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ABSTRACT: The Material Point Method (MPM) for solid mechanics was first proposed by Sulsky and co-
workers in the 1990s. Since then it has been developing a growing band of followers not least because of its
ability to handle large deformation problems with ease. This feature has more recently come to the notice of
geotechnical researchers who have plenty of problems to solve involving large deformations. It is clear from
recent publications, however, that many geotechnical researchers have found difficulties with the use of the
MPM in a number of areas. In this paper we visit three of these problem areas and highlight solutions we have
developed. It is to be hoped that this can remove some of the roadblocks to the use and further development of
the MPM for geotechnical problems in future.

1 INTRODUCTION

The problems that have to be solved by geotechni-
cal engineers are wide-ranging, covering tunnelling,
foundations, slopes and many other areas, however
there are common features of these problems that pro-
vide challenges to numerical modellers in particu-
lar. Principally these are material and geometric non-
linearity. The former has been recognised as crucial
for accurate modelling from before the development
of computational geotechnics, in the recognition that
plasticity is a vital part of any constitutive model for
soil. Indeed material non-linearity is likely to feature
in the majority of the papers at this conference. Ge-
ometric non-linearity has received less attention to
date largely because material non-linearity is crucial
to a wider range of geotechnical problems than geo-
metric non-linearity. When using this term, we mean
the ability to model large deformations and the use
of strain definitions which are no longer linear with
displacement, as opposed to infinitesimal strain mea-
sures for standard analyses.

The finite element method (FEM) remains the
method of choice for most geotechnical numerical
modelling, and with good reason. However, there are
issues with its use for the class of problems mentioned
above, i.e. in the modelling of large deformation prob-
lems. If large deformations are to be modelled then

any mesh-based method (the FEM included) will re-
quire an update of the mesh during a stepped non-
linear solve to avoid the inaccuracies associated with
distorted elements. Any change of mesh will then re-
quire a mapping of state variables from the old to the
new mesh. While both of these actions bring poten-
tial errors the FEM has been successfully adapted for
large deformation problems via modifications such
as the Arbitrary Lagrangian Eulerian (ALE) method
and there are other examples which do much the
same thing, such as the Coupled Eulerian-Lagrangian
(CEL) method; indeed some of these techniques are
available in commercial software such as ABAQUS,
and have been used for geotechnical problems (e.g.
Kim et al. (2015)). Having said this, there is a school
of thought that says adherence to mesh-based meth-
ods places a restriction of the development of numeri-
cal modelling, and there are many examples of mesh-
free methods being developed, although most incur a
greater computational cost to the FEM for standard
problems at present (Heaney et al. 2010).

In this paper we are concerned with a relative new-
comer to computational geotechnics, called the Ma-
terial Point Method (MPM) which seems to offer ad-
vantages over the standard FEM for large deforma-
tion problems, without some of the complexities of
rival approaches mentioned above. The MPM is of
key and current interest in geotechnics having fea-



tured in Alonso’s 2017 Rankine Lecture, and its use
in geotechnics having been the feature of a major con-
ference in the same year (Anura3D MPM Research
Community 2017). In this paper we highlight a num-
ber of issues that geotechnical modellers might face
when using the MPM and present recent solutions de-
veloped by the authors.

2 THE MATERIAL POINT METHOD

The MPM for solid mechanics was developed from an
earlier method for fluids (the FLIP method) by Sulsky
and co-workers (Sulsky et al. 1994). It is usually de-
scribed in an explicit form where it is used for time-
stepping analyses of problems with inertia and accel-
eration. It is however equally possible to formulate
the MPM in implicit form (Guilkey and Weiss 2003)
for quasi-static problems (usually of most interest in
geotechnics) where to deal with non-linearity a total
applied action is split into a number of substeps, in
which each requires the solution of a linear system
involving a stiffness matrix and an unknown vector of
displacements.

