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Abstract20

Modern, inherently dynamic systems are usually characterized by a network structure, i.e. an un-21

derlying graph topology, which is subject to discrete changes over time. Given a static underlying22

graph G, a temporal graph can be represented via an assignment of a set of integer time-labels23

to every edge of G, indicating the discrete time steps when this edge is active. While most of24

the recent theoretical research on temporal graphs has focused on the notion of a temporal path25

and other “path-related” temporal notions, only few attempts have been made to investigate26

“non-path” temporal graph problems. In this paper, motivated by applications in sensor and in27

transportation networks, we introduce and study two natural temporal extensions of the classical28

problem Vertex Cover. In our first problem, Temporal Vertex Cover, the aim is to cover29

every edge at least once during the lifetime of the temporal graph, where an edge can only be30

covered by one of its endpoints at a time step when it is active. In our second, more pragmatic31

variation Sliding Window Temporal Vertex Cover, we are also given a natural number32

∆, and our aim is to cover every edge at least once at every ∆ consecutive time steps. In both33

cases we wish to minimize the total number of “vertex appearances” that are needed to cover the34

whole graph. We present a thorough investigation of the computational complexity and approx-35

imability of these two temporal covering problems. In particular, we provide strong hardness36

results, complemented by various approximation and exact algorithms. Some of our algorithms37

are polynomial-time, while others are asymptotically almost optimal under the Exponential Time38

Hypothesis (ETH) and other plausible complexity assumptions.39
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1 Introduction and Motivation48

A great variety of both modern and traditional networks are inherently dynamic, in the sense49

that their link availability varies over time. Information and communication networks, social50

networks, transportation networks, and several physical systems are only a few examples of51

networks that change over time [18,27]. The common characteristic in all these application52

areas is that the network structure, i.e. the underlying graph topology, is subject to discrete53

changes over time. In this paper we adopt a simple and natural model for time-varying54

networks which is given with time-labels on the edges of a graph, while the vertex set remains55

unchanged. This formalism originates in the foundational work of Kempe et al. [20].56

I Definition 1 (temporal graph). A temporal graph is a pair (G,λ), where G = (V,E) is an57

underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to every58

edge of G a set of discrete-time labels.59

For every edge e ∈ E in the underlying graph G of a temporal graph (G,λ), λ(e) denotes60

the set of time slots at which e is active in (G,λ). Due to its vast applicability in many areas,61

this notion of temporal graphs has been studied from different perspectives under various62

names such as time-varying [1, 14,29], evolving [4, 10,13], dynamic [7, 15], and graphs over63

time [24]; for a recent attempt to integrate existing models, concepts, and results from the64

distributed computing perspective see the survey papers [5–7] and the references therein.65

Data analytics on temporal networks have also been very recently studied in the context66

of summarizing networks that represent sports teams’ activity data to discover recurring67

strategies and understand team tactics [22], as well as extracting patterns from interactions68

between groups of entities in a social network [21].69

Motivated by the fact that, due to causality, information in temporal graphs can “flow” only70

along sequences of edges whose time-labels are increasing, most temporal graph parameters71

and optimization problems that have been studied so far are based on the notion of temporal72

paths and other “path-related” notions, such as temporal analogues of distance, diameter,73

reachability, exploration, and centrality [2, 3, 12, 25, 26]. In contrast, only few attempts have74

been made to define “non-path” temporal graph problems. Motivated by the contact patterns75

among high-school students, Viard et al. [31, 32], and later Himmel et al. [17], introduced76

and studied ∆-cliques, an extension of the concept of cliques to temporal graphs, in which77

all vertices interact with each other at least once every ∆ consecutive time steps within a78

given time interval.79

In this paper we introduce and study two natural temporal extensions of the problem80

Vertex Cover in static graphs, which take into account the dynamic nature of the network.81

In the first and simpler of these extensions, namely Temporal Vertex Cover (for short,82

TVC), every edge e has to be “covered” at least once during the lifetime T of the network83

(by one of its endpoints), and this must happen at a time step t when e is active. The goal is84

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.467
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then to cover all edges with the minimum total number of such “vertex appearances”. On the85

other hand, in many real-world applications where scalability is important, the lifetime T can86

be arbitrarily large but the network still needs to remain sufficiently covered. In such cases,87

as well as in safety-critical systems (e.g. in military applications), it may not be satisfactory88

enough that an edge is covered just once during the whole lifetime of the network. Instead,89

every edge must be covered at least once within every small ∆-window of time (for an90

appropriate value of ∆), regardless of how large the lifetime is; this gives rise to our second91

optimization problem, namely Sliding Window Temporal Vertex Cover (for short,92

SW-TVC). Formal definitions of our problems TVC and SW-TVC are given in Section 2.93

