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ABSTRACT   

 
An implicit MPM program has been developed to model the 3D installation of screw piles for offshore wind turbine foundations 

as part of a UK EPSRC-funded project. The program is to be used to study the torque and vertical force requirements during 

installation of screw piles for different geometries and soil conditions, and has required the development of innovative numerical 
techniques which may be of interest for other geotechnical problems. In this paper, we introduce some of the features developed, 

including an efficient walking-in-triangulation algorithm for searching material points and an �̅�-patch method for avoiding 

volumetric locking. 
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INTRODUCTION  
 

The MPM is ideal for application to large deformation problems in geotechnics and elsewhere, e.g. (Ceccato et al., 

2016; Stomakhin et al., 2013) and in this paper we highlight some features that have been developed in an implicit 

MPM code, to model the installation of screw piles in soft ground. A key feature of this particular geotechnical 

problem is the need to model the large rotation of the complex geometry of a screw pile, something not attempted 

to date with the MPM to our knowledge. In developing the code, we have investigated standard MPM as well as 

CPDI approaches, and found that the former is more suitable (Wang et al., 2018). Therefore, in the developments 

described here we only consider the standard MPM.  

 

The code uses unstructured tetrahedral meshes to cope with the complex geometry of a screw pile and the need for 

local refinement. A moving mesh concept is used, similar in nature to (Jassim, 2013) for instance, but for rotation 

rather than translation (Wang et al., 2018).  The first interesting feature to be described here relates to the search 

needed to locate material points in the unstructured mesh. An efficient walk-in-triangulation algorithm is used which 

relies on an efficient procedure for building mesh neighbourhoods (Devillers et al., 2002). The second development 

covered here is mitigation of volumetric locking. The �̅� approach, established for standard finite elements in (de 

Souza Neto et al.,1996), has been implemented in the standard MPM for quadrilateral and hexahedral elements in 

(Coombs et al., 2018). Here we describe a similar approach applied to tetrahedral elements in the standard MPM, 

based on an alternative �̅�-patch approach for finite elements (de Souza Neto et al., 2005). 

 

MATERIAL POINT SEARCH ALGORITHM 

 

Determining the parent element, i.e. the element in which the material point is located, is a crucial step at the 

beginning of each load step. For a regular grid, this can be directly computed based on the coordinates of material 

points and the grid size, but this is not the case for an unstructured mesh and an alternative efficient and robust 

search algorithm is required. In the code used here, at the beginning of a simulation, the material points are generated 

as Gauss points of the elements in the background mesh, and therefore at this stage the parent element of each 

material point is directly determined. The search algorithm adopted at subsequent steps is a “walking-in-
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triangulation” procedure. Based on the coordinates of a material point, updated at the end of the previous load step, 

the current parent element is determined through a walking path composed of tested elements, starting from the 

previous parent element, in the previous load step. As shown in Figure 1 the old parent element is first tested, 

followed by any of the neighbour elements with a visible line in 2D or a face in 3D; and then the neighbour element 

is tested. This repeats until the correct parent element is found, as shown in Algorithm 1. The visible line in 2D or 

face in 3D is the line or face through which the element and the material point can be divided into two half spaces. 

An element with a visible line or face is denoted as a visible element.  

 

Figure 1 Conditions for different areas with respect to the standard reference element. The red arrows and shaded elements 

indicate the walking path for the material point, which has moved right and down over the n-th load step. 

 

 
 

The visibility of all faces of a tested element can be determined through the relative position of the material point 

by mapping them into the isoparametric space. For an element, the isoparametric coordinates, (𝜉, 𝜂, 𝜁), of the 

material point is computed. Based on the value of this coordinate, the relative location of the point with respect to 

this element can be determined, as demonstrated in Figure 1 for a 2D problem. The 3D problem is similar. Therefore, 

the visibility of all faces can be determined once, i.e. 

• if 𝜉 + 𝜂 + 𝜁 > 1, the first face is visible, 

• if 𝜉 < 0, the second face is visible, 

• if 𝜂 < 0,the third face is visible, 

• if 𝜁 < 0, the fourth face is visible, 

• if 𝜉 + 𝜂 + 𝜁 ≤ 1, 𝜉 ≥ 0, 𝜂 ≥ 0, 𝜁 ≥ 0,  the point is inside of the element.  

 

The success of this walking algorithm also depends on efficiently obtaining all neighbours of an element. In the 

program used here, this neighbourhood is built only once at the beginning of the simulation, because it is assumed 

that the topology of the mesh is not changed over load-steps1. A tetrahedral element has four neighbours, one 

associated with each face. Assume there are n tetrahedrons in a mesh, then a matrix of dimension 𝑛 ×  4, 𝑵𝑬, can 

be used to store the neighbourhood relationship. Each row of the 𝑵𝑬 is built one-to-one corresponding to a row of 

the element connectivity 𝑪𝑶𝑵𝑵. For example, the element id of the first neighbour in 𝑵𝑬(𝑖, 0) is the element which 

has a face opposite to the first vertex 𝑪𝑶𝑵𝑵(𝑖, 0). If a face is a boundary, its neighbour element id is set to be -1. 

The algorithm to build 𝑵𝑬 is shown in Algorithm 2. 

                                                 
1 Note that the element neighbourhood list could be reconstructed if the original mesh was replaced. 
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Some efficiencies can be obtained within the procedure outlines above. Computing the inverse of a matrix, which 

only depends on the nodal coordinate of an element, to obtain (𝜉, 𝜂, 𝜁) of a material point, is time-consuming. This 

inverse is only however computed when an element is checked the first time, and is then saved. Therefore, when 

computing the isoparametric coordinates of other material points with respect to this element, this time-consuming 

operation is avoided. The isoparametric coordinates obtained can also be used later when computing stresses and 

internal force.   