The method is often referred to as an Eulerian-
Lagrangian method (Muller & Vargas 2014) but this
is not really correct; there are aspects of the method
that make it look that way. In fact the calculations are
just Lagrangian. In the MPM, a problem domain is
defined with a set of material points (MPs, sometimes
also referred to as particles). These MPs carry all
the information relating to that location in the prob-
lem domain throughout a calculation, i.e. total dis-
placement, strain, stress and if necessary other state
variables required by a constitutive model. All cal-
culations are however carried out on a finite element
mesh (often referred to as a background grid) to which
data are mapped back and forth from the material
points. The feature in the MPM that is most attrac-
tive to those wishing to model large deformation is
that the deformation of the problem domain is repre-
sented at the material points only and the background
grid can be discarded after each time step. This means
never having to calculate on a distorted grid, and also
means that a regular structured grid can be reused
each time, avoiding the overhead linked to unstruc-
tured mesh generation. A secondary but important as-
pect of the MPM, from the implementation point of
view, is that much finite element technology can be
seamlessly transferred to the MPM, especially items
such as constitutive models and basis functions, re-
ducing the overhead of code development and, per-
haps, providing some confidence in the use of the
method.

An important problem dealt with in the literature
with the standard MPM is grid-crossing instability,
which is a numerical artefact linked to a deformation
pattern in which a material point leaves one grid ele-
ment and enters another. In the standard MPM, where
domain volume (or mass) is concentrated at a mate-

rial point, this leads to a sudden change in stiffness
of a grid element which causes non-physical numer-
ical effects. This problem has been tackled by de-
veloping variants of the standard MPM where each
material point carries a spatially-defined and poten-
tially deforming volume (or mass) with it. Methods
include the Generalised Interpolation MPM (Barden-
hagen and Kober 2004, Charlton et al. 2017) and
CPDI methods (Sadeghirad et al. 2011, Nguyen et al.
2017). While these variants effectively reduce grid-
crossing instabilities they lead to additional complexi-
ties in calculations (especially the CPDI methods) and
all suffer from the same issues which are covered in
this paper.

3 THE MPM FOR GEOTECHNICS

It is clear there is keen and current interest in the use
of the MPM in geotechnics as evidenced by an in-
creasing number of papers describing its use for vari-
ous geotechnical problems, for instance soil-structure
interaction (Ma et al. 2014) and slope stability (Zabala
and Alonso 2011), and a recent conference was de-
voted to MPM and geotechnics (Anura3D MPM Re-
search Community 2017). In addition there are a num-
ber of survey papers, e.g. Sołowski and Sloan (2015).
The MPM has also been developed to model coupled
problems important in geotechnics, for example Jas-
sim et al. (2013). The following sections cover three
issues affecting use of the MPM or its variants for
geotechnical analysis. The discussion relates primar-
ily to our experiences with implicit MPM codes for
elastic and elasto-plastic statics problems rather than
explicit MPM with dynamics.

3.1 Essential Boundary Conditions

Essential (or Dirichlet) boundary conditions (BCs)
are necessary to fully define a boundary value prob-
lem. They do not (usually) enter the weak form de-
scription of the problem but are subsidiary conditions
that have to be incorporated. In the standard FEM, es-
sential BCs are usually imposed directly, i.e. those de-
grees of freedom with essential BCs are treated dif-
ferently, or the stiffness matrix is amended, as de-
scribed in standard texts, e.g. Potts and Zdravković
(1997). This is possible due to the Kronecker delta
property of standard FE shape functions which de-
livers an interpolation of nodal unknowns. In con-
trast most weak-form based meshless methods, such
as the element-free Galerkin method (Belytschko
et al. 1994) have basis functions, often derived from
moving least squares, that do not possess the Kro-
necker delta property and hence lead to approxima-
tions rather than interpolations. Consequently essen-
tial BCs have to be imposed indirectly (Fernández-
Méndez and Huerta 2004).

The MPM (in all of its different flavours as men-
tioned above) has a problem with essential BCs of a
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Figure 1: (a) slope stability problem geometry; (b) MPM solution requiring collinear grid and domain bound-
aries; (c) ideal MPM model with no requirement of collinear gird and domain geometry; (d) deformed domain.
Red dots are the material points in each case.

