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Abstract—This paper focuses on a performance analysis of
single-walled-carbon-nanotube / liquid crystal classifiers pro-
duced by evolution in materio. A new confidence measure is
proposed in this paper. It is different from statistical tools
commonly used to evaluate the performance of classifiers in that
it is based on physical quantities extracted from the composite
and related to its state. Using this measure, it is confirmed that in
an un-trained state, ie: before being subjected to an algorithm-
controlled evolution, the carbon-nanotube-based composites clas-
sify data at random. The training, or evolution, process brings
these composites into a state where the classification is no
longer random. Instead, the classifiers generalise well to unseen
data and the classification accuracy remains stable across tests.
The confidence measure associated with the resulting classifier’s
accuracy is relatively high at the classes’ boundaries, which is
consistent with the problem formulation.

I. INTRODUCTION

One direction of research within the framework of Uncon-
ventional Computing (UC) methods is Evolution in Materio
(EiM) [1].The latter combines software and hardware -based
investigations, with the aims of exploring and exploiting
the computational properties of materials using evolutionary
algorithms (EAs). Contrary to traditional computing with
metal-oxide-silicon-field-effect-transistor (MOFSET) technol-
ogy, where everything is designed, produced and programmed
very carefully, EiM uses a bottom-up approach where com-
putation is performed by the material without having explicit
knowledge of its internal properties.

This idea has been explored in the work of G. Pask [2]
which was concerned with evolving an electrochemical ear.
The field was revived following experiments reported in [3]
where EAs were used to design a frequency classifying circuit
in a field-programmable-gate-arrays (FPGAs). It was observed
that the resulting circuit topologies chosen by the EAs had
been influenced by some inherent analogue properties of the
material used in the FPGA’s components. EiM has replaced
the FPGAs with suitable material systems.

In a typical EiM experiment, a search algorithm selects a set
of configuration signals to be applied to the material, with the
aim of changing its physical properties. The state the material
is brought in is tested against a number of known input/output
pairs. A response is recorded for each of those test inputs and
a global error function is evaluated. The algorithm manipulates

the state of the material within an iterative search, varying the
values of the configuration signals. This evolutionary process
brings the material into a state where it can perform the desired
computation, in the sense that its outputs can be interpreted
according to a pre-specified scheme.

EiM has a broad scope, and can be delineated along four
dimensions: (a) the type of material used, (b) the physical
property manipulated for obtaining a computation, (c) the
computation problem and (d) the evolutionary algorithm used
for solving the corresponding training problem.

Different materials have been used, biological and non-
biological. Examples include slime moulds [4], bacterial con-
sortia [5] and cells (neurons) [6]. In [7] it is argued that
non-biological materials make a better medium for uncon-
ventional computing exploration. Depending on the material
used and the physical properties to be exploited, different EiM
computing devices can be developed. Liquid Crystals (LCs)
from a display screen have been used as the material part of
EiM for evolving robot controllers [8], a tone discrimination
device [9] and logic gates [10]. In [11] and [12] a dry
mix of Single-Walled Carbon Nanotubes (SWCNT) with a
polymer were used as the computational material and its
electrical conductance was used as the manipulated property
for solving the problem of calculating Boolean functions using
a threshold interpretation scheme; the same material is used
in [13] and [14] for solving optimisation problems. A mixture
of SWCNT and LC in liquid form has also shown potential
to solve classification problems. The physical property used
for evolving the material is its electrical conductivity and
the ability of the SWCNT to form percolation paths within
the LC. The problems addressed are variations of binary
classification problems using three artificially created datasets.
Due to the lack of stochastic and numerical model of the ma-
terial’s behaviour a population based derivative free stochastic
algorithms, differential evolution [15] is used.

The main contribution of this paper is to propose a novel
approach to analyse the performance of the physical SWCNT-
based classifiers resulting from the EiM experiments. It is
observed that a confidence measure can be calculated, based
exclusively on the solution produced by the evolutionary
algorithm, that is, a combination of the material’s electrical
state and a threshold that belongs to the problem’s set of



decision variables. This is an important contribution in that it
will allow further investigations to be undertaken with complex
datasets where a high confidence in the result is crucial. For
such problems, the measure can be calculated throughout the
training process and included in the problem formulation to
be optimised along with the classifier accuracy.

