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The Multiscale Bowler-Hat Transform for
Vessel Enhancement in 3D Biomedical
Images
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Abstract

Enhancement and detection of 3D vessel-like structures has long been an open prob-
lem as most existing image processing methods fail in many aspects, including a lack of
uniform enhancement between vessels of different radii and a lack of enhancement at the
junctions. Here, we propose a method based on mathematical morphology to enhance
3D vessel-like structures in biomedical images. The proposed method, 3D bowler-hat
transform, combines sphere and line structuring elements to enhance vessel-like struc-
tures. The proposed method is validated on synthetic and real data, and compared with
state-of-the-art methods. Our results show that the proposed method achieves a high-
quality vessel-like structures enhancement in both synthetic and real biomedical images,
and is able to cope with variations in vessels thickness throughout vascular networks
while remaining robust at junctions.

1 Introduction
Automatic detection of vessel-like structures is one of the fundamental procedures in many
3D biomedical image processing applications, where they are used to understand important
vascular networks, such as cytoskeletal networks, blood vessels, airways, and other similar
fibrous tissues. Reliable detection and then accurate analysis of these vascular networks
strongly relies on robust vessel-like structures enhancement methods. Several such methods
have been proposed and investigated for various types of biomedical images such as: blood
vessels [2, 7], neurons [1], microtubules [8] and others [3, 23]. Nevertheless, most of the
vessel-like structures enhancement methods still suffer from unresolved problems such as
losing signals at the junctions or false vessel effects [24].

In this paper, we extended 2d vessel-like structures enhancement method to 3D, is called
the 3D bowler-hat transform. The proposed method is based on a recently developed 2D
image filtering method exploring a concept of mathematical morphology [25]. We qualita-
tively and quantitatively validate and compare the proposed method with the state-of-the-art
methods using a range of synthetic and real biomedical images. Our results show that the
proposed method produces a high-quality vessel enhancement, especially at junctions in both
synthetic and real images. The method is suitable to be applied to a variety of biomedical
image types without requiring prior preparation or tuning. Finally, we make our method
available online, along with source code and all test functions.
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2 Related Work
A considerable amount of work has been conducted on the enhancement and segmentation
of vessel-like structures [13, 31]. In this section we summarise them into three categories:
Hessian-based enhancement, phase-congruency-based enhancement, and morphological en-
hancement, and the representative state-of-the-art works are reviewed under each categories.

2.1 Hessian-based Enhancement Methods
Frangi et al. [7] proposed 2/3D vessel-like structures enhancement in biomedical images
by exploring the relationships between eigenvectors and eigenvalues of a Hessian matrix.
The Hessian is constructed with responses of a set of matching filters, defined by second-
order derivatives of the Gaussian function, convolved with the image. Three most common
measurements proposed to date are vesselness, neuriteness and regularized volume ratio.

2.1.1 Vesselness
Vesselness measure [7] is a function of the eigenvalues of the Hessian matrix of the image
data. The eigenvalues of the Hessian matrix correspond to the second derivatives of the
image data in the direction of the associated eigenvector. In general, vesselness fails at
vessels junctions due to the low filters responses.

2.1.2 Neuriteness
As an alternative to vesselness, neuriteness measure modifies the Hessian matrix by adding a
new parameter to improve vessel-like structures enhancement in 2D biomedical images [18].
This work was then extended for use in 3D biomedical images by [1]. Neuriteness, in the
same way as the vesselness, fails at vessels junctions due to the low filters responses.

2.1.3 Regularized Volume Ratio
A problem with Hessian-based methods such as vesselness or neuriteness is the direct pro-
portionality of the output to the eigenvalues. Due to eigenvalue heterogeneity within objects
and variation in eigenvalue magnitude, this proportionality results in non-uniform enhance-
ment. In [12], authors attempt to solve this problem by deriving a modification of the volume
ratio with a regularised eigenvalue to ensure robustness to small changes in magnitude.

