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Performance Analysis of Behavior-based Solutions
in Vehicular Networks

Aljawharah Alnasser, and Hongjian Sun

Abstract—Transportation systems require communication net-
work for achieving safe traffic and efficient transportation.
As a result, vehicles become exposed to either internal or
external attacks. Various behavior-based methods were proposed
to protect vehicular networks against internal attacks. In this
paper, we propose two behavior-based models that apply different
methods which are weighted-sum and fuzzy logic. We conduct
various experiments using different communication and behav-
ioral scenarios. In addition, we analyse the results to measure
the performance of both methods. Simulation results show
that weighted-sum method outperforms fuzzy logic in vehicular
networks. A comparison result present that the detection rate
improves for weighted-sum method with almost all scenarios.
Indeed, the detection rate for scenario 1, when there is no direct
communication with malicious node, is improved by at least 27%.

Index Terms—VANETs, Weighted-sum, Fuzzy logic, Trust.

I. INTRODUCTION

During recent years, vehicles’ manufacturers have started
working on developing the traditional transportation system
and transforming it into an intelligent system. This is achieved
by embedding extra hardware such as sensors and commu-
nication interface within each vehicle and combining them
with a software system. Thus, the vehicles can sense the
surrounding environment and share the collected information
with neighboring vehicles using wireless communications.
Also, they can process the information and make a decision
without any external intervention.

Vehicular Adhoc NETwork (VANET) is the initial design
of vehicular networks. It provided the chance to develop
much research and suggest various applications for vehicular
networks. It supports ad-hoc communication between vehicles
and Road Side Units (RSUs). In VANETs, the vehicles can
share information with their neighboring vehicles using two
types of communications [1] as shown in Fig.1: Vehicle-to-
Vehicle (V2V) supports the communications between vehicles,
and Vehicle-to-Infrastructure (V2I) provides communications
between vehicles and infrastructure units that are located in the
roadside. The communication is established using Dedicated
Short Range Communications (DSRC) technology which uses
IEEE 802.11p. Vehicles use multi-hop routing protocol to
transmit the packet through the network.

As a result, similar to the existing wireless networks,
VANETs are vulnerable to various cyber-attacks because the
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Fig. 1. VANET Communications.

physical access is not required to gain access to the network.
Cyber-attacks can be divided into external attacks and internal
attacks. The external attacks are launched by nodes that do not
belong to the network. While, the internal attacks are executed
by compromised or hijacked nodes that belong to the network.

Internal attacks are typically hard to detect since malicious
nodes already belong to the network as authorized nodes.
Thus, these nodes require being protected by implementing
a security system. Therefore, traditional security mechanisms
are not suitable for addressing these attacks [2]. Various
behavior-based solutions were proposed for addressing the
internal attacks. Each node observes the behavior of its neigh-
boring nodes and reports any malicious activity.

There are various methods that were suggested as behavior-
based solutions as follows:

• The weighted-sum method is the common behavior-
based method. Trust evaluation is computed by assigning
different weights for each trust component. Total trust is
computed by:

Ttotal =

U∑
i=1

wi × Tx (1)

where wi is a weight value for Tx, Tx is a trust value for
trust level x such as direct trust and indirect trust, and U
is the number of trust levels that will be considered. For
instance, Patel and Jhaveri [3] applied the weighted-sum
method with Ant Colony Optimization (ACO) algorithm
for forwarding packets through the shortest trusted path
by isolating non-cooperative nodes. The main drawback
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is that even if all node’s neighbors are malicious, it is
enforced to forward the packets to one of them. Moreover,
Wei et al. [4] proposed a trust model for detecting non-
cooperative nodes on V2V communications only. Also, it
was used for checking data integrity in [5] [6].

• The fuzzy logic method incorporates a series of IF-THEN
rules to solve a control problem rather than attempt to
model a system mathematically. The main steps of the
fuzzy logic model are as follows [7]. First, the fuzzy sets
and criteria are defined; next, the input variable values
are initialized; then, the fuzzy engine applies the fuzzy
rules to determine the output data and evaluate the results.
Fuzzy logic models were proposed in [8] and [9] to
detect dropping and modification message respectively.
Moreover, Ding et al. [10] proposed a fuzzy reputation
based model to prevent the spreading of false messages.

