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Abstract
A population protocol is a sequence of pairwise interactions of n agents. During one interaction,
two randomly selected agents update their states by applying a deterministic transition function.
The goal is to stabilize the system at a desired output property. The main performance objectives
in designing such protocols are small number of states per agent and fast stabilization time.

We present a fast population protocol for the exact-majority problem, which uses Θ(logn)
states (per agent) and stabilizes in O(log5/3 n) parallel time (i.e., in O(n log5/3 n) interactions) in
expectation and with high probability. Alistarh et al. [SODA 2018] showed that exact-majority
protocols which stabilize in expected O(n1−Ω(1)) parallel time and have the properties of mono-
tonicity and output dominance require Ω(logn) states. Note that the properties mentioned
above are satisfied by all known population protocols for exact majority, including ours. They
also showed an O(log2 n)-time exact-majority protocol with O(logn) states, which, prior to our
work, was the fastest exact-majority protocol with polylogarithmic number of states. The stan-
dard design framework for majority protocols is based on O(logn) phases and requires that all
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10:2 A Population Protocol for Exact Majority

agents are well synchronized within each phase, leading naturally to upper bounds of the order of
log2 n because of Θ(logn) synchronization time per phase. We show how this framework can be
tightened with weak synchronization to break the O(log2 n) upper bound of previous protocols.
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Related Version See [9], https://arxiv.org/abs/1805.05157, for the full version of this arti-
cle.

1 Introduction

We consider population protocols [4] for exact-majority voting. The underlying computation
system consists of a population of n anonymous (i.e., identical) agents, or nodes, and a
scheduler which keeps selecting pairs of nodes for interaction. A population protocol specifies
how two nodes update their states when they interact. The computation is a (perpetual)
sequence of interactions between pairs of nodes. The objective is for the whole system
to eventually stabilize in configurations which have the output property defined by the
considered problem. In the general case, the nodes can be connected according to a specified
graph G = (V,E) and two nodes can interact only if they are joined by an edge. Following the
scenario considered in most previous work on population protocols, we assume the complete
communication graph and the random uniform scheduler. That is, each pair of (distinct)
nodes has equal probability to be selected for interaction in any step and each selection is
independent of the previous interactions.

The model of population protocols was proposed in Angluin et al. [4] and has subsequently
been extensively studied to establish its computational power and to design efficient solutions
for fundamental tasks in distributed computing such as various types of consensus-reaching
voting. The survey from Aspnes and Ruppert [6] includes examples of population protocols,
early computational results, and variants of the model. The main design objectives for
population protocols are small number of states and fast stabilization time. The original
definition of the model assumes that the agents are copies of the same finite-state automaton,
so the number of states (per node) is constant. This requirement has later been relaxed
by allowing the number of states to increase (slowly) with the population size, to study
trade-offs between the memory requirements and the running times.

The (two-opinion) exact-majority voting is one of the basic settings of consensus voting [3,
4, 5]. Initially each node is in one of two distinct states qA and qB, which represent two
distinct opinions (or votes) A and B, with a0 nodes holding opinion A (starting in the state
qA) and b0 nodes holding opinion B. We assume that a0 6= b0 and denote the initial imbalance
between the two opinions by ε = |a0 − b0|/n ≥ 1/n. The desired output property is that all
nodes have the opinion of the initial majority. An exact majority protocol should guarantee
that the correct answer is reached, even if the difference between a0 and b0 is only 1 (cf. [3]).
In contrast, approximate majority would require correct answer only if the initial imbalance
is sufficiently large. In this paper, when we refer to “majority” protocol/voting/problem we
always mean the exact-majority notion.

https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://arxiv.org/abs/1805.05157
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Formal Model. We will now give further formalization of a population protocol and its
time complexity. Let S denote the set of states, which can grow with the size n of the
population (but keeping it low remains one of our objectives). A configuration of the system
is an assignment of states to nodes. Let q(v, t) ∈ S denote the state of a node v ∈ V at
step t (that is, after t individual interactions); (v, q(v, t))v∈V is the configuration of the
system at this step. Two interacting nodes change their states according to a common
deterministic transition function δ : S×S → S×S. A population protocol also has an output
function γ : S → Γ, which is used to specify the desired output property of the computation.
For majority voting, γ : S → {A,B}, which means that a node in a state q ∈ S assumes
that γ(q) is the majority opinion. The system is in an (output) correct configuration at a
step t if for each v ∈ V , γ(q(v, t)) is the initial majority opinion. We consider undirected
individual communications, that is, the two interacting nodes are not designated as initiator
and responder, so the transition functions must be symmetric. Thus if δ(q′, q′′) = (r′, r′′),
then δ(q′′, q′) = (r′′, r′), implying, for example, that δ(q, q) = (r, r).