Our two temporal extensions of Vertex Cover are motivated by applications in sensor94

networks and in transportation networks. In particular, several works in the field of sensor95

networks considered problems of placing sensors to cover a whole area or multiple critical96

locations, e.g. for reasons of surveillance. Such studies usually wish to minimize the number97

of sensors used or the total energy required [11, 16, 23, 28, 33]. Our temporal vertex cover98

notions are an abstract way to economically meet such covering demands as time progresses.99

To further motivate the questions raised in this work, consider a network whose links100

represent transporting facilities which are not always available, while the availability schedule101

per link is known in advance. We wish to check each transporting facility and certify “OK”102

at least once per facility during every (reasonably small) window of time. It is natural to103

assume that the checking is done in the presence of an inspecting agent at an endpoint of the104

link (i.e. on a vertex), since such vertices usually are junctions with local offices. The agent105

can inspect more than one link at the same day, provided that these links share this vertex106

and that they are all alive (i.e. operating) at that day. Notice that the above is indeed an107

application drawn from real-life, as regular checks in roads and trucks are paramount for the108

correct operation of the transporting sector, according to both the European Commission1109

and the American Public Transportation Association2.110

1.1 Our contribution111

In this paper we present a thorough investigation of the complexity and approximability of the112

problems Temporal Vertex Cover (TVC) and Sliding Window Temporal Vertex113

Cover (SW-TVC) on temporal graphs. We first prove in Section 3 that Set Cover is114

equivalent to a special case of TVC on star temporal graphs (i.e. when the underlying graph115

G is a star), which immediately provides several complexity and algorithmic consequences for116

TVC. In particular, TVC remains NP-complete even on star temporal graphs, and it does not117

admit a polynomial-time (1−ε) lnn-approximation algorithm, unless NP has nO(log log n)-time118

deterministic algorithms. On the positive side, TVC on star temporal graphs with n vertices119

can be (Hn−1 − 1
2 )-approximated in polynomial time, where Hn =

∑n
i=1

1
i ≈ lnn is the nth120

harmonic number. Similar equivalence with Hitting Set yields that for any ε < 1, TVC121

on star temporal graphs cannot be optimally solved in O(2εn) time, assuming the Strong122

Exponential Time Hypothesis (SETH). We complement these results by showing that TVC123

1 According to the European Commission (see https://ec.europa.eu/transport/road_safety/topics/
vehicles/inspection_en), “roadworthiness checks (such as on-the-spot roadside inspections and pe-
riodic checks) not only make sure your vehicle is working properly, they are also important for
environmental reasons and for ensuring fair competition in the transport sector”.

2 According to the American Public Transportation Association (see http://www.apta.com/resources/
standards/Documents/APTA-RT-VIM-RP-019-03.pdf “developing minimum inspection, maintenance,
testing and alignment procedures maintains rail transit trucks in a safe and reliable operating condition”.
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on general temporal graphs admits a polynomial-time randomized approximation algorithm124

with expected ratio O(lnn).125

In Section 4 and in the reminder of the paper we deal with our second problem, SW-TVC.126

We prove in Section 4.1 a strong complexity lower bound on arbitrary temporal graphs. More127

specifically we prove that, for any (arbitrarily growing) functions f : N→ N and g : N→ N,128

there exists a constant ε ∈ (0, 1) such that SW-TVC cannot be solved in f(T ) · 2εn·g(∆) time,129

assuming the Exponential Time Hypothesis (ETH). This ETH-based lower bound turns out130

to be asymptotically almost tight, as we present an exact dynamic programming algorithm131

with running time O(T∆(n+m) ·2n(∆+1)). This worst-case running time can be significantly132

improved in certain special temporal graph classes. In particular, when the “snapshot” of133

(G,λ) at every time step has vertex cover number bounded by k, the running time becomes134

O(T∆(n + m) · nk(∆+1)). That is, when ∆ is a constant, this algorithm is polynomial in135

the input size on temporal graphs with bounded vertex cover number at every time step.136

Notably, when every snapshot is a star (i.e. a superclass of the star temporal graphs studied137

in Section 3) the running time of the algorithm is O(T∆(n+m) · 2∆).138

In Section 5 we prove strong inapproximability results for SW-TVC even when restricted139

to temporal graphs with length ∆ = 2 of the sliding window. In particular, we prove that140

this problem is APX-hard (and thus does not admit a Polynomial Time Approximation141

Scheme (PTAS), unless P = NP), even when ∆ = 2, the maximum degree in the underlying142

graph G is at most 3, and every connected component at every graph snapshot has at most 7143

vertices. Finally, in Section 6 we provide a series of approximation algorithms for the general144

SW-TVC problem, with respect to various incomparable temporal graph parameters. In145

particular, we provide polynomial-time approximation algorithms with approximation ratios146