2.2 Phase Congruency-based Enhancement Methods
Most image enhancement methods have a common problem of image contrast and spatial
magnification dependency, which causes low contrast vessels to be missed [15, 16]. To
overcome this problem, [21] proposes a contrast-independent image features enhancement
method exploring a concept called a phase congruency. The phase congruency compares
the weighted alignment of the Fourier components of the image with the sum of the Fourier
components [6, 29].

In similar way as with the Hessian matrix concept, a Phase Congruency Tensor (PCT)
is proposed to represent local structures in the image; first in 2D by [22] and then in 3D
by [24]. Then, eigenvalues and eigenvectors of the PCT are calculated and used to define
PCT vesselness and PCT neuriteness. A major drawback of phase-based methods is the
complexity of the parameter space to calculate the PCT.

2.3 Enhancement with Mathematical Morphology
Another class of image enhancement methods is based on mathematical morphology, which
has been used for several challenges [5, 11, 20, 28]. To enhance vessel-like structures,
Zana and Klein [30] propose the use of morphological transforms. This method assumes
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that vessels are linear, connected and have smooth variations of curvature along the peak
of the structure. First, a sum of top-hats is computed using linear structuring elements at
different angles; then a curvature measure is calculated using a Laplacian of Gaussian, and
finally, both of them are combined to reduce noise and enhance vessel-like structures in an
image. Recently, another mathematical morphology-based method proposed that is called
Ranking the Operation Responses of Path Operators (RORPO) [19]. It is designed to filter
out planar and blob-like structures by identifying curvilinear structures in 3D images. The
main disadvantage of this method is its hight computation cost when applied to large volume
image datasets.

2.4 Limitations and Challenges
Many vessel-like structure enhancement methods still fail in ways that compromise their
use in automated detection and analysis pipelines. For example, contrast variations cause
low-accuracy enhancement, and high noise levels lead to the poor enhancement and the
’false vessel’ effect. Another common issue is dealing with junctions, where most Hessian-
or PCT-based methods suppress the ’disk-like’ features at a junction leading to a loss of
extracted network connectivity. Further, some methods are computationally expensive or
have a complex set of parameters that can be time-consuming to manually fine-tune.

3 Method
In this section, we introduce a 3D extension of a recently introduced mathematical morphology-
based 2D method for vessel-like structure enhancement called the bowler-hat transform [25].
While explaining the details of the proposed method, we point out the concepts that allow us
to address the major drawbacks of existing, state-of-the-art vessel-like structures enhance-
ment methods.

3.1 Mathematical Morphology

Mathematical morphology has been extensively used in image processing and image anal-
ysis [26, 27]. Mathematical morphology uses structuring elements and concepts from set
theory to describe features of interest in images. Most morphological operations are based
on two basic operations: dilation and erosion. These two operations take the image as an
input and dilate or erode components within the particular area with structuring element.
While erosion extends dark areas decreasing bright areas, dilation expands bright areas and
decrease dark areas.
Using these two operators, two further operations can be defined, that are called opening and
closing. The closing preserves bright structures while suppressing dark patterns meantime
the opening maintains dark structures and patterns and suppressing bright features.

3.2 Proposed Method

The 3D bowler-hat transform combines two banks of different structuring elements: a bank
of spherical structuring elements with varying diameter and a bank of orientated line struc-
turing elements with varying length and directions.