A short description of the physical parts of the experimental
set-up is presented in Sections II and III. The three datasets
used in experiments are described in Section IV, whilst the
problem formulation and algorithm parameters are detailed in
Section V. The new confidence measure is proposed in Section
VI and the analysis of results using this tool is reported in
Section VII. Finally Section VIII concludes this paper and
proposed avenues for future work.

II. SINGLE-WALLED-CARBON-NANOTUBE/LIQUID
CRYSTAL COMPOSITE

The material used in experiments is a 0.05 wt % single-
walled-carbon-nanotubes (SWCNT) / liquid crystals (LC)
composite. The composite is produced by mixing nanotubes in
dry powder form with liquid crystals using an ultrasonic probe.
The powder was purchased from Carbon Nanotechnologies
Inc. (Houston,TX, USA). It contains 2/3 semiconducting and
1/3 metallic nanotubes and less than 15% impurity. The E7
nematic liquid crystal blend was purchased from Merk Japan.
Figure 1 presents a general structure of SWCNT and the four
molecules contained in the E7 blend.

The SWCNT/LC blend has a non-linear relationship be-
tween voltage and current which is exploited by the EiM
process. It has been observed in [16] that SWCNTs dispersed
in LCs tend to aggregate along an applied electric field,
forming percolation paths between electrodes. Varying this
electric field results in modification of these percolation paths
and the formation of complex SWCNT structures in the
composite which favour computation [17, 18]. At the start of
each experiment, a sample of the SWCNT/LC composite was
drop-cast within a nylon washer of 2.5 mm internal diameter.
The washer was fixed on a microscope slide upon which an
array of gold electrodes had previously been deposited using
etch-back photolithography. The left-hand-side of Figure 1
presents the micro-electrode array’s design and its scale.

Fig. 1. Gold micro-electrode array with 50µm contacts and 100µm pitch,
SWCNT and E7 LC molecule.

III. HARDWARE IMPLEMENTATION

The hardware can be divided into three main components
(PC), a computer, an evolvable motherboard (EM) and the
material. A simple illustration of the experimental set up and
procedure is presented in Figure 2.

Evolutionary algorithms are run on the computer. They con-
trol the value of signals modifying the state of the evolvable
material. A mbed microcontroller placed on the motherboard
is connected to the computer via serial port. Signals transfered
over this connection are translated into voltage levels by the
mbed. They are subsequently sent through a set of digital-
to-analogue converters (DACs) before reaching the micro-
electrode array upon which the material has been deposited.
The state of the material under the influence of the input
signals is evaluated through output current measurements that
are sent back to the micro-controller via a set of analogue-
to-digital converters (ADCs). The currents are translated into
a signal using an interpretation scheme and sent back to the
computer via serial connection. This signal is subsequently
used by the EAs to produce a new set of inputs and the process
is repeated until a termination criterion is reached.

Fig. 2. Representation of the hardware implementation of EiM.

IV. CLASSIFICATION DATASETS

Three artificial binary datasets of increasing complexity are
used in this paper. The three datasets comport K = 4800
instances. Due to the training and verification procedure fol-
lowed to solve the optimisation problem which will be defined
in the next Section, K is split into Kt = 800 training and
Kv = 4000 verification data. Each instance is defined in m =
2 dimensions. The two attributes are translated into direct volt-
age inputs in the experimental implementation. These inputs
are referred to as computation voltages, Vin = [V in

1 , V in
2 ].

Their values are limited by the the maximum voltage levels,
8 V olts, allowed in the hardware components and evolvable
material. For each problem, instances from the training and
verification sets are initialised independently within the boxes
defining the classes. Three datasets referred to as V1C, NLC
and MC are used in experiments and presented in Figure 3.
The two classes of the V1C dataset are separated by a diagonal
whilst those of the MC dataset are merged. The overlapping
area containing approximatively 6.6% of all instances which
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(b)

Fig. 3. Three binary classification problems represented by (a) merged classes
and (b) diagonally and non-linearly separable classes.

are effectively undistinguishable from one another. NLC has
two classes which are separated by a hyperbola. Figure 3
shows the distribution of training data, for (a) the merged and
(b) the two separable datasets, in the 2D feature space.