We say that the system is in a stable configuration if no node will ever again change
its output in any configuration that can be reached. The computation continues (since it
is perpetual) and nodes may continue updating their states, but if a node changes from
a state q to another state q′ then γ(q′) = γ(q). Thus a majority protocol is in a correct
stable configuration if all nodes output the correct majority opinion and will do so in
all possible subsequent configurations. Two main types of output guarantee categorize
population protocols as either always correct, if they reach the correct stable configuration
with probability 1, or w.h.p. correct. A protocol of the latter type reaches a correct stable
configuration w.h.p.3, allowing that with some low but positive probability an incorrect stable
configuration is reached or the computation does not stabilize at all.

The notion of time complexity of population protocols which has lately been used to
derive lower bounds on the number of states [1, 2], and the notion which we use also in this
paper, is the stabilization time TS defined as the first round when the system enters a correct
stable configuration4. We follow the common convention of defining the parallel time as the
number of interactions divided by n. Equivalently, we group the interactions in rounds of
length n, called also (parallel) steps, and take the number of rounds as the measure of time.
In our analysis we also use the term period, which we define as a sequence of n consecutive
interactions, but not necessarily aligned with rounds.

The main result of this paper is a majority protocol with stabilization time O(log5/3 n)
w.h.p. and in expectation while using logarithmically many states. According to [2] this
number of states is asymptotically optimal for protocols with E(TS) = O(n1−ε), and to the
best of our knowledge this is the first result that offers stabilization in time O(log2−Ω(1) n)
with poly-logarithmic state space.

Related Literature. Draief and Vojnović [12] and Mertzios et al. [17] analyzed two similar
four-state majority protocols. Both protocols are based on the idea that the two opinions
have weak versions a and b in addition to the main strong versions A and B. The strong
opinions are viewed as tokens moving around the graph. Initially each node v has a strong
opinion A or B, and during the computation it has always one of the opinions a, b, A or B (so

3 A property P (n), e.g. that a given protocol reaches a stable correct configuration, holds w.h.p. (with high
probability), if it holds with probability at least 1 − n−α, where constant α > 0 can be made arbitrarily
large by changing the constant parameters in P (n) ( e.g. the constant parameters of a protocol).

4 Some previous papers (e.g. [1, 11]) refer to this stabilization time as the convergence time.
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10:4 A Population Protocol for Exact Majority

is in one of these four states). Two interacting opposite strong opinions cancel each other and
change into weak opinions. Such pairwise canceling ensures that the difference between the
numbers of strong opinions A and B does not change throughout the computation (remaining
equal to a0 − b0) and eventually all strong opinions of the initial minority are canceled out.
The surviving strong opinions keep moving around the graph, converting the weak opposite
opinions. Eventually every node has the opinion (strong or weak) of the initial majority.

Mertzios et al. [17] called their protocol the 4-state ambassador protocol (the strong
opinions are ambassadors) and proved the expected stabilization time O(n5) for any graph
and O((n logn)/|a0−b0|) for the complete graph. Draief and Vojnović [12] called their 4-state
protocol the binary interval consensus, viewing it as a special case of the interval consensus
protocol of Bénézit et al. [7], and analyzed it in the continuous-time model. For the uniform
edge rates (the continuous setting roughly equivalent to our setting of one random interaction
per one time unit) they showed that the expected stabilization time for the complete graph
is at most 2n(logn+ 1)/|a0 − b0|. They also derived bounds on the expected stabilization
time for cycles, stars and Erdős-Rényi graphs.

The appealing aspect of the four-state majority protocols is their simplicity and the
constant-size local memory, but the downside is polynomially slow stabilization if the initial
imbalance is small. The stabilization time decreases if the initial imbalance increases, so
the performance would be improved if there were a way of boosting the initial imbalance.
Alistarh et al. [3] achieved such boosting by multiplying all initial strong opinions by the
integer parameter r ≥ 2. The nodes keep the count of the number of strong opinions they
currently hold. When eventually all strong opinions of the initial minority are canceled,
|a0 − b0|r strong opinions of the initial majority remain in the system. This speeds up both
the canceling of strong opinions and the converting of weak opinions of the initial minority,
but the price is the increased number of states. Refining this idea, Alistarh et al. [1] obtained
a majority protocol which has stabilization time O(log3 n) w.h.p. and in expectation and
uses O(log2 n) states.

