreover, this Skolem
function ranges over sets that were not removed by the algorithm from the domain of z.

The base case for i = 2 holds : this is precisely the property that is enforced by the
consistency algorithm we outlined.

We proceed to show the induction step. Let x1, x2, x3, . . . , xi be a choice of i ≥ 3
variables and z a variable occurring after them. Let {g1, g2, g3, . . . , gi} be a collection of
Skolem functions witnessing that ψ(x1, x2, x3, . . . , xi) holds.

We write I1 for the image of g1 and for 1 < j ≤ i, we write Ij for gj(I1, . . . , Ij−1). Let
α : ∅ → I1, β : I1 → I2 and γ : I1 × I2 → I3. We pick only such functions that are consistent
with the fact that {g1, g2, g3, . . . , gi} are Skolem functions, namely we insist that for any b1
in I1, β(b1) belongs to the image of g2(b1) and for any b1 in I1, and any b2 in g2(b1), γ(b1, b2)
lies in the image of g3(b1, b2).

We derive naturally three collections of i− 1 Skolem functions by essentially fixing the
first, second or third coordinate of the i Skolem functions at hand. Each collection witnesses
the subsentence obtained by removal of x1, x2 or x3.

Let the Skolem functions {gα2 , gα3 , . . . , gαi } be defined as gαj (x2, . . . , xj−1) = gj(α, x2, . . .

, xj−1)1. By construction, they are witnessing that ψ(x2, x3, . . . , xi) holds. By the
induction hypothesis, they can be extended by some (i− 1)-ary function gαz witnessing
ψ(x2, x3, . . . , xi, z).

1 If gj is undefined, we let gαj be also undefined. Alternatively, we could have defined our Skolem functions
precisely where we cared, e.g. for any x2 in g1(α), any x3 in g(α, x2), etc. But this would only introduce
unnecessary notation.

MFCS 2018



11:8 Consistency for Counting Quantifiers

Similarly, we derive Skolem functions {gβ1 , g
β
3 , . . . , g

β
i } witnessing ψ(x1, x3, . . . , xi) from

{g1, g2, . . . , gi} by setting gβ1 = g1 and for any 3 ≤ j ≤ i, and any b1 in I1, we define
gβj (b1, x3, x4, . . . , xj−1) := gj(b1, β(b1), x3, . . . , xj−1). By the induction hypothesis, they
can be extended by some (i− 1)-ary function gβz witnessing ψ(x1, x3, . . . , xi, z).
Finally, we derive Skolem functions {gγ1 , g

γ
2 , g

γ
4 . . . , g

γ
i } witnessing ψ(x1, x2, x4 . . . , xi)

from {g1, g2, . . . , gi} by setting gγ1 = g1, gγ2 = g2 and for any 4 ≤ j ≤ i any b1 in I1 and
any b2 in g2(b1) that gγj (b1, b2, x4, . . . , xj−1) := gj(b1, b2, γ(b1, b2), x4, . . . , xj−1). By the
induction hypothesis, they can be extended by some (i− 1)-ary function gγz witnessing
ψ(x1, x2, x4, . . . , xi, z).

We will define the Skolem function gz piecewise for each choice of the first three variables.
For specific b1 in I1 and b2 in g2(b1) and b3 in g3(b1, b2), we set α() := b1, β(b1) := b2,

and γ(b1, b2) := b3. The other values of β and γ are arbitrary but constrained as explained
above.

Recall that f is an expanding majority of B.
We define the Skolem function gz as follows for this choice to the first three variables :

gz(b1, b2, b3, x4, . . . , xi) := f(gαz (b2, b3, x4 . . . , xi), gβz (b1, b3, x4 . . . , xi), gγz (b1, b2, x4 . . . , xi)).

The fact that f is expanding2 implies that gz has a range of correct size.
Note that this definition ensures that indeed gz ranges over sets that were not filtered

out by the algorithm from the domain of z by the (previous) Proposition 3.
The fact that f is a majority will allow us to derive that gz is indeed an extension of

{g1, g2, g3, g4, . . . , gi} witnessing ϕ(x1, x2, x3, x4 . . . , xi, z). We need only check this inde-
pendently for each pair of variables xj , z, since all atoms are binary. Since, we defined gz
piecewise, we can also check this independently for each piece, induced by the choices of
b1, b2, b3. For simplicity, we denote by R an atom that should hold between xj and z.