 

�̅�-PATCH MPM 

 

The issue of volumetric locking is well-known for standard finite elements, affecting modelling of incompressible 

or nearly-incompressible materials and isochoric plasticity. An �̅� approach modified for the MPM is described in 

(Coombs et al., 2018) for quadrilateral and hexahedral meshes, and here we explain something similar for tetrahedral 

meshes. In the code used here, linear displacement tetrahedral elements are used for simplicity and robustness. An 

�̅�-patch method, described in detail for standard finite elements in (de Souza Neto et al., 2005), is used here suitable 

for linear triangle or tetrahedral elements. We have tailored this approach for the MPM in the following two aspects: 

1) a patch is generated by subdividing a 10-node quadratic tetrahedron element into 8 linear tetrahedron elements 

(Figure 2), and 2) only elements including material points are considered in a patch. 

 

Figure 2 A quadratic 10-node tetrahedral element, regarded as a patch, further subdivided into 8 linear tetrahedral elements. 

 

The essential idea of the �̅�-patch is to modify the deformation gradient for an element with consideration of all 

elements in a surrounding ‘patch’. For example, for the element 𝑒 in a patch  ,  

 
where 𝐅𝑒 is the deformation gradient obtained from the standard linear displacement interpolation and 𝑣𝑝𝑎𝑡𝑐ℎ and 

𝑉𝑝𝑎𝑡𝑐ℎ  denote, respectively, the deformed and undeformed volume of the patch. As a result, the computation of the 

internal force and element tangent stiffness is also modified. For the internal force, it is necessary to replace 𝐅𝑒 by 

�̅�𝑒. The tangent stiffness of an element 𝑒 also has contributions from all elements in its patch as 
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where 𝐚 is the matrix form of the fourth order spatial elasticity tensor now evaluated at 𝐅𝑒 = �̅�𝑒, 𝐆𝒊 denotes the 

conventional discrete gradient operator of an element and 𝐪 is the matrix form of the fourth order tensor defined by  

in which 𝐈 is the identity matrix and 𝝈 is the Cauchy stress.  

  

RESULTS 

 

As a demonstration of the capabilities of the code which includes the above features, some numerical examples are 

now presented. 

 

Simple Stretch 

 

The uniaxial stretch of a cube (initial edge length 2) is the first example. The material response is elasto-plastic with 

a von Mises yield surface where material parameters are 𝐸 = 103 , 𝜈 = 0,  and yield strength 𝜌𝑐 = 400  with 

consistent units. The cube is discretised into five 10-noded tetrahedral elements (each containing eleven material 

points). There are five patches for the �̅�-patch computation, which are then subdivided into forty linear tetrahedrons 

(eight per initial 10-noded tetrahedron as seen in Figure 3. Roller boundary conditions are applied on the three 

surfaces, 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, and displacement boundary condition, ∆𝑢 = 0.4, applied on the surface, 𝑦 = 2. The 

mesh is simply stretched along the 𝑦-axis direction and since the boundary of the physical domain aligns with the 

mesh, the Dirichlet boundary conditions can be applied straightforwardly.  

 

The mesh and material point distribution at load step 17 is shown in Figure 3. The Kirchhoff stress component 𝜏22 

at all material points are plotted against the load step for both unmodofied (𝐅) and modified �̅�-patch methods are 

plotted in Figure 4. The average value agrees with the analytical solution but there is variation as indicated, more 

pronounced in the unmodified case. It is clear that oscillations in stress have been reduced by using the �̅�-patch 

approach. The smoothing effect seen with the �̅�-patch approach occurs because the stiffness and internal force for 

an element receives contributions from other elements in the same patch.  

 

 
Figure 3 The mesh and material points at the start and at load step 17 in the simulation of the uniaxial stretch problem. 
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Figure 4 Kirchhoff stress component τ22 at all material points with average, range and quartile. 

 

Vane Shear 

 

The second example to be modelled is a vane shear test, which is a simple field test for obtaining undrained soil 

strength where the vane (a pair of steel planes set in a cruciform as seen in Figure 5) is pushed into the ground and 

rotated and the torque against rotation noted.  The modelling here follows the 2D simulation in (Griffiths and Lane, 

1990) where the radius of vane is 0.05m denoted by 𝑟𝑣 and other dimensions are defined in terms of multiples of 𝑟𝑣, 

i.e. radius of external circle is 3𝑟𝑣, height of the vane is 𝑟𝑣, and the thickness of the vane blade is 0.1𝑟𝑣. The soil is 

discretized into 95456 tetrahedral elements (Figure 5) and material parameters are the same as those in (Griffiths 

and Lane, 1990), i.e. are 𝐸 = 108 Pa, 𝜈 = 0.3, and 𝜌𝑐 = √3 × 104 Pa. The external surface is fixed, while both top 

and bottom are constrained by a roller boundary condition. An incremental rotation, 5 × 10−5  rad per step, is 

applied on the vane blade surfaces.  Figure 5 shows torque measured in the simulation against rotation for both 

unmodified (𝐅) and modified (�̅�-patch) approaches where it is clear that the latter avoids volumetric locking.  

 

 
Figure 5 The simulation of the vane shear test. 

 

 

CONCLUSIONS 

 

Use of the standard MPM for challenging geotechnical problems has prompted the development of the novel 

techniques and procedures which are described above. Both developments described here are required due to the 

use of an unstructured, tetrahedral background mesh. A novel and robust searching algorithm is described for the 

location of material points in elements during an analysis, and a method for avoiding volumetric locking has also 

been demonstrated. 
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