A suite of constant-state polylogarithmic-time population protocols for various functions,
including exact majority, was proposed by Angluin et al. [5]. Their protocols are w.h.p.
correct and, more significantly, require a unique leader to synchronize the progress of the
computation. Their majority protocol w.h.p. reaches a correct stable configuration within
O(log2 n) time (with the remaining low probability, it either needs more time to reach the
correct output or it stabilizes with an incorrect output) and requires only a constant number
of states, but the presence of the leader node is crucial.

The protocols developed in [5] introduced the idea of alternating cancellations and
duplications, an idea that has been frequently used in subsequent majority protocols and also
forms the basis of our new protocol. This idea has the following interpretation within the
framework of canceling strong opinions. The canceling stops when it is guaranteed that w.h.p.
the number of remaining strong opinions is less than δn, for some small constant δ < 1/2.
Now each remaining strong opinion duplicates (once): if a node with a strong opinion
interacts with a node which does not hold a strong opinion then both nodes adopt the same
strong opinion. This process of duplicating opinions lasts long enough to guarantee, again
w.h.p., that all strong opinions have been duplicated. One phase of (partial) cancellations
followed by (complete) duplications takes w.h.p. O(logn) time, and O(logn) repetitions of
this phase increases the difference between the numbers of strong opinions A and B to Θ(n).
With such large imbalance between strong opinions, w.h.p. within additional O(logn) time
the minority opinion is completely eliminated and the majority opinion is propagated to all
nodes.
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Bilke et al. [11] showed that the cancellation-duplication framework from [5] can be
implemented without a leader if the agents have enough states to count their interactions.
They obtained a majority protocol which has stabilization time O(log2 n) w.h.p. and in
expectation, and uses O(log2 n) states. Berenbrink et al. [10] generalized the previous results
on majority protocols by working with k ≥ 2 opinions (plurality voting) and arbitrary graphs.
Their protocol is based on the methodology introduced earlier for load balancing [18] and
achieves O(polylogn) time using a polynomial number of states and assuming that the initial
advantage of the most common opinion is Ω(n/polylogn). For the case of complete graphs
and k = 2, their protocol runs w.h.p. in O(logn) time.

Recently Alistarh et al. [2] showed that any majority protocol which has expected
stabilization time of O(n1−ε), where ε is any positive constant, and satisfies the conditions
of monotonicity and output dominance5, requires Ω(logn) states. They also presented a
protocol which uses only Θ(logn) states and has stabilization time O(log2 n) w.h.p. and
in expectation. Their lower and upper bounds raised the following questions. Can exact
majority be computed in poly-logarithmic time with o(logn) states, if the time is measured
in some natural and relevant way other than time until (correct) stabilization? Can exact
majority be computed in o(log2 n) time with poly-logarithmically many states? (The protocol
in [2] and all earlier exact majority protocols which use poly-logarithmically many states have
time complexity at least of the order of log2 n.) Regarding the first question, one may consider
the convergence time instead of the stabilization time. For a random (infinite) sequence ω of
interaction pairs, let TC = TC(ω) denote the convergence time, defined as the first round
when (at some interaction during this round) the system enters a correct configuration (all
nodes correctly output the majority opinion) and remains in correct configurations in all
subsequent interactions (of this sequence ω). Clearly TC ≤ TS , since reaching a correct stable
configuration implies that whatever the future interactions may be, the system will always
remain in correct configurations.

Very recently Kosowski and Uznański [16] and Berenbrink et al. [8] have shown that the
convergence time TC can be poly-logarithmic while using o(logn) states. In [16] the authors
design a programming framework and accompanying compilation schemes that provide a
simple way of achieving protocols (including majority) which are w.h.p. correct, use O(1)
states and converge in expected poly-logarithmic time. They can make their protocols
always-correct at the expense of having to use O(log logn) states per node, while keeping
poly-logarithmic time, or increasing time to O(nε), while keeping a constant bound on the
number of states. In [8] the authors show an always-correct majority protocol which converges
w.h.p. in O(log2 n/log s) time and uses Θ(s+ log logn) states and an always-correct majority
protocol which stabilizes w.h.p. in O(log2 n/log s) time and uses O(s · logn/log s) states,
where parameter s ∈ [2, n].