The complexity of the three problems is measured using the
Fisher criterion f1 [19] defined for a binary problem as

f1 =
(µj

1 − µ
j
2)2

(σj
1)2 + (σj

2)2
(1)

where µj
i and σj

i is the mean and the standard deviation of
feature j for classes 1 and 2, respectively. Taking the maximum
f1 over all attributes being, for V1C f1 = 2.198 and for NLC
f1 = 0.962, i.e. V1C is less complex than NLC.

A metric related to the overlap of classes along given
features is given by

f2 =

m∏
j=1

min {U1,j , U2,j} −max {L1,j , L2,j}
max {U1,j , U2,j} −min {L1,j , L2,j}

(2)

where
U1,j = max

{
Vj : Vin ∈ C1

}
, U2,j = max

{
Vj : Vin ∈ C2

}
L1,j = min

{
Vj : Vin ∈ C1

}
, L2,j = min

{
Vj : Vin ∈ C2

}
.

From the two criteria, we can rank the different problems
according to their complexity, with V1C being the simplest
and NLC the most complex. The number of attributes, m,
instances contained in the datasets, K as well as the Fisher

criterion over all attributes, f1, and the measure of overlap,
f2, defined in eqn. 2 are reported in Table I.

TABLE I
PROBLEM PARAMETERS FOR THE V1C, MC AND NLC DATASETS.

Name number of number of Fisher volume of
attributes instances criterion overlap (%)

V1C 2 4800 2.198 0
MC 2 4800 1.908 6.6
NLC 2 4800 0.962 0

V. PROBLEM FORMULATION AND ALGORITHMS

The process of transforming the state of an unconfigured
material in such a way that it is able to classify data is formu-
lated as an optimisation problem. A training and verification
procedure is followed to solve this problem.

The number of gold terminals in the micro-electrode array
limits the number of inputs, outputs and configuration voltages
that can be used in an experiment. In the case of the simple 2D
binary datasets described in Section IV, it is possible to use
only twelve of the array’s sixteen connections: ten as inputs
and two as outputs. Data to be computed by the material
Vin, is sent to two input terminals in the form of voltages
amplitudes. The remaining eight connections are used for a set
of configuration inputs. The configuration inputs are voltage
levels Vj ∈ [Vmin, Vmax], j = 1, . . . , 8 which are part of the
set of decision variables controlled by the algorithm during
training.

In addition to the configuration inputs, the possible locations
where the two components of Vin are applied is considered as
a decision variable. It has been observed experimentally that
allowing the algorithm to modify the input location throughout
the search tends to reduce the number of iterations needed
to reach an optimum result and that the latter is obtained
with more consistency accross tests. Using a simple increasing
index scheme for assigning configuration voltages (e.g. if V in

1

is assigned to electrode 3 and V in
2 is assigned to 5, then the

following assignment for the configuration inputs takes place:
V1 → 1, V2 → 2, V3 → 4 V4 → 6, V5 → 7, V6 → 8, V7 → 9
V8 → 10) then there are 10P2 = 90 possible connection
assignments. A continuous variable p ∈ [1, 90] is defined and
updated by the EA used, rounded to the nearest integer during
the iterations.

The optimisation problem’s vector of decision variables,
spread over a total of D = 10 dimensions, is defined as

x = [V1 . . . V8 R p]
T (3)

where R is continuous over [Rmin, Rmax]. For a specific
electrode assignment p and set of configuration voltages Vj ,
the material’s response to an input Vin is recorded. Two direct
current outputs, I = (I1, I2) mA are a measured across the
two output terminals. They are used to assess the state of the
material under the influence of the electric field combining
Vin and Vj and are at the basis of a comparison scheme using
R for deciding the class Vin belongs to.

Let I(k) denote the pair of direct current measurements
taken when input data Vin(k) from class Ci, i = 1 or i = 2,



are applied while the material is subjected to configuration
voltages Vj . Vin(k) and Vj are applied according to electrode
assignment number p and scaling factor R is used. Also, let
C(Vin(k)) denote Vin(k)’s real class and CM (Vin(k),x)
the material’s assessment.

Different mapping schemes may be used for the calculation
of CM . A functional form of CM

(
Vin,x

)
must be specified

for each problem before the training process and, since the
material acts as a computing device, every

(
Vin,x

)
must

be mapped to one of the two possible classes. The mapping
is performed by the interpretation scheme, which considers
the computational inputs, the corresponding induced material
responses and the continuous decision variable R used as
threshold; for the MC problem

CM

(
Vin(k),x

)
=

{
C1 if I1(k) > RI2(k)
C2 if I1(k) ≤ RI2(k).