(i) O(lnn + ln ∆), (ii) 2k, where k is the maximum number of times that each edge can147

appear in a sliding ∆ time window (thus implying a ratio of 2∆ in the general case), (iii) d,148

where d is the maximum vertex degree at every snapshot of (G,λ). Note that, for d = 1, the149

latter result implies that SW-TVC can be optimally solved in polynomial time whenever150

every snapshot of (G,λ) is a matching.151

2 Preliminaries and notation152

A theorem proving that a problem is NP-hard does not provide much information about how153

efficiently (although not polynomially, unless P = NP) this problem can be solved. In order154

to prove some useful complexity lower bounds, we mostly need to rely on some complexity155

hypothesis that is stronger than“P 6= NP”. The Exponential Time Hypothesis (ETH) is one156

of the established and most well-known such complexity hypotheses.157

I Exponential Time Hypothesis (ETH [19]). There exists an ε < 1 such that 3SAT cannot be158

solved in O(2εn) time, where n is the number of variables in the input 3-CNF formula.159

Given a (static) graph G, we denote by V (G) and E(G) the sets of its vertices and edges,160

respectively. An edge between two vertices u and v of G is denoted by uv, and in this case161

u and v are said to be adjacent in G. The maximum label assigned by λ to an edge of G,162

called the lifetime of (G,λ), is denoted by T (G,λ), or simply by T when no confusion arises.163

That is, T (G,λ) = max{t ∈ λ(e) : e ∈ E}. For every i, j ∈ N, where i ≤ j, we denote164

[i, j] = {i, i + 1, . . . , j}. Throughout the paper we consider temporal graphs with finite165

lifetime T , and we refer to each integer t ∈ [1, T ] as a time slot of (G,λ). The instance (or166

snapshot) of (G,λ) at time t is the static graph Gt = (V,Et), where Et = {e ∈ E : t ∈ λ(e)}.167

For every i, j ∈ [1, T ], where i ≤ j, we denote by (G,λ)|[i,j] the restriction of (G,λ) to the168

time slots i, i+ 1, . . . , j, i.e. (G,λ)|[i,j] is the sequence of the instances Gi, Gi+1, . . . , Gj . We169
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assume in the remainder of the paper that every edge of G appears in at least one time slot170

until T , namely
⋃T

t=1Et = E.171

Although some optimization problems on temporal graphs may be hard to solve in the172

worst case, an optimal solution may be efficiently computable when the input temporal173

graph (G,λ) has special properties, i.e. if (G,λ) belongs to a special temporal graph class174

(or time-varying graph class [5, 7]). To specify a temporal graph class we can restrict (a)175

the underlying topology G, or (b) the time-labeling λ, i.e. the temporal pattern in which the176

time-labels appear, or both.177

I Definition 2. Let (G,λ) be a temporal graph and let X be a class of (static) graphs.178

If G ∈ X then (G,λ) is an X temporal graph. On the other hand, if Gi ∈ X for every179

i ∈ [1, T ], then (G,λ) is an always X temporal graph.180

In the remainder of the paper we denote by n = |V | and m = |E| the number of vertices181

and edges of the underlying graph G, respectively, unless otherwise stated. Furthermore,182

unless otherwise stated, we assume that the labeling λ is arbitrary, i.e. (G,λ) is given with183

an explicit list of labels for every edge. That is, the size of the input temporal graph (G,λ)184

is O
(
|V |+

∑T
t=1 |Et|

)
= O(n + mT ). In other cases, where λ is more restricted, e.g. if185

λ is periodic or follows another specific temporal pattern, there may exist more succinct186

representations of the input temporal graph.187

For every u ∈ V and every time slot t, we denote the appearance of vertex u at time t by188

the pair (u, t). That is, every vertex u has T different appearances (one for each time slot)189

during the lifetime of (G,λ). Similarly, for every vertex subset S ⊆ V and every time slot t we190

denote the appearance of set S at time t by (S, t). With a slight abuse of notation, we write191

(S, t) =
⋃

v∈S(v, t). A temporal vertex subset of (G,λ) is a set S ⊆ {(v, t) : v ∈ V, 1 ≤ t ≤ T}192

of vertex appearances in (G,λ). Given a temporal vertex subset S, for every time slot193

t ∈ [1, T ] we denote by St = {(v, t) : (v, t) ∈ S} the set of all vertex appearances in S at194

the time slot t. Similarly, for any pair of time slots i, j ∈ [1, T ], where i ≤ j, S|[i,j] is the195

restriction of the vertex appearances of S within the time slots i, i+ 1, . . . , j. Note that the196

cardinality of the temporal vertex subset S is |S| =
∑

1≤t≤T |St|.197

2.1 Temporal Vertex Cover198

Let S be a temporal vertex subset of (G,λ). Let e = uv ∈ E be an edge of the underlying199

graph G and let (w, t) be a vertex appearance in S. We say that vertex w covers the edge e if200

w ∈ {u, v}, i.e. w is an endpoint of e; in that case, edge e is covered by vertex w. Furthermore201

we say that the vertex appearance (w, t) temporally covers the edge e if (i) w covers e and202