The recent population protocols for majority voting often use similar technical tools
(mainly efficient constructions of phase clocks) as protocols for another fundamental problem
of leader election. There are, however, notable differences in computational difficulty of both
problems, so advances in one problem do not readily imply progress with the other problem.
For example, leader election admits always-correct protocols with poly-logarithmically fast
stabilization and Θ(log logn) states [13] (the lower bound here is only Ω(log logn) [1]).
Gasieniec and Stachowiak [14] have recently shown that leader election can be completed in

5 Informally, the running time of a monotonic protocol does not increase if executed with a smaller number
of agents. The output dominance means that if the positive counts of states in a stable configuration
are changed, then the protocol will stabilize to the same output.
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10:6 A Population Protocol for Exact Majority

expected time asymptotically significantly better than log2 n, but the best known time-bound
for w.h.p.-correctness is O(log2 n). The ideas in [14], however, are specific to leader election
and we do not see how they could be applied to improve expected time of majority voting.

Our Contributions. We present a majority population protocol with stabilization time
O(log5/3 n) w.h.p. and in expectation and O(logn) states. Since our protocol satisfies the
conditions of monotonicity and output dominance, in view of the lower bound shown in [2], this
implies the O(logn) number of states being asymptotically optimal for this type of protocols.
The main contribution of our protocol is that no majority protocol with O(polylogn) states
and running time O(log2−α n), for any constant α > 0, has been known before, not even if
the weaker notions of the “convergence time” or “w.h.p. correctness” were considered.

All known fast majority protocols with a poly-logarithmic number of states are based in
some way on the idea (introduced in [5]) of a sequence of Ω(logn) canceling-doubling phases.
Each phase has length Ω(logn) and the nodes are synchronized when they proceed from
phase to phase. Our new protocol still uses the overall canceling-doubling framework (as
explained in Section 2) but with shorter phases of length Θ(log2/3 n) each, at the expense of
weakening synchronization. We note that all existing majority protocols known to us cease
to function properly with sub-logarithmic phases. Such phases are too short to synchronize
nodes, resulting in there being, at the same time, nodes from different phases, and the
computation potentially getting stuck (opposite opinions from different phases cannot cancel
each other or we lose correctness). Moreover, we do not even have the guarantee that every
node will be activated at all during a short phase – in fact, we know some nodes will not.
The existing protocols require each node to be activated at least logarithmically many times
during each phase.

Our main technical contributions are mechanisms to deal with the nodes which advance
too slowly or too quickly through the short phases, that is, the nodes which are not in
sync with the bulk. In a nutshell, we group log1/3 n phases in one epoch, show that the
configuration of the system remains reasonably tidy throughout one epoch even without
explicit synchronization, and introduce “cleaning-up” and synchronization at the boundaries
between epochs. We believe that some of our algorithmic and analytical ideas developed for
fast majority voting may be of independent interest.

Outline. The remainder of the paper is organized as follows. We first, in Section 2, describe
the O(log2 n)-time, O(log2 n)-state Majority protocol presented in [11], which we use as
the baseline implementation of the canceling-doubling framework. We refer to the structure
and the main properties of this protocol when describing and analysing our new faster
protocols. In Section 3 we present our main protocol FastMajority1, which stabilizes in
O(log5/3 n) time and uses Θ(log2 n) states, and in Section 4 we outline the analysis of this
protocol. In Section 5 we outline how to modify protocol FastMajority1 yielding protocol
FastMajority2, which has the same O(log5/3 n) bound on the running time but uses only
Θ(logn) states. Further details of our protocols, including pseudocode and detailed proofs,
are given in the full version of the paper [9].

2 Exact majority: the general idea of canceling-doubling phases

We view the A/B votes as tokens which can have different values (or magnitudes). Initially
each node has one token of type A or B with value 1 (the base, or original, value of a token).
Throughout the computation, each node either has one token or is empty. In the following
we say that two tokens meet if their corresponding nodes interact.



P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:7

When two opposite tokens A and B of the same value meet, then they can cancel each
other and the nodes become empty. Such an interaction is called canceling of tokens.
When a token of type X ∈ {A,B} and value z interacts with an empty node, then this
token can split into two tokens of type X and half the value z/2, and each of the two
involved nodes takes one token. We call such an interaction splitting, duplicating or
doubling of a token.