A. Contributions and Structure

The main goal of this paper is studying the performance of
various behavior-based methods in vehicular networks which
are the weighted-sum and fuzzy logic. This paper makes
three significant contributions to the field of vehicular network
security:

1) The performance of the common behavior-based meth-
ods in vehicular networks is studied.

2) The various communication scenarios with malicious
node are examined and analysed.

3) The effect of different patterns of malicious behavior is
studied.

The paper is organised as follows: in section II we provide
a detailed description of the proposed behavior based model.
In section III we present the simulation setup parameters and
discuss the simulation results. In section IV we measure the
model performance for both proposed methods.

II. PROPOSED SYSTEM MODEL

A. Considered Network

The considered network consists of N vehicles and M
RSUs along the road. The vehicles move with a random speed
where they are restricted by road directions. The vehicles keep
recording data which is pertinent to traffic events and share
them with neighboring vehicles and RSUs through the formed
mesh network. The network considers two types of nodes as
follows.

1) Normal node: keeps monitoring the surrounding envi-
ronment and broadcasts warning packets when an event is
triggered. The events are randomly distributed as shown in
Algorithm 1. The warning packet is generated and sent to the
other vehicles through the use of a multi-hop routing protocol.
Moreover, the event’s location is randomly distributed.

2) Malicious nodes: multihop networks, such as vehicular
networks, depend on that the neighboring nodes will truly
forward their messages through the network. However, un-
fortunately, this is not the case in greyhole attack. In greyhole
attacks, malicious nodes stop forwarding some packets, and
this makes detection of these malicious nodes difficult. This
attack can isolate some nodes, and that affect the data accuracy.

B. Model Structure

Our behavior-based model measures trustworthiness level
for all vehicles in the network. The trustworthiness is evaluated
based on the information that is obtained through direct
observation of one-hop neighbors. Indeed, the vehicle with
low trust value is considered untrusted node. The proposed
model manages two trust components as follows.

1) Direct trust (D(t)
i,j ): as mentioned before, VANET is

a multi-hop network where vehicles are responsible for for-
warding the packets to the neighboring vehicles. Each vehicle
is able to compute the direct trust of its one-hop neighbors
through direct observations for the considered node, then, it
sends these values to the nearest RSU. For example, node i
forwards the packets to its neighbor node j and keeps moni-
toring node j to verify whether it forwards the packets. The
direct trust D(t)

i,j between node i and node j at time (t) is
measured by

D
(t)
i,j =

forwarded Packets

Total Packets
(2)

where forwarded Packets is the number of packets that
node j received from node i and forwarded them successfully.
Total Packets is the total packets that node j received from
node i.

2) Indirect trust (I(t)RSU,j): each RSU broadcasts a request
periodically to collect direct trust values from all nodes in
its transmission range. RSUs are responsible for computing
indirect trust and broadcasting it to all nodes in the network
[15]. RSUs are interconnected with each others through a
wired connection. Thus, each RSU can fill the matrix with
the nodes’ feedback using

Feedback =


D

(t)
1,1 ... ... D

(t)
1,n

: ... ... :
: ... ... :

D
(t)
n,1 ... ... D

(t)
n,n

 (3)

where n is the number of vehicles in the network. Indirect trust
I
(t)
RSU,j between RSU and node j at time (t) is computed by

I
(t)
RSU,j =

∑m
k=1(D

(t)
k,j)

m
(4)

where m is the number of nodes that have a feedback about
node j, m ≤ n.

Input: λ,∆
Output: V

1: for each time interval do
2: p = rand[0, 1];
3: if (p < λ× ∆) then
4: V=Event();
5: V.LocationX = rand[0, 900];
6: V.LocationY = rand[0, 900];
7: V.existing = True;
8: end if
9: end for

10: return V
Algorithm 1: Algorithm for event distribution variables
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C. Proposed Behavior-based Methods

1) The weighted-sum method: trust evaluation is computed
by assigning different weights to each trust level. When the
node behaves maliciously; the total trust value decreases until
reaches to zero [16]. Total trust (Total

(t)
i,j ) for node i about

node j at time (t) is computed by:

Total
(t)
i,j = w1 ×D

(t)
i,j + w2 × I

(t)
RSU,j (5)

where w1 and w2 are weights for direct and indirect trust
respectively, and they are equal to 0.5. At time (t), if node i
does not communicate with node j, node i evaluates node j
based on the indirect trust only.