(ii) t ∈ λ(e), i.e. the edge e is active during the time slot t; in that case, edge e is temporally203

covered by the vertex appearance (w, t). We now introduce the notion of a temporal vertex204

cover and the optimization problem Temporal Vertex Cover.205

I Definition 3. Let (G,λ) be a temporal graph. A temporal vertex cover of (G,λ) is a206

temporal vertex subset S ⊆ {(v, t) : v ∈ V, 1 ≤ t ≤ T} of (G,λ) such that every edge e ∈ E207

is temporally covered by at least one vertex appearance (w, t) in S.208

Temporal Vertex Cover (TVC)

Input: A temporal graph (G,λ).
Output: A temporal vertex cover S of (G,λ) with the smallest cardinality |S|.

209

ICALP 2018
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Note that TVC is a natural temporal extension of the problem Vertex Cover on static210

graphs. In fact, Vertex Cover is the special case of TVC where T = 1. Thus TVC is211

clearly NP-complete, as it also trivially belongs to NP.212

2.2 Sliding Window Temporal Vertex Cover213

In the notion of a temporal vertex cover given in Section 2.1, the requirement is that every214

edge is temporally covered at least once during the lifetime T of the input temporal graph215

(G,λ). On the other hand, in many real-world applications where scalability is important,216

the lifetime T can be arbitrarily large. In such cases it may not be satisfactory enough that217

an edge is temporally covered just once during the whole lifetime of the temporal graph.218

Instead, in such cases it makes sense that every edge is temporally covered by some vertex219

appearance at least once during every small period ∆ of time, regardless of how large the220

lifetime T is. Motivated by this, we introduce in this section a natural sliding window variant221

of the TVC problem, which offers a greater scalability of the solution concept.222

For every time slot t ∈ [1, T −∆ + 1], we define the time window Wt = [t, t+ ∆− 1] as223

the sequence of the ∆ consecutive time slots t, t+ 1, . . . , t+ ∆− 1. Furthermore we denote224

by E[Wt] =
⋃

i∈Wt
Ei the union of all edges appearing at least once in the time window Wt.225

Finally we denote by S[Wt] = {(v, i) ∈ S : i ∈ Wt} the restriction of the temporal vertex226

subset S to the window Wt. We are now ready to introduce the notion of a sliding ∆-window227

temporal vertex cover and the optimization problem Sliding Window Temporal Vertex228

Cover.229

I Definition 4. Let (G,λ) be a temporal graph with lifetime T and let ∆ ≤ T . A sliding230

∆-window temporal vertex cover of (G,λ) is a temporal vertex subset S ⊆ {(v, t) : v ∈ V, 1 ≤231

t ≤ T} of (G,λ) such that, for every time window Wt and for every edge e ∈ E[Wt], e is232

temporally covered by at least one vertex appearance (w, t) in S[Wt].233

Sliding Window Temporal Vertex Cover (SW-TVC)

Input: A temporal graph (G,λ) with lifetime T , and an integer ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ) with the smallest
cardinality |S|.

234

Whenever the parameter ∆ is a fixed constant, we will refer to the above problem as the235

∆-TVC (i.e. ∆ is now a part of the problem name). Note that the problem TVC defined236

in Section 2.1 is the special case of SW-TVC where ∆ = T , i.e. where there is only one237

∆-window in the whole temporal graph. Another special case3 of SW-TVC is the problem238

1-TVC, whose optimum solution is obtained by iteratively solving the (static) problem239

Vertex Cover on each of the T static instances of (G,λ); thus 1-TVC fails to fully capture240

the time dimension in temporal graphs.241

3 Hardness and approximability of TVC242

In this section we investigate the complexity of Temporal Vertex Cover (TVC). First243

we prove in Section 3.1 that TVC on star temporal graphs is equivalent to both Set Cover244

and Hitting Set, and derive several complexity and algorithmic consequences for TVC.245

3 The problem 1-TVC has already been investigated under the name “evolving vertex cover” in the
context of maintenance algorithms in dynamic graphs [8]; similar “evolving” variations of other graph
covering problems have also been considered, e.g. the “evolving dominating set” [6].
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In Section 3.2 we use randomized rounding technique to prove that TVC on general246

temporal graphs admits a polynomial-time randomized approximation algorithm with ex-247

pected ratio O(lnn). This result is complemented by our results in Section 6.1 where we248

prove that SW-TVC (and thus also TVC) can be deterministically approximated with ratio249

H2n∆ − 1
2 ≈ lnn+ ln 2∆− 1

2 in polynomial time.250

3.1 Hardness on star temporal graphs251

In the next theorem we reduce Set Cover to TVC on star temporal graphs, and vice versa.252