We also use the notion of the age of a token, the number of times it has undergone
splitting. Thus the relation between the value z and the age g of a token is z = 1/2g. Each
node stores only the age of the token it possesses (if any), as its value can easily be computed
from its age and vice-versa. Note that any sequence of canceling and splitting interactions
preserves the difference between the sum of the values of all A and B tokens. This difference
is always equal to the initial imbalance. The primary objective is to eliminate all minority
tokens. When only majority tokens are left in the system (and this is recognized by at least of
the the nodes), the majority opinion can be propagated to all nodes w.h.p. within additional
O(logn) time via a broadcast process. In the broadcast process, if two nodes interact and
one of the nodes is in a final state, then the other node adopts the opinion of the first node
and switches to the final state as well, except when a conflict occurs. In such a case some
backup protocol is initiated that guarantees that the process always converges to the correct
result. Since a conflict occurs with a small probability only, the running time of the overall
protocol is O(log2 n) with high probability and in expectation. The details of this standard
process of propagating the outcome will be omitted from our descriptions and analysis. That
is, from now on we assume that the objective is to eliminate the minority tokens.

From a node’s local point of view, the computation of the O(log2 n)-time, O(log2 n)-state
Majority protocol consists of at most logn+ 2 phases and each phase consists of at most
C logn interactions, where C is a suitably large constant. Each node keeps count of phases
and steps (interactions) within the current phase, and maintains further information which
indicates the progress of computation. More precisely, each node v keeps the following data,
which require Θ(log2 n) states.

v.token ∈ {A,B, ∅} – the type of token held by v. If v.token = ∅ then the node is empty.
v.phase ∈ {0, 1, 2, . . . , logn+ 2} – the counter of phases.
v.phase_step ∈ {0, 1, 2, . . . , (C logn)− 1} – the counter of steps in the current phase.
Boolean flags, which are initially false and indicate the following status when set to true:
v.doubled – v has a token which has already doubled in the current phase;
v.done – the node has made the decision on the final output;
v.fail – the protocol has failed because of some inconsistencies.

If a node v is in neither of the two special states done and fail, then we say that v is in a
normal state: v.normal ≡ ¬(v.done ∨ v.fail). A node v is in Phase i if v.phase = i. If v
is in Phase i and is not empty, then the age of the token at v is either i if ¬v.doubled (the
token has not doubled yet in this phase) or i + 1 if v.doubled. Thus the phase of a token
(more correctly, the token’s host node) and the flag doubled indicate the age of this token.
Throughout the whole computation, the pair (v.phase, v.phase_step) can be regarded as the
(combined) interaction counter v.time ∈ {0, 1, 2, . . . , 2C log2 n)} of node v. This counter is
incremented by 1 at the end of each interaction. Thus, for example, if v.phase_step is equal
to 0 after such an increment, then node v has just completed a phase. Each phase is divided
into five parts defined below, where c is a constant discussed later.

The beginning, the middle and the final parts of a phase are buffer zones, consisting
of c logn steps each. The purpose of these parts is to ensure that the nodes progress
through the current phase in a synchronized way.

DISC 2018



10:8 A Population Protocol for Exact Majority

The second part is the canceling stage and the fourth part is the doubling stage, each
consisting of ((C−3c)/2) logn steps. If two interacting nodes are in the canceling stage of
the same phase and have opposite tokens then the tokens are canceled. If two interacting
nodes are in the doubling stage of the same phase, one of them has a token which has
not doubled yet in this phase and the other is empty, then this is a doubling interaction.

If nodes were simply incrementing their step counters by 1 at each interaction, then those
counters would start diverging too much for the canceling-doubling process to work correctly.
An important aspect of the Majority protocol, as well as our new faster protocols, is the
following mechanism for keeping the nodes sufficiently synchronized. When two interacting
nodes are in different phases then the node in the lower phase jumps up to (that is, sets
its step counter to) the beginning of the next phase. The Majority protocol relies on this
synchronization mechanism in the high-probability case when all nodes are in two adjacent
parts of a phase (that is, either in two adjacent parts of the same phase, or in the final part
of one phase and the beginning part of the next phase.) In this case the process of pulling all
nodes up to the next phase follows the pattern of broadcast. The node, or nodes, which have
reached the beginning of the next phase by way of normal one-step increments broadcast the
message “if you are not yet in my phase then proceed to the next phase.” By the time the
broadcast is completed (that is, by the time when the message has reached all nodes), all
nodes are together in the next phase. It can be shown that there is a constant β0 such that
w.h.p. the broadcast completes in β0n logn random pairwise interactions (see, for example [5];
other papers may refer to this process as epidemic spreading or rumor spreading).