If j ≥ 4, then applying majority on the variants α, β and γ works naturally, since the
value for j is the same for each variant by construction and f is idempotent.
With full notational details : by assumptionR(gαj (b2, b3, x4, . . . , xj−1), gαz (b2, b3, x4 . . . , xi))
holds and R(gβj (b1, b3, x4, . . . , xj−1), gβz (b1, b3, x4 . . . , xi)) holds and

R(gγj (b1, b2, x4, . . . , xj−1), gγz (b1, b2, x4 . . . , xi))

holds. By construction of gαj , g
β
j , g

γ
j and the specific choice of values b1, b2, b3, we have

gαj (b2, b3, x4, . . . , xj−1) = gβj (b1, b3, x4, . . . , xj−1) =
gγj (b1, b2, x4, . . . , xj−1) = gj(b1, b2, b3, x4, . . . , xj−1).

Hence the image of the first coordinate under f is gj(b1, b2, b3, x4, . . . , xj−1) since f is
idempotent. The second coordinates is precisely the value we defined for gz. Thus we
conclude that R(gj(b1, b2, b3, x4, . . . , xj−1), gz(b1, b2, b3, x4, . . . , xi)) holds as required.
If j = 1. The value for gαz (b2, b3, x4 . . . , xi) occurs as a set in the domain of the variable
z after variable x1. So the algorithm must have left an OK tuple between x1 and z

that mentions gαz (b2, b3, x4 . . . , xi). This means that there is a singleton b′1 such that
R(b′1, gαz (b2, b3, x4 . . . , xi)) holds. Further, by assumption R(gβ1 , gβz (b1, b3, x4 . . . , xi)) holds
and R(gγ1 , gγz (b1, b2, x4 . . . , xi)) holds. Since gβ1 = gγ1 = b1, applying f we obtain b1 for
the first coordinate since f is a majority operation. For the second coordinate we obtain
the value we defined for gz. Thus we conclude that R(b1, gz(b1, b2, b3, x4, . . . , xi)) holds
as required.
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If j = 2, then similarly to the previous case, there is some singleton b′2 in the domain of x2
such that R(b′2, gβz (b1, b3, x4 . . . , xi)) holds. Further, by assumption R(gα2 (b1), gαz (b2, b3, x4
. . . , xi)) holds and R(gγ2 (b1), gγz (b1, b2, x4 . . . , xi)) holds. Since gα2 (b1) = gγ2 (b1) = b2,
applying f we obtain b2 for the first coordinate since f is a majority operation. For
the second coordinate we obtain the value we defined for gz. Thus we conclude that
R(b2, gz(b1, b2, b3, x4, . . . , xi)) holds as required.
If j = 3, then similarly to the two previous cases, there is some singleton b′3 in
the domain of x3 such that R(b′3, gγz (b1, b2, x4 . . . , xi)) holds. Further, by assump-
tion R(gα3 (b2), gαz (b2, b3, x4 . . . , xi)) holds and R(gβ3 (b1), gβz (b1, b2, x4 . . . , xi)) holds. Since
gα3 (b2) = gβ3 (b1) = g3(b1, b2) = b3, applying f we obtain b3 for the first coordinate since f
is a majority operation. For the second coordinate we obtain the value we defined for gz.
Thus we conclude that R(b3, gz(b1, b2, b3, x4, . . . , xi)) holds as required. J

We can now wrap-up to complete the proof of our main theorem.

Proof of Theorem 4. By Proposition 1, we reduce the question whether ϕ′ holds on B′ to
the question whether ϕ holds on B. This can be achieved in polynomial time, since we
assume we assume a fixed signature, and have therefore bounded arity. We know that B is
also preserved by the same expanding majority, thus we can appeal to Proposition 4, which
states that if PCCQ does not reject then the sentence ϕ holds in B. Since PCCQ runs in
polynomial time by Proposition 2, we are done. J

Suppose now that X is some strict subset of {1, . . . , |B|}. The variant of Lemma 1 that talks
of X-pp-definability and polymorphisms that expand at cardinalities in X is not explicit in [8].
However, the easy direction, that X-pp-definability entails preservation by polymorphisms
that expand at cardinalities in X, is straightforward to prove.

I Theorem 5. Suppose B has an majority polymorphism that expands at cardinalities
{c1, . . . , cm}. Then {c1, . . . , cm}-CSP(B) is in P.

3.6 Expanding polymorphisms are necessary
We will now argue that the condition of expansion was necessary in Theorem 4, since there
is a structure admitting non-expanding majority whose CQCSP is NP-hard. Let H4 be the
4-vertex graph built from the irreflexive triangle K3 on {1, 2, 3} by adding a dominating
vertex 0 with a self-loop. It is easy to verify that H4 enjoys the majority polymorphism f

that maps any tuple of distinct arguments to 0. This f is clearly not conservative and it
even violates the condition of expansion because |f({0, 1}, {0, 2}, {0, 3})| = 1.

I Lemma 6. CQCSP(H4) is NP-hard.

Proof. By reduction from 3-COL, a.k.a. CSP(K3). Take an input ϕ for CSP(K3) and build
an input ψ for CQCSP(H4) by changing all ∃ quantifiers to ∃≥2.