2) The fuzzy logic method: is composed of the following
four steps.

1) Linguistic inputs (trust components): as shown in
Fig. 2, the model has two inputs which represent trust
components: direct trust and indirect trust. At time (t),
if node i does not communicate with node j, node i
uses the previous direct trust value D(t−1)

i,j to evaluate
node j.

2) Fuzzification Process: the input linguistic variables are
connected through AND logical operator. The proposed
model uses membership functions which were proposed
in [17].

3) Fuzzy Interference Rule-Base: trust values are calcu-
lated by passing the fuzzy sets described in [17] through
fuzzy inference rules. Total trust (T

(t)
total) uses Triangular

and Trapezoidal Membership Functions which are spec-
ified by three parameters [17]: Malicious, Less Trusted,
Normal. The number of the input linguistic variables
is two in the proposed method and each variable takes
three values. Thus, the total number of rules, with all
possible combinations, is 9.

4) Defuzzification (Total Trust - T (t)
total): after fuzzifica-

tion, the next step is a defuzzification to get crisp values
using mathematical method.

Fuzzy Logic System

Rules

Direct Trust 

Indirect Trust

Total Trust

Fig. 2. Fuzzy logic system structure.

III. SIMULATION ANALYSIS

This section describes the experimental setup used to mea-
sure and study the efficiency of two behavior-based methods:
weighted-sum and fuzzy logic. Various communication and
behavioral scenarios are evaluated in this section.

A. Network specifications

In our simulation model, we consider a VANET with fifteen
vehicles which included one malicious node with parameters
as shown in Table I. The vehicles move over an area of 900×
900 m2 with three random speed ranges. The considered area
is composed of two intersections using three one-lane roads,
where one RSU is located at each intersection. The system
operates on an event basis, such that each vehicle continuously
monitors a surrounding area and sends a warning message only
when the traffic event occurs.

To measure the performance of various behavior-based
methods, we assume that the malicious node launches a
greyhole attack. Also, when no event is triggered at time (t),
RSUs use the recorded trust value at time (t− 1).

B. Results for various communication scenarios

To study the method performance, we examine different
communication scenarios with malicious node as follows.

1) Scenario B1: there is no direct communication be-
tween normal node i and malicious node j: in this sce-
nario, we examine the ability of normal node i to detect
malicious node j while it does not have any past experience
with it. In weighted-sum model, normal node i is not able
to compute direct trust for malicious node j in this scenario.
Therefore, total trust is equal to indirect trust. On the other
hand, in the fuzzy logic method, the normal node i uses the
direct trust value of malicious node j that was computed in
the previous interval. The corresponding result is shown in
Fig.3. The following remarks can be made:

• in weighted-sum model, trust value drops to zero because
the total trust totally depends on indirect trust. While in
fuzzy logic, we notice that trust value decreases to 0.5;

• after the 15th interval, trust value in both models in-
creases, however, fuzzy logic gives higher values;

• the detection of malicious node in fuzzy logic model is
more difficult compared with weighted-sum method.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Simulation time (T) 10 sec

No. of simulation steps (N) 100 steps
Simulation step size (∆) 0.1 sec

Arrival rate (λ) 0.1 sec
Speed ranges (10-50), (20-60), (10-30)

Number of nodes 15 (one malicious node)
Total

(0)
i,j 0.8
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Fig. 3. Total trust values for scenario B1.

2) Scenario B2: the normal node i communicates with
malicious node j at the beginning of simulation time: in
this scenario, we examine the effect of the communication
with malicious node at the beginning of simulation time on
the detection rate. The normal node i communicates with
malicious node j at the 10th interval. From the results in
Fig.4, we can conclude the following:

• before the 10th interval, there is no direct communication
with malicious node. Thus, it is assumed to be affected
by indirect trust value in both models;

• after the 10th interval, the total trust for both models
depends on direct and indirect trust values;

• we notice that the trust values in both models are very
close to each others.

3) Scenario B3: the normal node i communicates with
malicious node j at the end of simulation time: in this
scenario, we study the effect of late connection between
normal node i and malicious node j. The normal node i
communicates with malicious node j at the 71st interval.
From the results in Fig.5, we can conclude the following:

• before the 71st interval, there is no direct communication
with malicious node. Thus, it is assumed to be affect by
indirect trust value in both models;

• after the 71st interval, the total trust for both models
drops to approximately 0.3. In addition, we notice that
the trust values for both models are very close to each
others.
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Fig. 4. Total trust values for scenario B2.
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Fig. 5. Total trust values for scenario B3.