Our hardness results are complemented in Theorem 6 by reducing from Hitting Set.253

I Theorem 5. TVC on star temporal graphs is NP-complete and it admits a polynomial-time254

(Hn−1 − 1
2 )-approximation algorithm. Furthermore, for any ε > 0, TVC on star temporal255

graphs does not admit any polynomial-time (1− ε) lnn-approximation algorithm, unless NP256

has nO(log log n)-time deterministic algorithms.257

I Theorem 6. For every ε < 1, TVC on star temporal graphs cannot be optimally solved258

in O(2εn) time, unless the Strong Exponential Time Hypothesis (SETH) fails.259

3.2 A randomized rounding algorithm for TVC260

In this section we provide a linear programming relaxation of TVC, and then, with the help261

of a randomized rounding technique, we construct a feasible solution whose expected size is262

within a factor of O(lnn) of the optimal size.263

I Theorem 7. There exists a polynomial-time randomized approximation algorithm for TVC264

with expected approximation factor O(lnn).265

4 An almost tight algorithm for SW-TVC266

In this section we investigate the complexity of Sliding Window Temporal Vertex267

Cover (SW-TVC). First we prove in Section 4.1 a strong lower bound on the complexity268

of optimally solving this problem on arbitrary temporal graphs. More specifically we269

prove that, for any (arbitrarily growing) functions f : N → N and g : N → N, there270

exists a constant ε ∈ (0, 1) such that SW-TVC cannot be solved in f(T ) · 2εn·g(∆) time,271

assuming the Exponential Time Hypothesis (ETH). This ETH-based lower bound turns272

out to be asymptotically almost tight. In fact, we present in Section 4.2 an exact dynamic273

programming algorithm for SW-TVC whose running time on an arbitrary temporal graph is274

O(T∆(n+m)·2n(∆+1)), which is asymptotically almost optimal, assuming ETH. In Section 4.3275

we prove that our algorithm can be refined so that, when the vertex cover number of each276

snapshot Gi is bounded by a constant k, the running time becomes O(T∆(n+m) · nk(∆+1)).277

That is, when ∆ is a constant, this algorithm is polynomial in the input size on temporal278

graphs with bounded vertex cover number at every slot. Notably, for the class of always star279

temporal graphs (i.e. a superclass of the star temporal graphs studied in Section 3.1) the280

running time of the algorithm is O(T∆(n+m) · 2∆).281

4.1 A complexity lower bound282

In the the following theorem we prove a strong ETH-based lower bound for SW-TVC.283

This lower bound is asymptotically almost tight, as we present in Section 4.2 a dynamic284

programming algorithm for SW-TVC with running time O(T∆(n + m) · 2n∆), where n285

and m are the numbers of vertices and edges in the underlying graph G, respectively.286

ICALP 2018
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I Theorem 8. For any two (arbitrarily growing) functions f, g : N → N, there exists a287

constant ε ∈ (0, 1) such that SW-TVC cannot be solved in f(T ) · 2εn·g(∆) time assuming288

ETH, where n is the number of vertices in the underlying graph G of the temporal graph.289

4.2 An exact dynamic programming algorithm290

The main idea of our dynamic programming algorithm for SW-TVC is to scan the temporal291

graph from left to right with respect to time (i.e. to scan the snapshots Gi increasingly on i),292

and at every time slot to consider all possibilities for the vertex appearances at the previous ∆293

time slots. Let (G,λ) be a temporal graph with n vertices and lifetime T , and let ∆ ≤ T . For294

every t = 1, 2, . . . , T −∆ + 1 and every ∆-tuple of vertex subsets A1, . . . , A∆ of G, we define295

f(t;A1, A2, . . . , A∆) to be the smallest cardinality of a sliding ∆-window temporal vertex cover296

S of (G,λ)|[1,t+∆−1], such that St = (A1, t), St+1 = (A2, t+1), . . . , St+∆−1 = (A∆, t+∆−1).297

If there exists no sliding ∆-window temporal vertex cover S of (G,λ)|[1,t+∆−1] with these298

prescribed vertex appearances in the time slots t, t + 1, . . . , t + ∆ − 1, then we define299

f(t;A1, A2, . . . , A∆) = ∞. Note that, once we have computed all possible values of the300

function f(·), then the optimum solution of SW-TVC on (G,λ) has cardinality301

OPTSW-TVC(G,λ) = min
A1,A2,...,A∆⊆V

{f(T −∆ + 1;A1, A2, . . . , A∆)} . (1)302

I Lemma 9. Let (G,λ) be a temporal graph, where G = (V,E). Let 2 ≤ t ≤ T −∆ + 1 and303

let A1, A2, . . . A∆ be a ∆-tuple of vertex subsets of the underlying graph G. Suppose that304 ⋃∆
i=1(Ai, t+ i− 1) is a temporal vertex cover of (G,λ)|[t,t+∆−1]. Then305

f(t;A1, A2, . . . , A∆) = |A∆|+ min
X⊆V

{f(t− 1;X,A1, . . . , A∆−1)} . (2)306

Using the recursive computation of Lemma 9, we are now ready to present Algorithm 1307

for computing the value of an optimal solution of SW-TVC on a given arbitrary temporal308

graph (G,λ). Note that Algorithm 1 can be easily modified such that it also computes the309

actual optimum solution of SW-TVC (instead of only its optimum cardinality). The proof310

of correctness and running time analysis of Algorithm 1 are given in the next theorem.311