(K3 |= ϕ implies H4 |= ψ.) Evaluate each variables v in ψ according to its evaluation ϕ
but additionally with the second possibility 0.

(H4 |= ψ implies K3 |= ϕ.) Evaluate each variable v in ϕ according to one of the
possibilities for v in ψ that is not equal to 0. J

4 Applications of our result

We will now see that conservative majority polymorphisms demarcate tractability in diverse
places.
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I Corollary 7. Let H∗ be a partially reflexive graph H endowed with all unary relations.
Either H∗ admits an expanding majority and CQCSP(H∗) is in P, or CQCSP(H∗) is
NP-hard.

Proof. We know all polymorphisms of H∗ are conservative since it has all unary relations.
From Theorem 2 we further know that eitherH∗ admits a conservative majority polymorphism
or CSP(H∗) is NP-hard. The result follows from Lemma 3 and Theorem 4. J

The following is a strengthening of Theorem 7.16 of [21] in the case of paths.3

I Corollary 8. Let P be an irreflexive (undirected) path. Then CQCSP(P) is in P.

Proof. Suppose P is over vertices {1, . . . , n} so that (i, i + 1) ∈ EP . Then P admits the
conservative majority polymorphism m communicated to us by Tomás Feder: m(x, y, z) is
defined to be the median of x, y, z, if they all have the same parity; otherwise it is the smaller
of the pair with repeated parity. The result follows from Lemma 3 and Theorem 4. J

Sadly we cannot use conservative majorities for irreflexive trees, since it is well-known that
the tree T10, built from three paths on four vertices by identifying one end of each of these
three paths as a single vertex, does not admit a conservative majority. This has been known,
based on complexity-theoretic assumptions, since [14, 4] but we have checked also using the
polymorphism program of Miklós Maróti4.

We will now see how to apply our result to infinite-domain (CQ)CSPs. The (d-)modular
median operation of [1] is defined on Z as follows. f(x, y, z) = median(x, y, z), if x ≡ y ≡
z mod d. If two among {x, y, z} are equivalent mod d, then f(x, y, z) is the minimum of these
two; otherwise f(x, y, z) = x. Note that these modular median operations are conservative
majorities.

I Corollary 9. Let B be a finite-signature binary first-order expansion of (Z; succ) whose
relations, viewed as digraphs, have bounded degree. Either B admits a modular median
polymorphism, and, for each j, {1, . . . , j}-CSP(B) is in P, or CSP(B) is NP-hard.

Proof. By Proposition 6 in [1],5 we know that if B omits all modular median operations, then
CSP(B) is NP-hard. Thus, we are left with the question of tractability. Let e be maximal so
that (x, x+ e) appears in some relation of B. Let φ be an input for CQCSP(B) involving
n variables. Now, we can see that φ is true on B just in case it is true on the substructure
B′of B induced by the interval [0, ne]. B′ admits the same conservative majority that B does
and the result follows from Propositions 4 when we consider from the proof of Proposition 2
that the size of subsets in the OK tuples is bounded by j. This is because the number of
OK tuples per binary constraint is bound by (j(ne)j)j+1 (which takes the place of the term
(2|B|)|B|+1 in the calculation for complexity in Proposition 2). J

To consider CQCSP over an infinite-domain structure, albeit with a finite signature, one
must consider how to encode i in ∃≥i. The most natural encoding here is binary. We leave
as an open question whether CQCSP(B) is in P, whenever B is a finite-signature binary
first-order expansion of (Z; succ) whose relations, viewed as digraphs, have bounded degree,

3 Theorem 7.16 of [21] deals with {1, 2}-CSP on trees, but its very long proof does not become much
simpler if one restricts to paths.

4 See: http://www.math.u-szeged.hu∼maroti/applets/GraphPoly.html
5 Proposition 6 lacks a counterpart in the journal version of [1] For a proof, see Proposition 35 in v2 of
the arxiv version.
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which admits a modular median polymorphism. Note that this question remains open even
if we choose the unary encoding for i.

4.1 Endo-triviality
The concept of endo-triviality has recently been introduced in the context of surjective CSPs
[20]. We note here that endo-triviality is strong enough to deduce results also for CQCSPs.
An endomorphism of a digraph H is a homomorphism from H to itself. Call H a core if all
of its endomorphisms of H are automorphisms (the importance of cores is discussed, e.g.,
in [17]). Call H endo-trivial if all of its endomorphisms either have range of size 1 or are
automorphisms.

The retraction problem Ret(H) takes as input a graph G containing H as an induced
substructure and asks whether there is a homomorphism from G to H that is the identity on
H (such an endomorphism of G is termed a retraction to H)

The proofs of the following are deferred to the appendix.