slightly different nature. Consider Fig. 1 which shows
a typical 2D plane strain discretisation of a slope sta-
bility problem, in which the vertical boundaries are
subject to an essential boundary condition of zero
displacement normal to the boundary while the bot-
tom horizontal boundary is subject to an essential
BC of full fixity or zero normal displacement. Pro-
viding the essential boundaries align exactly with the
background grid (Fig. 1(b)), these conditions can be
applied in the MPM directly just as in the standard
FEM. All calculations are carried out on the back-
ground grid and therefore as the domain boundary
coincides with edges of elements in the background
grid for these three boundaries, there is exact co-
incidence with imposing essential BCs on the grid.
However, if the problem domain boundary does not
coincide with edges of elements in the background
grid, an essential boundary condition cannot be ap-
plied this way. The example so far has concentrated
on essential BCs which act as fixities in a boundary
value problem, however geotechnical problems often
require non-homogeneous essential BCs such as for
the modelling of the footing shown at the top of the
slope in Fig. 1. In this case, while it might be possible
to arrange for the initial grid to align with the starting
position of the footing, subsequent loading steps (in
this case increments of applied displacement to the
footing) would require grids to follow the predicted
movements exactly, thus losing a key advantage of the
MPM in that a regular grid, not connected to the do-

main geometry, can be used. While we now present a
solution to this problem, in fact, Fig. 1 will be used to
illustrate the other problems with the MPM on which
this paper focusses in later sections. The issue out-
lined above is linked to a large body of emerging
literature in computational solid mechanics on non-
matching mesh methods which, as the name suggests,
are numerical methods where solutions are calculated
without matching the discretisation mesh to the prob-
lem domain, examples include immersed FE meth-
ods and the Finite Cell method (Ramos et al. 2015,
Schillinger et al. 2012). In the case of the MPM, we
have developed a new method for the imposition of
essential BCs which removes any need for alignment
of mesh edges and problem domain boundaries. It is
based on Kumar and co-workers’ implicit boundary
approach (Kumar et al. 2008) and can be viewed as
a form of penalty method of applying the essential
BCs. In the method, essential boundaries are defined
by signed distance functions φj where φj < 0 indi-
cates the exterior and φj > 0 the interior of the prob-
lem domain for the jth boundary. Essential boundary
(or Dirichlet) functions dj(φj) are then defined for
each boundary, which are equal to zero on the bound-
ary and rise to unity a small distance δ on the domain
side of the boundary. dj are often simple discontinu-
ous quadratic functions in φj . An example is shown



in Fig. 2 where the Dirichlet function is given by

d =


0, φ < 0

1−
(
1− φ

δ

)2
0 ≤ φ ≤ δ

1 φ > δ

. (1)

At points where more than one essential boundary is
active, i.e. at a domain corner, then the product of the
d(φj) forms the essential boundary function and in
general we write the net essential boundary at a point
as

Dk =
∏
j

d(φj), (2)

where k refers to the component of displacement de-
fined at that boundary. Dk are then the components
of the diagonal matrix [D] used to redefine the trial
functions for the grid elements as

{u′} = [D]{u}+ {ua} (3)

where [D] = diag(D1, . . . ,Dnd
) and nd is the dimen-

sionality. In Eqn 3, {u} is the standard approximation
for displacement in a finite element while {ua} is the
essential boundary condition (i.e. zero for a fixed de-
gree of freedom or non-zero for a prescribed displace-
ment). Within the narrow band adjacent to the implicit
boundary, the first term in Eqn 3 will be suppressed
via the matrix [D], enforcing the essential boundary
condition in the second term. Substituting these trial
functions and some suitable test functions into the
standard weak form for equilibrium leads to expres-
sions for the stiffness matrices of elements contain-
ing essential boundary conditions. Fig. 3 shows a grid
element (cell) cut by an essential boundary. For this
element the net stiffness matrix would be

[kE] = [K1] + ([K2] + [K2]T ) + [K3], (4)

where [K1] is the standard finite element stiffness ma-
trix for the part of the element occupied by the prob-
lem domain and is obtained through the summation
of the MP contributions, while [K2] and [K3] contain
Dirichlet functions and their derivatives. The addi-
tional stiffness matrices [K2] and [K3] are effectively
penalty terms imposing the essential BC crossing the
element and their components are calculated by nu-
merical integration in the bandwidth δ as shown in
Fig. 3. It is straightforward to implement essential
BCs which cut an element at an angle with respect to
the element global coordinates; a transformation ma-
trix is applied to components of the matrices forming
[K2] and [K3]. An example of the use of the approach
is given in Fig. 4 where a rigid footing penetrates a
unit distance into an elastic square domain of side 3
units. The roller sides and base are imposed as im-
plicit homogeneous essential BCs while the footing
is an implicit non-homogeneous essential BC. Full
details of this approach for implementation of essen-
tial boundaries in the MPM are given in Cortis et al.
(2017).