C. Results for different patterns of malicious behavior

We examine various patterns of malicious behavior and
analyse them to measure how could they affect on the detection
rate. The malicious behavior scenarios are as follows.

1) Scenario C1: non-stable malicious behavior: in this
scenario, at the 20th interval, malicious node j behaves nor-
mally with neighboring nodes for five intervals. Then, it starts
malicious behavior after the 25th interval. The corresponding
result is shown in Fig.6. The following remarks can be made:

• after the 20th interval, trust value increases for both
models until reach 0.86;

• when malicious node j behaves maliciously at the 26th

interval, the trust value decreases for both models;
• we notice that trust values for both models follow the

same pattern.
2) Scenario C2: malicious node behaves normally:

in this scenario, there is no direct communication with
malicious node j until the 71st interval. After that interval,
the malicious node starts to behave normally with other nodes.
From the result in Fig.7, we can conclude the following:

• before the 71st interval, the trust value is affected by
indirect trust in both models;

• after the 71st interval, we notice that trust value increases
because of the normal behavior;

• we notice that fuzzy logic give higher trust value than
weighted-sum in this scenario.
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Fig. 6. Total trust values for scenario C1.
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Fig. 7. Total trust values scenario C2.

IV. PERFORMANCE ANALYSIS

In this section, we analyse the results to measure the
performance of the two proposed methods. In addition, the
false negative rate for both methods is examined.

A. Performance analysis for false negative rate

We measure the false negative rate in weighted-sum method
and fuzzy logic. The False Negative Rate (FNR) measures the
percentage of undetected attacks. It is computed by

FNR =
FN

Totalattacks
× 100 (6)

where FN is a false negative.
Behavioral-based model applies predefined trust threshold

to be able to make a decision about malicious behavior. If
trust value of node j is below a specific threshold, node j is
marked as a malicious node. To get the following results, we
assumed that trust threshold is equal to 0.6.

1) Study for various communication scenarios: from the
result in Fig.8, we can conclude the following:

• in the first scenario, when no communication with mali-
cious node, we notice that the false negative rate is very
high in fuzzy logic compared with weighted-sum;

• when the malicious behavior is launched at the beginning
of time, both models have the ability to detect the
malicious node. On the other hand, the false negative
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Fig. 8. Study for various communication scenarios in both models.

rate approximately is equal to an average value for
both models when the malicious behavior starts at late
intervals.

2) Study for various malicious behavior patterns: from the
result in Fig.9, we can conclude the following:

• the false negative rate in the first scenario, when non-
stable malicious behavior is applied, is less than in the
second scenario with normal behavior of malicious node;

• it is expected to have high false negative rate in the second
scenario because no malicious behavior is initiated.

B. Improvement measurement

From the previous section, we notice that weighted-sum
method gives us more accurate detection than the fuzzy logic.
Consequently, we measure the improvement percentage of
detection rate in case of greyhole attack for weighted-sum
method compared with fuzzy logic. From the result in Fig.10,
we can conclude the following:

• The best performance of weighted-sum in the first sce-
nario when there is no communication with malicious
node.

• The worst performance of weighted-sum when malicious
node initiates non-stable malicious behavior, where the
improvement for the most of the time is less than or
equal to 10%.

• After a long time, the improvement percentage for all
scenarios are close to each other except no direct com-
munication scenario where the detection rate improves
with time.

V. CONCLUSION

In this paper, we proposed two behavior-based models
which are weighted-sum and fuzzy logic. We conducted var-
ious experiments to study the performance of both models.
Also, we considered different communication scenarios with
malicious node that launches greyhole attack. Simulation
results showed that weighted-sum method outperforms fuzzy
logic in VANETs. A comparison result showed that the detec-
tion rate improves for weighted-sum method with almost all
scenarios. The detection rate for scenario 1, when there is no
direct communication, was improved by at least 27%.
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Fig. 10. Improvement percentage of weighted-sum method compared with
the fuzzy logic.

In future work, we will apply the proposed model in
Vehicle-to-Everything (V2X) network and compare the results.
The proposed model can be combined with cloud computing
as a central storage for trust values.
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