Algorithm 1 SW-TVC
Input: A temporal graph (G,λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T .
Output: The smallest cardinality of a sliding ∆-window temporal vertex cover in (G,λ).

1: for t = 1 to T −∆ + 1 do
2: for all A1, A2, . . . , A∆ ⊆ V do
3: if

⋃∆
i=1(Ai, t+ i− 1) is a temporal vertex cover of (G,λ)|[t,t+∆−1] then

4: if t = 1 then
5: f(t;A1, A2, . . . , A∆)←

∑∆
i=1 |Ai|

6: else
7: f(t;A1, A2, . . . , A∆)← |A∆|+minX⊆V {f(t− 1;X,A1, . . . , A∆−1)}
8: else
9: f(t;A1, A2, . . . , A∆)←∞

10: return minA1,...,A∆⊆V {f(T −∆ + 1;A1, . . . , A∆)}

I Theorem 10. Let (G,λ) be a temporal graph, where G = (V,E) has n vertices and m edges.312

Let T be its lifetime and let ∆ be the length of the sliding window. Algorithm 1 computes313

in O(T∆(n+m) · 2n(∆+1)) time the value of an optimal solution of SW-TVC on (G,λ).314
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4.3 Always bounded vertex cover number temporal graphs315

Let k be a constant and let Ck be the class of graphs with the vertex cover number at most k.316

The next theorem follows now from the analysis of Theorem 10.317

I Theorem 11. SW-TVC on always Ck temporal graphs can be solved in O(T∆(n+m) ·318

nk(∆+1)) time.319

In particular, in the special, yet interesting, case of always star temporal graphs, our320

search at every step reduces to just one binary choice for each of the previous ∆ time slots,321

of whether to include the central vertex of a star in a snapshot or not. Hence we have the322

following theorem as a direct implication of Theorem 11.323

I Theorem 12. SW-TVC on always star temporal graphs can be solved in O(T∆(n+m) ·2∆)324

time.325

5 Approximation hardness of 2-TVC326

In this section we study the complexity of ∆-TVC where ∆ is constant. We start with an327

intuitive observation that, for every fixed ∆, the problem (∆ + 1)-TVC is at least as hard328

as ∆-TVC. Indeed, let A be an algorithm that computes a minimum-cardinality sliding329

(∆ + 1)-window temporal vertex cover of (G,λ). It is easy to see that a minimum-cardinality330

sliding ∆-window temporal vertex cover of (G,λ) can also be computed using A, if we331

amend the input temporal graph by inserting one edgeless snapshot after every ∆ consecutive332

snapshots of (G,λ).333

Since the 1-TVC problem is equivalent to solving T instances of Vertex Cover (on334

static graphs), the above reduction demonstrates in particular that, for any natural ∆,335

∆-TVC is at least as hard as Vertex Cover. Therefore, if Vertex Cover is hard for a336

class X of static graphs, then ∆-TVC is also hard for the class of always X temporal graphs.337

In this section, we show that the converse is not true. Namely, we reveal a class X of graphs,338

for which Vertex Cover can be solved in linear time, but 2-TVC is NP-hard on always X339

temporal graphs. In fact, we show the even stronger result that 2-TVC is APX-hard (and340

thus does not admit a PTAS, unless P = NP) on always X temporal graphs.341

To prove the main result (in Theorem 14) we start with an auxiliary lemma, showing342

that Vertex Cover is APX-hard on the class Y of graphs which can be obtained from a343

cubic graph by subdividing every edge exactly 4 times.344

I Lemma 13. Vertex Cover is APX-hard on Y.345

Let now X be the class of graphs whose connected components are induced subgraphs of346

the graph obtained from the star with three leaves by subdividing each of its edges exactly347

once. Clearly, Vertex Cover is linearly solvable on graphs from X . We will show that348

2-TVC is APX-hard on always X temporal graphs by using a reduction from Vertex349

Cover on Y.350

I Theorem 14. 2-TVC is APX-hard on always X temporal graphs.351

Proof. To prove the theorem we will reduce Vertex Cover on Y to 2-TVC on always352