First, we create a bank of morphological openings of a 3D input image I with spherical
structuring elements Sd

sphere of diameter d ∈ [1,dmax], where dmax is expected maximum size
of vessel-like structures in a given image I. After every morphological opening of the image
I, vessel-like structures smaller than d are eliminated and the ones larger than d remain.
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As a result, a 3D image stack, for all d ∈ [1,dmax], is constructed as:

{Isphere}= {I ◦Sd
sphere}, ∀d ∈ [1,dmax]. (1)

Then, another bank of morphological openings of the input image I is performed with
line structuring elements Sd,v

line of lengths d, ∀d ∈ [1,dmax], and of directions defined as fol-
lows:

v = (θk,φk), ∀k ∈ [1,N]. (2)

Direction (θk,φk) is defined as a kth point from N uniformly distributed points on the
unit sphere, and more details can be found in [14]. After every morphological opening of
the image I with a line structuring element Sd,v

line, vessel-like structures smaller than d along
direction v are eliminated but all vessel-like structures that are longer than d along direction
v remain. This step results in a 3D image stack for all lengths d and all directions v:

{Iline}= {I ◦Sd,v
line},∀d ∈ [1,dmax],∀k ∈ [1,N]. (3)

Then, for each length d, a pixel-wise maximum across all directions v is calculated re-
sulting in a 3D image stack:

{Iline}= { max
k∈[1,N]

|{I ◦Sd,v
line}|}, ∀r ∈ [1,dmax]. (4)

The enhanced image is then produced by taking maximum stack-wise difference at each
pixel,

Ienhanced = max
r∈[1,dmax]

|{Isphere− Iline}|. (5)

With the 3D bowler-hat transform, areas that are dark (background) in the original image
remain dark due to the use of openings; blob-like bright objects (undesired foreground fea-
tures) are suppressed as the sphere-based and line-based opening gives similar values; and
tube-like bright objects (desired foreground features) are enhanced due to the large differ-
ence between sphere-based and longer line-based openings. To assign an appropriate dmax,
expected maximum vessel-like structures size in the image, allows the identification of most
of the vessel-like structures and junctions, something that many other vessel enhancement
methods fail to do. This is due to the ability to fit longer line-based structural elements within
the junction area. In Section 4 we illustrate the key advantages of the proposed method over
other vessel-like structure enhancement methods.

4 Results and Discussions
In this section, we qualitatively and quantitatively validate the efficiency of the proposed
method using a range of synthetic and real biomedical image datasets. We then compare the
proposed method with the state-of-the-art vessel-like structure enhancement methods such as
Hessian-based vesselness [7], neuriteness [17] and volume ratio [12], PCT-based vesselness
and neuriteness [24], and recently published RORPO [19].

4.1 Quantitative Validation
While a visual examination can give some subjective information regarding the effectiveness
of the vessel enhancement method, a form a quantitative validation is also required. To
compare the proposed method with the other state-of-the-art algorithms, we have chosen to
calculate the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve
(AUC) and more details can be found in [9].
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Figure 1: AUC values for the input image and the image enhanced by the proposed method and the state-of-the-art
methods with different peak signal-to-noise ratios (PSNRs) for three different noise types: (a) additive Gaussian
noise, (b) multiplicative Gaussian (speckle) noise, and (c) salt and pepper noise (see legend for colours).
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Figure 2: Cross-sectional profile of 2D max intensity projection of 3D synthetic vessel image (black, dashed line),
vessel-like structure enhanced by the proposed method (black, solid line) and by the state-of-the-art methods (see
legend for colours). All images were normalised such that the brightest pixel in the whole image has a value of 1
and the darkest a value of 0.

4.2 Response to Noise
Figure 1 presents the performance comparison of the proposed method with the state-of-
the-art approaches under the influence of three different noises: additive Gaussian, speckle
and salt & pepper. Evidently, the proposed method has no built-in noise suppression; as
expected that the effect of noise on the enhanced image is in-line with the raw image. This
inherits from the noise-sensitivity in mathematical morphological and should be taken into
consideration while choosing an enhancement method.