The constant c in the definition of the parts of a phase is suitably smaller than the
constant C, but sufficiently large to guarantee the following two conditions: (a) the broadcast
from a given node to all other nodes completes w.h.p. within (c/5)n logn interactions; and
(b) for a sequence of (C/2)n logn consecutive interactions, w.h.p. for each node v and each
0 < t ≤ (C/2)n logn, the number of times v is selected for interaction within the first t
interactions differs from the expectation 2t/n by at most (c/5) logn. Condition (a) is used
when the nodes reaching the end of the current phase i initiate broadcast to “pull up” the
nodes lagging behind. Condition (a) implies that after (c/5)n logn interactions, w.h.p. all
nodes are in the next phase. Using Condition ( b) with t = (c/5)n logn, we can also claim
that w.h.p. at this point all nodes are within the first (3/5)c logn steps of the next phase
(all nodes are in the next phase and no node interacted more than the expected (2/5)c logn
plus (1/5)c logn times). Finally Condition (b) applied to all (c/5)n logn ≤ t ≤ (C/2)n logn
implies that w.h.p. the differences between the individual counts of node interactions do not
diverge by more than c logn throughout this phase. We set c = C3/4 and take C large enough
so that c ≤ C/9 (to have at least 3c logn steps in the canceling and doubling stages) and
both Conditions (a) and (b) hold. This way we achieve the following synchronized progress
of nodes through a phase: w.h.p. all nodes are in the same part of the same phase before
they start moving on to the next part. Moreover, also w.h.p., for each canceling or doubling
stage there is a sequence of Θ(n logn) consecutive interactions when all nodes remain in this
stage and each one of them is involved in at least c logn interactions.

Thus throughout the computation of the Majority protocol, w.h.p. all nodes are in two
adjacent parts of a phase. In particular, w.h.p. the canceling and doubling activities of
the nodes are separated. This separation ensures that the cancellation of tokens creates a
sufficient number of empty nodes to accommodate new tokens generated by token splitting
in the subsequent doubling stage. If two interacting nodes are not in the same or adjacent
parts of a phase (a low, but positive, probability), then their local times (step counters)
are considered inconsistent and both nodes enter the special fail state. The details of the
Majority protocol are given in pseudocode in the full version [9].
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From a global point of view, w.h.p. each new phase p starts with all nodes in normal states
in the beginning of this phase. We say that this phase completes successfully if all nodes are
in normal states in the beginning part of the next phase p+ 1. At this point all tokens have
the same value 1/2p+1, and the difference between the numbers of opposite tokens is equal
to 2p+1|a0 − b0|. The computation w.h.p. keeps successfully completing consecutive phases,
each phase halving the value of tokens and doubling the difference between A tokens and
B tokens, until the critical phase pc, which is the first phase 0 ≤ pc ≤ logn − 1 when the
difference between the numbers of opposite tokens is

2pc |a0 − b0| > n/3. (1)

The significance of the critical phase is that the large difference between the numbers of
opposite tokens means that w.h.p. all minority tokens will be eliminated in this phase, if
they have not been eliminated yet in previous phases. More specifically, at the end of phase
pc, w.h.p. only tokens of the majority opinion are left and each of these tokens has value
either 1/2pc+1 if the token has split in this phase, or 1/2pc otherwise. If at least one token
has value 1/2pc , then this token has failed to double during this phase and assumes that the
computation has completed. Such a node enters the done state and broadcasts its (majority)
opinion to all other nodes. In this case phase pc is the final phase.

If at the end of the critical phase all tokens have value 1/2pc+1 then no node knows yet
that all minority tokens have been eliminated, so the computation proceeds to the next
phase pc + 1. Phase pc + 1 will be the final phase, since it will start with more than (2/3)n
tokens and all of them of the same type, so at least one token will fail to double and will
assume that the computation has completed and will enter the done state. The failure to
double is taken as an indication that w.h.p. all tokens of opposite type have been eliminated.
Some tokens may still double in the final phase and enter the next phase (later receiving the
message that the computation has completed) but w.h.p. no node reaches the end of phase
pc + 2 ≤ logn+ 1. Thus the done state is reached w.h.p. within O(log2 n) parallel time.

The computation may fail w.l.p.6 when the step counters of two interacting nodes are
not consistent, or a node reaches phase logn + 2, or two nodes enter the done state with
opposite-type tokens. Whenever a node realizes that any of these low-probability events has
occurred, it enters the fail state and broadcasts this state.