(4)

and for the V1C and NLC problems

CM (Vin(k),x) =

{
C1 if I1(k)V

in
1 (k) + I2(k)V

in
2 (k) ≤ R

C2 if I1(k)V
in
1 (k) + I2(k)V

in
2 (k) > R

(5)
Variations of these schemes have been tested experimentally.

It was observed that Eqs 4 and 5 produced the better results
than these variations for the datasets and algorithm used in this
paper. For every training data point Vin(k), k = 1, . . . ,Kt the
error from translating the material response according to rules
(5) is

εx(k) =

{
0 if CM (Vin(k),x) = C(Vin(k))
1 otherwise.

(6)
The mean error Φe(x) evaluated over the training data set for
a particular solution x is

Φe(x) =
1

Kt

Kt∑
k=1

εx(k). (7)

A penalty term H(x) is added to (7), given by

H(x) =

∑8
j=1 V

2
j

8V 2
max

. (8)

The rationale behind this penalisation is that incremental and
generally low levels of configuration voltages are preferable.
Solutions where high Vj are applied can destroy material struc-
tures formed during evolution that contribute to the solution.

Hence, the total objective function Φs(x) for an arbitrary
individual of the EA’s population s is given by

Φs(x) = Φe(x) +H(x) (9)

The optimisation training problem to be solved is that of
minimising (9) for a population of size S, subject to voltage
bound constraints Vj ∈ [Vmin, Vmax], R ∈ [Rmin, Rmax],
electrode assignment p and classification rule (5). Vmin = 0
Volts, Vmax = 4 Volts, Rmin = 0.05 and Rmax = 15 .

Population-base, derivative-free, stochastic optimisation al-
gorithms were considered to solve this problem, due to the
complex and dynamic nature of the search space, as well as
the fact that no analytical or stochastic model of the material’s

behaviour currently exists. Here, differential evolution (DE)
[15], with a population size of S = 10 individuals has been
implemented. The position of each individual over d = 1, ...D
dimensions, defined by the vectors of decision variables x,
is initialised using uniform distribution across the problem
boundaries. It is then updated, dimension by dimension, at
each iteration in the following eqn. 10,

xd =

{
xad + F (xbd − xcd) if d = D or rd < CR
xd otherwise. (10)

where the three vectors of decision variables, xa, xb and xc

and randomly drawn from the population, rd ∼ U(0, 1), the
cross-over parameter is CR = 0.7026 and F = 0.814 is the
differential weight. The value of these parameters are based on
suggestions found in [20] and have been modified empirically
for the problem undertaken.

VI. CONFIDENCE MEASURE

Training, and especially verification errors are both mea-
sures of the performance of the nanotube-based classifiers
produced using the EiM implementation described in Sections
II, III and V. A new measure proposed in this section is a
confidence measure, which is designed to give an indication
of the probability for the class assigned to a datapoint by
the classifier to be incorrect. A number of papers report
discussions regarding the best way of deriving confidence mea-
sures for classifiers produced using different machine learning
approaches [21, 22]. Within the context of EiM literature, the
subject is discussed in [23] for logic gates evolved using a
cellular automata approach. Classification problems have also
been investigated, with solutions analysed using sophisticated
statistical tests [24]. In both cases, the material used is a
solid SWCNT/polybuthyl(methacrylate) (PBMA) composite.
No discussion on confidence measures for SWCNT/LC clas-
sifiers evolved with DE algorithms, has yet been reported.

Physical quantities related to the material state are used to
calculate the confidence measure. The latter will be refered
to as figure of merit (FoM). The class assigned to a datapoint
defined by a set of computation inputs Vin is determined using
an interpretation scheme defined by eq.5 in Section V, which
is dependant on the dataset used. In this scheme, the output
currents measured across the material are compared to the
decision variable R. Based on this comparison, the FoM for
the V1C and NLC datasets is given by

FoM =

∣∣∣∣∣ I1(k)V in
1 (k) + I2(k)V in

2 (k)−R
maxk {I1(k)V in

1 (k) + I2(k)V in
2 (k)−R}

∣∣∣∣∣ (11)

and for the MC dataset it is

FoM =

∣∣∣∣ (I1(k)/I2(k))−R
maxk {(I1(k)/I2(k))−R}

∣∣∣∣ (12)

which is effectively a measure of the distance between
the output currents collected across the material, when it
is sent information about an instance, and the configuration
variable R used in the interpretation scheme. This distance



is normalised using the maximum distance achieved in the
dataset. The FoM is given as a percentage and points with 0%
FoM are effectively classified at random.