4.3 Profile Analysis
Figure 2 illustrates bowler-hat and state-of-the-art methods responses to a simple vessel-
like structure on a synthetic image. It is obvious that the value of the enhanced image at
the middle of the vessel reaches a peak value and quickly drops off and decreases at the
expected thickness of the vessel by the Hessian-based methods. On the other hand, the PCT-
based methods are less responsive to the centreline of the vessel, while obtaining a high
response to the edges due to the contrast variations. The value of the enhanced image does
not significantly peak at the vessel centre, but their response does not drop off quickly since it
is free from the contrast variations. The proposed method has both these benefits: a maximal
peak value at the vessel centre-line and an enhanced response to the edges of the vessel. As
a result, the reliable vessel thicknesses can be captured.
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4.4 Response to Uneven Background Illumination
Figure 3 presents an intuitive comparison between the proposed method and other state-
of-the-art methods, regarding the response to the uneven background illumination. When
compared with the other methods, the proposed method maintains the high responses at the
junctions and seems unaffected by uneven background illuminations.

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 3: Comparison of the methods’ abilities to deal with uneven background illumination. (a) The original image,
(b) the bowler-hat, and state-of-the-art methods respectively; (c) vesselness, (d) neuriteness, (e) PCT vesselness, (f)
PCT neuriteness, (g) volume ratio, and (h) RORPO.

(a) Input image

1

2

3

(b) (c) (d) (e) (f) (g) (h) (i)
Figure 4: Comparison of methods’ responses to vessels, intersections/junctions, and blobs. A 3D synthetic image (a)
by 100x100x100 voxel is generated and three angle 2D max intensity projection is used (b); respectively 1st row is
X, the 2nd row is Y and the 3rd row is Z direction. All vessels have nine pixel thickness and blob has a diameter
of 21 pixel. (c) shows the bowler-hat and the state-of-the-art methods respectively, (d) vesselness, (e) neuriteness,
(f) PCT vesselness, (g) PCT neuriteness, (h) volume ratio, and (i) RORPO. The arrows refer features of interest:
blob-like structures (yellow arrows), junctions (orange arrows), noise (green arrows).

4.5 Response to Vessels, Intersections/Junctions, and Blobs
Figure 4 illustrates the comparison between the proposed method and state-of-the-art meth-
ods. It is obvious that most of the state-of-the-art methods fail at the junction like in Figure 4d
and some of those create false vessels effects as in Figure 4g or add noise the enhance im-
age Figure 4h. Compare to others, our proposed method is free from all of these effects
and artefacts, but it is not good at suppressing the blob-like structures as like vesselness or
neuriteness.

4.6 Response to Vascular Network Complexity
Nine volumetric images and their corresponding ground truth images of 3D synthetic vas-
cular networks with an increasing complexity were generated using the VascuSynth Soft-
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(a) 5 (b) 200 (c) 1000

(d) 5 (e) 200 (f) 1000
Figure 5: Visualisation of 3D synthetic vascular networks images generated with the VascuSynth Software [10].
The images (a-c) (167x167x167 voxels) are used to quantitatively validate the proposed method and the state-of-
the-art methods and (d-f) are the result of the proposed method results. More detailed results are shown in Figure 6
and in Table 1.
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Figure 6: Mean ROC curve for all vascular networks images from Figure 5 calculated using the proposed and the
state-of-the-art methods (see legend for colours). Individual AUC values can be found in Table 1.

ware [10], as shown in Figure 5. In addition, to make the image more realistic, we add a
small amount of the Gaussian noise of level σ2 = 10 and apply a Gaussian smoothing kernel
with a standard deviation of 1. We tested the proposed methods as well as the aforemen-
tioned other approaches on these images. The results are presented in Table 1. Figure 6 also
demonstrates the ROC curve all over the nine enhanced images. It appears that the proposed
method clearly has the highest AUC value (0.965) compare to the state-of-the-art methods.
Overall, the proposed method performance is better than the state-of-the-art methods.