Figure 2: A Dirichlet function in 1D.

Figure 3: A single grid element (cell) crossed by an
essential boundary condition

3.2 Tracking domain boundaries

Fig. 1(d) serves to illustrate another problem with
the MPM for geotechnical problems, that of track-
ing evolving boundaries to a problem domain and ap-
plication of traction (Neumann) boundary conditions.
The former is particularly troublesome given that
geotechnical engineers would like to use the MPM for
problems in which this can be a crucial output, e.g. a
key prediction for long runout landslides is the final
surface profile of the disturbed material (e.g. Wang
et al. (2016)). To date, researchers wishing to track
free surfaces in an MPM analysis have been limited to
determining the location of the edges of material point
individual volumes which exist in GIMP and CPDI
methods but not in the standard MPM. The best that
these can deliver are piecewise linear edges (CPDI2)
or stepped approximations (GIMP and CPDI1). As re-
gards the application of traction boundary conditions
this has been attempted in the past by placing loads
at material points, which is clearly an inaccurate rep-
resentation, particularly when wishing to exploit the
capabilities of the MPM for large deformation prob-
lems.

In recent research undertaken at Durham, Bing
(2017) describes a new method which can deliver
both accurate tracking of domain boundaries and ap-
plication of surface tractions in any variant of the
MPM for arbitrary large deformations. A local cu-
bic B-spline interpolation is used to represent the
boundary based on a set of defined boundary mate-
rial points. These can be additional material points
(with near-zero volumes) placed on the boundaries or
an outer layer of standard material points in the phys-
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Figure 4: Rigid footing penetrating into an elastic domain: (a) problem definition, (b) deformation prediction
using the MPM. (From Cortis et al. (2017))

ical domain. Spline segments are fitted between adja-
cent sampling points to calculate the B-spline control
points and a suitable knot vector determined complet-
ing the description of the B-spline curve. Although
fitting a curve globally to the boundary (Piegl & Tiller
1997) would result in higher continuity, it would not
be capable of reproducing sharp corners which are
important features in many geotechnical problem do-
mains. Local fitting, as used here, constructs curves
in a piecewise fashion so that only local data are used
at each step, so a fluctuation in data only affects the
curve locally. As regards spline order, a local cubic
interpolation has a simpler formulation than the local
quadratic interpolation (Piegl & Tiller 1997) and no
special cases or angle calculations are needed.

Once an accurate boundary representation is in
place we can consider how to apply boundary con-
ditions. Essential boundary conditions on B-spline
boundaries can be imposed with the implicit bound-
ary method described above, with a few minor alter-
ations. The application of tractions to a B-spline de-
fined boundary is also straightforward with the only
complexity arising in the integration required, as will
be outlined now. In the standard FEM, nodal forces
{f t} consistent with a surface traction {t} on a sur-
face dΩ are obtained as

{f t} =

∫
∂Ω

[M ]T{t}dΩ, (5)

where [M ] contains the standard finite element shape
functions. So for the case of the B-spline boundaries
we have to consider how to carry out this integration.
A pth-degree B-spline curve can be integrated nu-
merically by using (p− 1)th order Gauss quadrature.
However, the local coordinate of 1D Gauss quadra-
ture has a range of [−1,1], whereas, the local coor-
dinate of a B-spline curve has positive values only,
therefore mapping between these two systems is re-
quired to complete the integration (in addition to the

Figure 5: Physical and parametric spaces for numeri-
cal integration of boundary conditions.