VII. RESULTS AND DISCUSSION

In each experiment, a different SWCNT/LC sample has
been used. Training begins with un-configured samples which,
at the start of the process, randomly assign instances to the
two classes C1 and C2. The minimum training error produced
by SWCNT/LC samples during DE’s search has been reported
in [17] for the V1C, MC and NLC datasets. This is also the
case of the ability of the resulting SWCNT/LC classifiers to
generalised to unseen data. In verification tests, the optimum
set of decision variables obtained by the algorithm during
training is sent to the evolved samples along with the 4000
instances from the verification dataset, Kv . This process is
repeated ten times. The contribution of the SWCNT structures
transformed by the training process have been assessed by
sending unseen instances to the evolved device, with no con-
figuration voltages [17]. Finally, the stability of these structures
when subjected to retraining was discussed in [18]. The first
three columns of Table II present the optimal training Φ∗

e and
mean verification Φv

e errors averaged over 10 experiments for
the three datasets, as well as the standard deviation σ of results
across experiments.

The question addressed is concerned with the information
that can be extracted from the material about its performance
as a classifier. The confidence measure defined by the % Figure
of Merit (FoM) is shown in the fourth column of Table II.
Figure 4 illustrates the cumulated number of instances which
have the same % FoM, where FoM has been rounded to zero
decimals. For each dataset, measurements have been taken at
the first iteration for ten evaluations with different sets of deci-
sion variables corresponding to the ten individuals contained in
DE’s population. In all three cases, the SWCNT/LC samples
have not yet been trained, and the training error is around
50%, ie. the material randomly assigns instances to one class
or the other. It can be observed that for the three datasets,
the majority of intances are within 25% FoM. The outputs
measured across the untrained SWCNT/LC samples do not
give a good indication of the class a datapoint belongs to
when used in the interpretation scheme. The distance between
functions of the outputs and the threshold R is close to
0. In addition, correctly and incorrectly classified instances
are indistiguishable in terms of the % FoM. The confidence
interval effectively comprises all instances, which confirms
that each point has a 50% chance to be assigned to the wrong
class, as the device classifies randomly.

TABLE II
PERFORMANCE MEASURES FOR THE V1C, MC AND NLC DATASETS.

Dataset Φ∗
e(%) Φe,v (%) σ (%) FoM (%)

V1C 0.02 0.41 0.3482 0.5375
MC 3.856 4.27 0.513 17.7
NLC 0.28 1.51 1.4161 8.75
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Fig. 4. Distribution of correctly and incorrectly classified training instances
as a function of their distance to the separating threshold R for the three
articial binary datasets.

In Figure 5(a), the cumulated numbers of correctly classified
verification instances as a function of the % FoM are repre-
sented by lines. The points represent the cumulated number of
instances that have been incorrectly classified by the evolved
material. It can be observed that the datapoints assigned to
the wrong class all obtain a very low FoM. The majority
of correctly classified instances have a FoM higher than the
data incorrectly classified data. The area of random class
assignment lies within 5% FoM. This area contains 0.5375%
of all instances from the V1C dataset. This is reported in
the last column of Table II. FoM values are also plotted on
the dataset 2D map. The arrow (fig. 5(a)) points towards the
location on this map where the incorrectly classified instances
can be found. As expected, these areas are the darkest, ie:
they have the lowest FoM and therefore the highest probability
of being incorrectly classified. Figure 5(b) illustrates in three
dimensions the % FoM values per instance on the map of
the V1C dataset. Instances in Class 1 tend to be closer to the
threshold than instances from Class 2. This can be explained
by the fact that the voltage inputs that characterise instances
from C2 are higher than those from C1. The material is such
that the outputs can only be higher for C2 instances. Multi-
plying by the computation voltage level further increases this
difference. The average verification error for V1C, reported in
the second column of Table II is calculated by averaging the
number of instances misclassified by the evolved SWCNT/LC
classifier. Adding to this value the % of instances classified
correctly but contained within the 5% FoM, the classifier error
becomes 0.9475%.