4.7 Real Data
An Olfactory Projection Fibers image dataset from DIADEM Challenge [4] is used to demon-
strate the robustness of proposed method against the noise. In two exemplary fibers images,
a Gaussian noise was introduced at the noise levels ranging from σ = 10 to σ = 60, and salt
and pepper noise at the different level of density ρ = 10 to ρ = 60 see Figure 7. Such im-
ages were then enhanced with the proposed method and the AUC values were calculated and
presented in Figure 7. We also tested the performance of the proposed method on 3D real
images. Here we adopt three representative types of real images, namely microcomputers
network in plant cell, keratin network in skin cell, and neuronal network. Correspondingly
we compare the output of the proposed method with five other approaches, and the results
are shown in Figure 8. It is clearly suggested that our method has the best performance in
preserving junctions.
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AUC

Nodes Vesselness Neuriteness PCT ves. PCT veu. Volume ratio RORPO Bowler-hat

5 0.999 0.923 0.840 0.897 0.999 0.999 0.999

10 0.996 0.883 0.820 0.873 0.998 0.997 0.999

50 0.976 0.830 0.794 0.851 0.981 0.965 0.994

100 0.951 0.778 0.778 0.827 0.957 0.930 0.982

200 0.930 0.755 0.770 0.799 0.936 0.900 0.966

400 0.910 0.746 0.749 0.788 0.917 0.879 0.950

600 0.902 0.743 0.742 0.777 0.909 0.869 0.941

800 0.885 0.719 0.724 0.756 0.893 0.855 0.926

1000 0.884 0.722 0.726 0.759 0.891 0.852 0.924

mean(std) 0.937(0.045) 0.788(0.073) 0.771(0.04) 0.814(0.05) 0.942(0.043) 0.916(0.058) 0.965(0.03)

Table 1: AUC values for nine 3D image of vascular networks with increasing network’s complexity (see Figure 5)
enhanced with the proposed and the state-of-the-art methods. Best results for each vascular network are in bold.
ROC curve of the all volumetric images can be seen in Table 6.

1

2

AUC:0.959 AUC:0.959 AUC:0.955 AUC:0.953 AUC:0.951 AUC:0.951

3

4

AUC:0.953

(a) lvl = 10

AUC:0.953

(b) lvl = 20

AUC:0.953

(c) lvl = 30

AUC:0.953

(d) lvl = 40

AUC:0.953

(e) lvl = 50

AUC:0.953

(f) lvl = 60
Figure 7: Application of the proposed method into the Olfactory Projection Neuron dataset from the DIADEM
Challenge. All of the images are 2D maximum intensity projections. (1,3) Input images that have been contaminated
by different levels (increasing left to right) and types of noise (1 - Guassian additive noise; 3 - salt and pepper noise).
(2,4) Enhancement results with the proposed method and corresponding AUC values.

5 Conclusion
Hessian- or Phase Congruency Tensor-based image enhancement methods had been com-
monly used to enhance vessel-like structures in 3D biomedical images using measurements
like vesselness, neuriteness and volume ratio.

This paper proposes a novel mathematical morphology-based method for vessel-like
structures enhancement in 3D biomedical images. The proposed method is shown to have
benefits over existing methods, including no loss of signal and junctions and minimized ar-
tifacts at vessel ends. We show efficiency on both synthetic and real image datasets.

Future continuations of this work will introduce the implementation of the blob-enhancing
variants of this concept.
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(a) (b) (c)

(d) ROIs (e)

(f) (g)

(h) (i)

(j) (k)
Figure 8: Comparison of the proposed and the state-of-the-art methods on a set of real biomedical images. 2D
max projections of 3D images of microtubules network in plant cell (a), keratin network in skin cell (b) (provided
by Dr Tim Hawkins, Durham University, UK), and neuronal network (c) (provided by Dr Chris Banna, UC Santa
Barbara, USA). Regions of interest are highlighted in red and presented in (d). Results: bowler-hat (e), neuriteness
(f), vesselness (g), PCT neuriteness (h), PCT vesselness (i), volume ratio (j), RORPO (k).
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