standard map between the local and global coordi-
nates, or physical space for isoparametric FEs). To al-
low for this, an additional space, called the parent do-
main is introduced over which quadrature takes place
(Hughes, Cottrell, & Bazilevs 2005). Fig. 5 shows an
illustration of the three spaces: the physical space,
{x}, the parametric space, ξ, and the parent domain,
ξ̃. In the physical space, the boundary geometry is de-
fined in global coordinates. The parametric space con-
tains the knots (local coordinates) which run along the
curve and the parent domain is simply a local sys-
tem where ξ̃ ∈ [−1,1] on which numerical integra-
tion is performed. To carry out the integration, the B-
spline curve segment is pulled back from the physical
space to the parametric space, i.e. the local coordi-
nates (ξj and ξj+1) of the start and the end point of the
segment are identified by using their global coordi-
nates. A linear transformation between the parent do-
main, ξ̃ ∈ [−1,1], and the parametric space, [ξj, ξj+1]
maps the locations of Gauss points between these two
spaces. In order that the integration can be completed,
a Jacobian mapping is required between the parent
and physical spaces between the Gauss quadrature
lengths, which are defined over the local coordinates
ξ̃ ∈ [−1,1], and the physical space. Due to the use of
a two local coordinate systems, the Jacobian contains



Figure 6: Cantilever beam geometry.

(a) Final deformation of the ma-
terial points.

(b) Boundary visualisation after
each load step.

Figure 7: Cantilever beam deformation.

two components

{JB} =

{
dC

dξ̃

}
=

{
dC

dξ

}
dξ

dξ̃
(6)

where C is the B-spline curve defining a segment in
the physical boundary. Applying Gauss quadrature to
(5), we obtain

{f t} ∼=
ngp∑
i=1

[Mi]
T{t}i ||{JB}i||wi, (7)

where ngp is the number of Gauss points used to in-
tegrate over the segment within the background grid
element, wi is the weight associated with Gauss point
i, ||(·)|| denotes the L2 norm of (·) and in this case
the L2 norm of the boundary Jacobian, {JB}, which
maps the length of the boundary between the parent
and physical spaces.

To illustrate the use of this method Fig. 6 shows
an elastic cantilever beam of length 10 m and depth
of 2 m is subjected to a constant pressure of 1500
Pa applied along the top boundary; a traction which
remains perpendicular to the top surface of the can-
tilever throughout the analysis. A background grid
with 1.5 m by 1.5 m elements is used, and the problem
domain is discretised using 896 uniformly distributed
standard material points. The outer layer of the mate-
rial points are identified as the problem boundaries
which are approximated using B-splines. The ini-
tial discretisation and the final deformed cantilever
beam are shown in Fig. 7a. The advantage of this ap-
proach is that the boundaries can be tracked after each
load step without plotting out all the material points
(see Fig. 7b) and the deformed shape appears to be
successfully captured by the B-spline approximation.
Further examples and full details of this approach to

accurately track domain boundaries and apply trac-
tion boundary conditions in the MPM are given in
Bing et al. (2018) and Bing (2017).

3.3 Volumetric Locking

In the MPM the material points are integration points
for the calculation of grid element stiffness, and since
they are allowed to convect through the grid, they can-
not provide the accuracy of an equivalent number of
properly placed Gauss points. Consequently it is nor-
mal to use many more material points per grid ele-
ment than the number required for accurate numerical
integration. Combining this with the fact that the grid
is usually comprised of low order elements, e.g. bilin-
ear quadrilaterals in 2D, means that the method is sus-
ceptible to volumetric locking (resulting in over-stiff
behaviour) when modelling near-incompressible ma-
terials. This volumetric locking is caused by excessive
constraints placed on an element’s deformation. That
is, the constitutive model will require near-isochoric
behaviour at the integration (or material) point’s lo-
cation within the element and each of these points
places a constraint on the deformation of the element.
A common technique to avoid volumetric locking in
finite element methods is to use higher order elements
with reduced Gaussian integration. However, this is
not viable in MPMs since it is not known how many
material points will be in any given element at a given
load step. In the context of finite deformation solid
mechanics, a number of formulations have been pro-
posed to overcome volumetric locking in finite ele-
ments. (A review can be found in de Souza Neto et al.
(2008)). The issue of volumetric locking in MPMs has
received little attention to date with the notable excep-
tion of Mast et al. (2012) who investigated the issue of
kinematic (volumetric and shear) locking in the stan-
dard MPM and developed a complex multi-field vari-
ational principle based approach which introduces in-
dependent approximations for the volumetric and the
deviatoric components of the strain and stress fields.