In the case of the MC dataset, the FoM is computed
differently, following the interpretation scheme used for this
problem. In addition, the data contained in the overlapping
area between the classes represents 6.6% of all instances,
which, if all instances lying outside of this area are correctly
classified, means that the error will be around 3.3%. This can
be observed in Figure 5(c), where the misclassified instances
are represented by points on the graph. The arrow points
towards the area on the dataset’s FoM map where instances
have the lowest value, and unsurprisingly, this is situated in the
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Fig. 5. Distribution of the correctly and incorrectly classified data as a function of their distance from the threshold R (LHS) and mapping of the verification
error with associated confidence measure (% FoM) on the computation input space (RHS) for (a),(b) V1C, (c),(d) MC and (e),(f) NLC artificial binary datasets.



overlap. Similarly to the V1C classifier, however, the majority
of correctly classified datapoints have a FoM % that is higher
than the highest incorrectly-classified instance, which is 15%
FoM. 7081 of all 40000 datapoints from the ten verification
test share this area with the incorrectly-classified datapoints.
This means that 17.7% of instances have a high probability of
being randomly classified and the error increases to 21.97%.

The last two graphs in Figure 5 present the FoM results for
the NLC dataset, over ten tests. The mean verification error is
0.475%, which is close to optimal and shows that the solution
is relatively stable ie: sending one set of verification instances
does not destroy the solution and the classifier can be re-used.
In addition, there is a low standard deviation in results across
tests, with σ = 1.4161. The FoM for NLC is calculated in
the same way as for the V1C dataset since they share the
same interpretation scheme. Compared to the unconfigured
sample, there is a noticable separation in the FoM value
between correctly and incorrectly classified instance. Training
has produced a material state where 8.75% correctly classified
instances are within the same 3% FoM as the ones assigned
to the wrong class. The performance of the evolved device
is not as good compared to the V1C problem, and this is
irrespective of the value of the error. There is no overlapping
area in this dataset, but it can be observed in the Figure 5(e)
that the highest probability of error occuring is situated at the
classes’ boundaries. When mapped on 2D computation input
space the threshold value is a hyperbola separating the two
classes. And it can be seen in Figure 5(f) that, as for V1C, a
higher confidence tends to be assigned to Class 2.

In order to compare our measure of confidence with a
standard machine learning approach, Logistic Regression (LR)
classifier was selected. Similar to our approach: given an
input sample, LR assigns a weight to each possible class
and then uses a distance-based measure to perform the clas-
sification task. The correlation between the output of the
two classifiers is illustrated in Figure 6 with 98% Pearson
correlation coefficient for MC, 92% for NLC, and 97% for
V1C. This demonstrates the high correlation between the
proposed classifier in this paper and an established classifier
in machine learning.

(a)

(b)

(c)

Fig. 6. Pearson Correlation between LR normalised confidence and evolved
SWCNT/LC FoM for the (a) V1C, (b) MC and (c) NLC datasets

VIII. CONCLUSION AND FUTURE WORK

This paper reported results on experimental investigations
of an Evolution-in-Materio approach for the classification
problem. The material is a mix of single-walled-carbon-nano-
tubes and liquid crystals. The method used does not follow
conventional computation methods that have been proposed
in the literature such as neural networks and K-nearest neigh-
bours methods. Instead, a piece of material in liquid state is
evolved until it reaches a computing inducing state where the
computation task is a binary classification problem.

A new measure of the performance of evolved SWCNT/LC
classifiers is proposed. It is a confidence measure, calculated
using the current outputs produced by the devices when solu-
tions are tested against simple classification datasets. Results
demonstrate that from a state where the devices classify
instances randomly with very low confidence, evolution pro-
duces SWCNT/LC classifiers which are able to discriminate
between two classes. The confidence associated with the
evolved device’s classification of instances is increased as
compared to the non-trained material. The values reported
for the different datasets present high correlations with the
normalised confidence measure of an established machine
learning classifier. Future work will extend to the use of more



complex real life datasets, as well as modifying the problem
formulation to make it a multi-objective optimisation problem,
starting with two objectives; minimising classifier’s error and
maximising the confidence value.
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