It is shown in [11] that the Majority protocol stabilizes, either in the correct all-done
configuration or in the all-fail configuration, within O(log2 n) time w.h.p. and in expectation.
The standard technique of combining a fast protocol, which w.l.p. may fail, with a slow always-
correct backup protocol gives an extended Majority protocol, which requires Θ(log2 n) states
per node and computes the exact majority within O(log2 n) time w.h.p. and in expectation.
The idea is to run both the fast and the slow protocols in parallel and make the nodes in
the fail state adopt the outcome of the slow protocol. The slow protocol runs in expected
polynomial, say O(nα), time, but its outcome is used only with low probability of O(n−α),
so it contributes only O(1) to the overall expected time.

We omit the details of using a slow backup protocol (see, for example, [2, 11]), and assume
that the objective of a canceling-doubling protocol is to use a small number of states s, to
compute the majority quickly w.h.p., say within a time bound T ′(n), and to also have low
expected time of reaching the correct all-done configuration or the all-fail configuration, say
within a bound T ′′(n). If the bounds T ′(n) and T ′′(n) are of the same order O(T (n)), then
we get a corollary that the majority can be computed with O(s) states in O(T (n)) time
w.h.p. and in expectation.

6 w.l.p. – with low probability – means that the opposite event happens w.h.p.
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3 Exact majority in O(log5/3 n) time with Θ(log2 n) states

To improve on the O(log2 n) time of the Majority protocol, we reduce the length of a phase
to Θ(log1−a n), where a = 1/3. The new FastMajority1 protocol runs in O(log1−a n) ×
O(logn) = O(log5/3 n) time and requires Θ(log2 n) states per node. We will show in Section 5
that the number of states can be reduced to asymptotically optimal Θ(logn). We keep the
term a in the description and the analysis of our fast majority protocols to simplify notation
and to make it easier to trace where a larger value of a would break the proofs.

Phases of sub-logarithmic length are too short to ensure that w.h.p. all tokens progress
through the phases synchronously and keep up with required canceling and doubling, as
they did in the Majority protocol. In the FastMajority1 protocol, we have a small but
w.h.p. positive number of out-of-sync tokens, which move to the next phase either too early
or too late (with respect to the expectation) or simply do not succeed with splitting within
a short phase. Such tokens stop contributing to the regular dynamics of canceling and
doubling. The general idea of our solution is to group loga n consecutive phases (a total
of Θ(logn) steps) into an epoch, to attach further Θ(logn) steps at the end of each epoch
to enable the out-of-sync tokens to reach the age required at the end of this epoch, and to
synchronize all nodes by the broadcast process at the boundaries of epochs. When analyzing
the progress of tokens through the phases of the same epoch, we consider the tokens which
remain synchronized and the out-of-sync tokens separately.

We now proceed to the details of the FastMajority1 protocol. Each epoch consists of
2C logn steps, where C is a suitably large constant, and is divided into two equal-length parts.
The first part is a sequence of loga n canceling-doubling phases, each of length C log1−a n.
The purpose of the second part is to give sufficient time to out-of-sync tokens so that w.h.p.
they all complete all splitting required for this epoch. Each node v maintains the following
data, which can be stored using Θ(log2 n) states. For simplicity of notation, we assume
that expressions like loga n and C log1−a n have integer values if they refer to an index (or a
number) of phases or steps.

v.token ∈ {A,B, ∅} – type of token held by v.
v.epoch ∈ {0, 1, . . . , log1−a n+ 2} - the counter of epochs.
v.age_in_epoch ∈ {0, 1, . . . , loga n} – the age of the token at v (if v has a token) with
respect to the beginning of the current epoch. If v.token is A or B, then the age of this
token is g = v.epoch · loga n+ v.age_in_epoch and the value of this token is 1/2g.
v.epoch_part ∈ {0, 1} – each epoch consists of two parts, each part has C logn steps. The
first part, when v.epoch_part = 0, is divided into loga n canceling-doubling phases.
v.phase ∈ {0, 1, . . . , (loga n)− 1} – counter of phases in the first part of the current epoch.
v.phase_step ∈ {0, 1, . . . , (C log1−a n)− 1} – counter of steps (interactions) in the current
phase.
Boolean flags indicating the status of the node, all set initially to false:
v.doubled, v.done, v.fail – as in the Majority protocol;
v.out_of_sync – v has a token which no longer follows the expected progress through
the phases of the current epoch;
v.additional_epoch – the computation is in the additional epoch of 3 loga n phases,
with each of these phases consisting now of Θ(logn) steps.