X temporal graphs. Let H = (V,E) be a graph in Y. First we will show how to construct353

an always X temporal graph (G,λ) of lifetime 2. Then we will prove that the size τ of a354

minimum vertex cover of H is equal to the size σ of a minimum-cardinality sliding 2-window355

temporal vertex cover of (G,λ).356
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Let R ⊆ V be the set of vertices of degree 3 in H. We define (G,λ) to be a temporal357

graph of lifetime 2, where snapshot G1 is obtained from H by removing the edges with both358

ends being at distance exactly 2 from R, and snapshot G2 = H −R. Figure 1 illustrates the359

reduction for H = K4.360

Let S = (S1, 1) ∪ (S2, 2) be an arbitrary sliding 2-window temporal vertex cover of (G,λ)361

for some S1, S2 ⊆ V . Since every edge of H belongs to at least one of the graphs G1 and G2,362

the set S1 ∪ S2 covers all the edges of H. Hence, τ ≤ |S1 ∪ S2| ≤ |S1|+ |S2| = |S|. As S was363

chosen arbitrarily we further conclude that τ ≤ σ.364

To show the converse inequality, let C ⊆ V be a minimum vertex cover of H. Let S1365

be those vertices in C which either have degree 3, or have a neighbor of degree 3. Let also366

S2 = C \ S1. We claim that (S1, 1) ∪ (S2, 2) is a sliding 2-window temporal vertex cover367

of (G,λ). First, let e ∈ E be an edge in H incident to a vertex of degree 3. Then, by the368

construction, e is active only in time slot 1, i.e. e ∈ E1 \ E2, and a vertex v in C covering e369

belongs to S1. Hence, e is temporally covered by (v, 1) in (G,λ). Let now e ∈ E be an edge370

in H whose both end vertices have degree 2. If one of the end vertices of e is adjacent to371

a vertex of degree 3 in H, then, by the construction, e is active in both time slots 1 and 2.372

Therefore, since C = S1 ∪ S2, edge e will be temporally covered in (G,λ) in at least one of373

the time slots. Finally, if none of the end vertices of e is adjacent to a vertex of degree 3374

in H, then e is active only in time slot 2, i.e. e ∈ E2 \ E1. Moreover, by the construction a375

vertex v in C covering e belongs to S2. Hence, e is temporally covered by (v, 2) in (G,λ).376

This shows that (S1, 1) ∪ (S2, 2) is a sliding 2-window temporal vertex cover of (G,λ), and377

therefore σ ≤ |S1|+ |S2| = |C| = τ .378

Note that the size of a minimum vertex cover of H is equal to the size of a minimum-379

cardinality sliding 2-window temporal vertex cover of (G,λ) and that any feasible solution to380

2-TVC on (G,λ) of size r defines a vertex cover of H of size at most r. Thus, since Vertex381

Cover is APX-hard on Y by Lemma 13 and the reduction is approximation-preserving, it382

follows that 2-TVC is APX-hard as well. J383

K4 The 4-subdivision of K4 Snapshot G1 Snapshot G2

Figure 1 A cubic graph K4, its 4-subdivision, and the corresponding snapshots G1 and G2

6 Approximation algorithms384

In this section we provide several approximation algorithms for SW-TVC with respect to385

different temporal graph parameters. As the various approximation factors that are achieved386

are incomparable, the best option for approximating an optimal solution depends on the387

specific application domain and the specific values of those parameters.388

6.1 Approximations in terms of T , ∆, and the largest edge frequency389

We begin by presenting a reduction from SW-TVC to Set Cover, which proves useful390

for deriving approximation algorithms for the original problem. Consider an instance,391
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(G,λ) and ∆ ≤ T , of the SW-TVC problem. Construct an instance of Set Cover as392

follows: Let the universe be U = {(e, t) : e ∈ E[Wt], t ∈ [1, T −∆ + 1]}, i.e. the set of all393

pairs (e, t) of an edge e and a time slot t such that e appears (and so must be temporally394

covered) within window Wt. For every vertex appearance (v, s) we define Cv,s to be the395

set of elements (e, t) in the universe U , such that (v, s) temporally covers e in the window396

Wt. Formally, Cv,s = {(e, t) : v is an endpoint of e, e ∈ Es, and s ∈ Wt}. Let C be the397

family of all sets Cv,s, where v ∈ V, s ∈ [1, T ]. The following lemma shows that finding398

a minimum-cardinality sliding ∆-window temporal vertex cover of (G,λ) is equivalent to399

finding a minimum-cardinality family of sets Cv,s that covers the universe U .400

I Lemma 15. A family C = {Cv1,t1 , . . . , Cvk,tk
} is a set cover of U if and only if S =401

{(v1, t1), . . . , (vk, tk)} is a sliding ∆-window temporal vertex cover of (G,λ).402

O(ln n + ln ∆)-approximation. In the instance of Set Cover constructed by the above403

reduction, every set Cv,s in C contains at most n∆ elements of the universe U . Indeed, the404

vertex appearance (v, s) temporally covers at most n−1 edges, each in at most ∆ windows405