For the MPM we have instead adopted the F̄
approach hitherto applied to the standard FEM by
de Souza Neto et al. (1996) for the following rea-
sons: (i) unlike mixed approaches it does not intro-
duce any additional unknowns into the linear system,
(ii) it is simple to implement within existing finite el-
ement codes (and therefore also the MPMs), (iii) the
approach can be used with any constitutive model and
(iv) it does not introduce any additional tuning param-
eters into the code. In the F̄ approach applied to stan-
dard FEM, the volumetric and deviatoric components
of the deformation gradient are sampled at different
locations. The deformation gradient becomes

F̄ij =

(
det(F 0

ij)

det(Fij)

)1/nD

Fij, (8)

where nD is the number of physical dimensions and



F 0
ij is the deformation gradient obtained from the de-

formation field at the centre of the element. Therefore
the volumetric component of the deformation gradi-
ent for all of the Gauss points within an element is
obtained from a single point, thus relaxing the vol-
umetric constraint on the element when the material
behaviour is near incompressible.

For the MPM, where we have large deformations,
we adopt the incremental equivalent of (8), giving the
F̄ deformation gradient increment as

∆F̄ij =

(
det(∆F 0

ij)

det(∆Fij)

)1/nD

∆Fij, (9)

where ∆F 0
ij is the volumetric component of the de-

formation gradient increment. It is straightforward to
modify the standard material point method by replac-
ing ∆Fij with ∆F̄ij in the finite deformation formula-
tion. This is because the shape functions are directly
adopted from the finite element basis. However, it is
more appropriate to use the geometric centre of the
material points located within a given finite element
rather than the centre of the element. This is due to
two key reasons:

1. when a single material point is used to integrate
the background grid cell the F̄ deformation gra-
dient, (9), equals the standard deformation gra-
dient; and

2. when a background grid cell is only partially
filled with material points the volumetric be-
haviour is centred on the physical region.

To demonstrate the performance of the MPM with
the F̄ approach results are presented for the analy-
sis of a smooth square rigid footing bearing onto a
3D weightless elasto-plastic domain. Due to symme-
try only a quarter of the physical problem is mod-
elled and the footing has a half width of 0.5 m and
the simulated domain is 5 m in length in each di-
rection. The same material properties were adopted
as (de Souza Neto et al. 2008) for their plane strain
analysis of a rigid footing. The smooth footing was
displaced vertically (z-direction) by 0.002m over 200
loadsteps and roller boundary conditions were im-
posed on the sides and the base of the domain. All of
the boundary conditions were imposed using the im-
plicit boundary method discussed above. A relatively
coarse regular background grid of tri-linear hexahe-
dral elements with h = 0.2 m was used to analyse
the problem and the physical domain was discretised
using 8 standard material points per background grid
cell (125,000 material points in total). The force ver-
sus displacement response for the standard and F̄ ma-
terial point methods are shown in Fig. 8. The standard
formulation locks and predicts an over-stiff response
whereas the F̄ formulation reaches a limit load, as
expected for this type of analysis. Due to the small
imposed displacement, material points do not cross

Figure 8: 3D footing: force displacement response for
standard and F̄ MPMs. (From Coombs et al. (2018)).

.

Figure 9: 3D footing: minor principal stress for (i)
standard and (ii) F̄ MPMs. (From Coombs et al.
(2018)).

between background grid cells and both formulations
give a smooth response. The minor principal (most
compressive) stress distribution at the end of the anal-
ysis for the two formulations are shown in Fig. 9. The
standard material point formulation contains spurious
stress oscillations caused by volumetric locking. In
particular, the column of material points underneath
the footing oscillate between tensile and compressive
stress states. The F̄ formulation stress distribution
shown in Fig. 9 (ii) demonstrates the correct com-
pressive region underneath the footing, as shown by
the blue-shaded particles. Full details of this approach
to deal with locking in the MPM and other variants
such as the GIMP method are given in Coombs et al.
(2018).

4 CONCLUSIONS

In this paper we have attempted to summarise a num-
ber of issues with the use of the MPM that may af-
flict geotechnical analyses more than other applica-
tions for which it may be used. The literature to date
shows that while these challenges have often been ev-
ident, many researchers have avoided tackling them
head-on, especially in the area of imposition of es-
sential boundary conditions. We have presented four



issues but have also presented solutions developed in
our research group at Durham University. It is to be
hoped that these solutions will provide useful to oth-
ers attempting geotechnical modelling with the MPM
in future.
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