I Lemma 10. Let H be a graph that is endo-trivial. The there is a polynomial-time reduction
from Ret(H) to CQCSP(H).

I Corollary 11. Let C be a reflexive directed cycle. If C is of length 2 then CQCSP(C) is in
L, otherwise CQCSP(C) is NP-hard.

5 Final remarks

Near-unanimity polymorphisms. Note that Theorem 4 relativises to any subset of counts
X ⊂ {1, 2 . . . , |B|} for the problem X-CSP(B) with the weaker hypothesis that requires that
B has a majority f that is expanding on X. Note that, if 1 /∈ X, one has to move to partial
polymorphisms. Indeed, we do not need f to be a majority, only that it satisfies the identities
of a majority where we replace uniformly the variables by set variables of the same size from
X.

We can also generalise the algorithm and the proof principle to a larger class of structures.

I Theorem 12. If B has an expanding near unanimity polymorphism. Then CQCSP(B) is
in P.

CQCSP and List-CSP. We have seen that conservative operations are expanding, but
what is the actual relationship between CQCSP and List-CSP? Does ability to quantify set
cardinalities with ∃≥j relate to talking about subsets of size j? For this latter question, it
seems the answer is no. Designate {1, 2}-List-CSP the restriction of List-CSP in which only
subsets of size 1 and 2 are available. Recall the tree T10, built from three paths on four
vertices by identifying one end of each of these three paths as a single vertex. List-CSP(T10)
is known to be NP-complete since [14]. NP-completeness for {1, 2}-List-CSP(T10) follows
from [4]. On the other hand, {1, 2}-CSP(T10) is in P, as proved in Theorem 7.16 of [21].
However, we are still missing an exemplar B so that one of CQCSP(B) and List-CSP(B) is
tractable and the other is not.

CQCSP and Retraction. In Lemma 10, we show a sufficient condition for which Ret(B) is
polynomially reducible to CQCSP(B). It should be possible to reconstruct the argument from
[20] in order to prove that, if H is a reflexive tournament, then either H has a conservative
majority polymorphism (the median) and CQCSP(B) is in P; or Ret(H) can be polynomially
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reduced to CQCSP(H) and both are NP-hard. Note that a classification for QCSP on
reflexive tournaments is not yet known. However, what we would like is much stronger : is it
the case that for all finite B, Ret(H) can be polynomially reduced to CQCSP(H)? That is,
are all constants cq-pp-definable up to isomorphism?

Core-ness and finite categoricity. Closely related to the previous question is whether all
non-isomorphic finite structures can be distinguished by cq-pp. Let us explore this question
through the Weisfeiler-Lehman (WL) method, as discussed in [9] (where logics with counting
also play a central role). The degree sequence of a graph is a non-increasing list of positive
integers that list the degrees of its vertices. This can be thought of as a 0-dimensional WL
descriptor. Obviously, if two graphs are isomorphic, then they have the same degree sequence,
but the converse is not necessarily true. Cq-pp can not specify vertex degree but it can
specify a lower bound for it. Firstly, then, two graphs on vertex sets of distinct sizes can be
distinguished by some ∃≥a1x (x = x). For two graphs with vertex sets the same size, if their
two degree sequences differ, with the first being lexicographically the larger, then counting
down from the top until the first difference, one will find necessarily some a1, a2 so that
∃≥a1x1∃≥a2x2 E(x1, x2) is true on the first graph but false on the second. We do this by
setting a1 − 1 to be the number of vertices before the degree sequence differs and a2 to be
the degree at which the degree sequences diverge.

The 1-dimensional WL descriptor is defined inductively by expanding each integer
associated with a vertex from the 0-dimensional WL descriptor into a tree of depth one
whose leaves list, in descending order, the degrees of that vertex’s neighbours. These leaves
are now associated with that corresponding neighbour. The process is then iterated, and
would go on for ever, save that we stop it when a fixed-point is reached in terms of the
subtrees added being endlessly the same. Now suppose two graphs each give rise to a forest
built in this fashion and let k be the height at which these forests first differ (else they
are indistinguishable by 1-dimensional WL) and let the first graph be lexicographically
the smaller (apply closeness to the root as higher in the lexicography). We can follow the
previous reasoning, and the path through the forests on which the graphs differ, to find
some ∃≥a1x1∃≥a2x2 . . . ∃≥akxk∃≥ak+1xk+1 E(x1, x2) ∧ . . . ∧ E(xk, xk+1) that is true on the
first graph but not the second.

The 1-dimensional WL descriptor does not capture isomorphism, and unfortunately, we
do not see an implementation of the more general r-dimensional WL descriptor in cq-pp,
since this can measure isomorphism type of an induced subgraph of size r.
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