(namely from window Ws−∆+1 up to window Ws). Thus we can apply the polynomial-406

time greedy algorithm from [9] for Set Cover which achieves an approximation ratio of407

Hn∆ − 1
2 =

∑n∆
i=1

1
i −

1
2 ≈ lnn+ ln ∆− 1

2 .408

2k-approximation, where k is the maximum edge frequency. Given a temporal graph409

(G,λ) and an edge e of G, the ∆-frequency of e is the maximum number of time410

slots at which e appears within a ∆-window. Let k denote the maximum ∆-frequency411

over all edges of G. Clearly, for a particular ∆-window Wt, an edge e ∈ E[Wt] can be412

temporally covered in Wt by at most 2k vertex appearances. So in the above reduction413

to Set Cover, every element (e, t) ∈ U belongs to at most 2k sets in C. Therefore, the414

optimal solution of the constructed instance of Set Cover can be approximated within415

a factor of 2k in polynomial time [30], yielding a 2k-approximation for SW-TVC.416

2∆-approximation. Since the maximum ∆-frequency of an edge is always upper-bounded417

by ∆, the previous algorithm gives a worst-case polynomial-time 2∆-approximation for418

SW-TVC on arbitrary temporal graphs.419

6.2 Approximation in terms of maximum degree of snapshots420

In this section we give a polynomial-time d-approximation algorithm for the SW-TVC421

problem on always degree at most d temporal graphs, that is, temporal graphs where the422

maximum degree in each snapshot is at most d. In particular, the algorithm computes an423

optimum solution (i.e. with approximation ratio d = 1) for always matching (i.e. always424

degree at most 1) temporal graphs. As a building block, we first provide an exact O(T )-time425

algorithm for optimally solving SW-TVC in the class of single-edge temporal graphs, namely426

temporal graphs whose underlying graph is a single edge.427

Single-edge temporal graphs428

Consider a temporal graph (G0, λ) where G0 is the single-edge graph, i.e. V (G0) = {u, v}429

and E(G0) = {uv}. We reduce SW-TVC on (G0, λ) to an instance of Interval Covering.430

Interval Covering

Input: A family I of intervals in the line.
Output: A minimum-cardinality subfamily I ′ ⊆ I such that

⋃
I∈I =

⋃
I∈I′ .

431
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An easy linear-time greedy algorithm for the Interval Covering picks at each iteration,432

among the intervals that cover the leftmost uncovered point, the one with largest finishing433

time. Algorithm 2 implements this simple rule in the context of the SW-TVC problem.434

Algorithm 2 SW-TVC on single-edge temporal graphs
Input: A temporal graph (G0, λ) of lifetime T with V (G0) = {u, v}, and ∆ ≤ T .
Output: A minimum-cardinality sliding ∆-window temporal vertex cover S of (G0, λ).
1: S ← ∅
2: t = 1
3: while t ≤ T −∆ + 1 do
4: if ∃r ∈ [t, t+ ∆− 1] such that uv ∈ Et then
5: choose maximum such r and add (u, r) to S
6: t← r + 1
7: else
8: t← t+ 1
9: return S

I Lemma 16. Algorithm 2 solves SW-TVC on a single-edge temporal graph and can be435

implemented to work in time O (T ).436

Always degree at most d temporal graphs437

We present now the main algorithm of this section, the idea of which is to independently438

solve SW-TVC for every possible single-edge temporal subgraph of a given temporal graph439

by Algorithm 2, and take the union of these solutions. We will show that this algorithm is a440

d-approximation algorithm for SW-TVC on always degree at most d temporal graphs.441

Let (G,λ) be a temporal graph, where G = (V,E), |V | = n, and |E| = m. For every edge442

e = uv ∈ E, let (G[{u, v}], λ) denote the temporal graph where the underlying graph is the443

induced subgraph G[{u, v}] of G and the labels of e are exactly the same as in (G,λ).444

Algorithm 3 d-approximation of SW-TVC on always degree at most d temporal graphs
Input: An always degree at most d temporal graph (G,λ) of lifetime T , and ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ).
1: for i = 1 to T do
2: Si ← ∅
3: for every edge e = uv ∈ E(G) do
4: Compute an optimal solution S ′(uv) of the problem for (G[{u, v}], λ) by Algorithm 2
5: for i = 1 to T do
6: Si ← Si ∪ S ′i(uv)
7: return S

I Lemma 17. Algorithm 3 is a O (mT )-time d-approximation algorithm for SW-TVC on445

always degree at most d temporal graphs.446

Note that, in the case of always matching temporal graphs, the maximum degree in each447

snapshot is d = 1, so the above d-approximation actually yields an exact algorithm.448

I Corollary 18. SW-TVC can be optimally solved in O(mT ) time on the class of always449

matching temporal graphs.450
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