We say that a node v is in epoch j if v.epoch = j, and in phase i (of the current
epoch) if v.phase = i. We view the triplet (v.epoch_part, v.phase, v.phase_step) as the (com-
bined) counter v.epoch_step ∈ {0, 1, 2, . . . , (2C logn) − 1} of steps in the current epoch,
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and the pair (v.epoch, v.epoch_step) as the counter v.time ∈ {0, 1, 2, . . . , (2C log2−a n) +
O(logn)} of the steps of the whole protocol. If a node v is not in any of the special states
out_of_sync, additional_epoch, done or fail, then we say that v is in a normal state:

v.normal ≡ ¬(v.out_of_sync ∨ v.additional_epoch ∨ v.done ∨ v.fail).

A normal token is a token hosted by a normal node. Each phase is split evenly into the
canceling stage (the first (C/2) log1−a n steps of the phase) and the doubling stage (the
remaining (C/2) log1−a n steps).

The vast majority of the tokens are normal tokens progressing through the phases of the
current epoch in a synchronized fashion. These tokens are simultaneously in the beginning
part of the same phase j and have the same age j (w.r.t. the end of the epoch). They first
try to cancel with tokens of the same age but opposite type during the canceling stage, and
if they survive, they then split during the subsequent doubling stage. At some later time
most of the tokens will still be normal, but in the beginning part of the next phase j + 1 and
having age j + 1. Thus the age of a normal token (w.r.t. the beginning of the current epoch)
is equal to its phase if the token has not yet split in this phase (this is recorded by setting
the flag doubled), or to its phase plus 1 otherwise.

As in the Majority protocol, we separate the canceling and the doubling activities to
ensure that the canceling of tokens first creates a sufficient number of empty nodes to
accommodate the new tokens obtained later from splitting. Unlike in the Majority protocol,
the FastMajority1 protocol does not have the buffer zones within a phase. Such zones
would not be helpful in the context of shorter sublogarithmic phases when anyway we cannot
guarantee that w.h.p. all nodes progress through a phase in a synchronously.

A token which has failed to split in one of the phases of the current epoch becomes an
out-of-sync token (the out_of_sync flag is set). Such a token no longer follows the regular
canceling-doubling phases of the epoch, but instead tries cascading splitting to break up
into tokens of age loga n (relative to the beginning of the epoch) as expected by the end of
this epoch. An out-of-sync token does not attempt canceling because there would be only
relatively few opposite tokens of the same value, so only a small chance to meet them (too
small to make a difference in the analysis). The tokens obtained from splitting out-of-sync
tokens inherit the out-of-sync status. A token drops the out-of-sync status if it is in the
second part of the epoch and has reached the age loga n. (Alternatively, out-of-sync tokens
could switch back to the normal status as soon as their age coincides again with their phase,
but this would complicate the analysis.) An out-of-sync node is a node hosting an out-of-sync
token. While each normal node and token is in a specific phase of the first part of an epoch
or is in the second part of an epoch, the out-of-sync nodes (tokens) belong to an epoch but
not to any specific phase. The objective for a normal token is to split into two halves in each
phase of the current epoch (if it survives canceling). The objective of an out-of-sync token is
to keep splitting in the current epoch (disregarding the boundaries of phases) until it breaks
into tokens as expected by the end of this epoch.

In our analysis we show that w.h.p. there are only O(n/2Θ(loga n)) out-of-sync tokens in
any one epoch. W.h.p. all out-of-sync tokens in the current epoch reach the age loga n (w.r.t.
the beginning of the epoch) by the midpoint of the second part of the epoch (that is, by the
step (3/2)C logn of the epoch), for each but the final epoch jf . In the final epoch at least
one out-of-sync token completes the epoch without reaching the required age.

When the system completes the final epoch, the task of determining the majority opinion
is not fully achieved yet. In contrast to the Majority protocol where on completion of the
final phase w.h.p. only majority tokens are left, in the FastMajority1 protocol there may

DISC 2018



10:12 A Population Protocol for Exact Majority

still be a small number of minority tokens at the end of the final epoch, so some further
work is needed. A node which has failed to reach the required age by the end of the current
epoch, identifying that way that this is the final epoch, enters the additional_epoch state and
broadcasts this state through the system to trigger an additional epoch of Θ(loga n) phases.
More precisely, the additional epoch consists of at most 3 loga n phases corresponding to
epochs jf − 1 (if jf > 0), jf and jf + 1, each phase now having Θ(logn) steps. W.h.p. these
phases include the critical phase pc and the phase pc + 1, defined by (1). The computation
of the additional epoch is as per the Majority protocol, taking O(log1+a n) time to reach
the correct all-done configuration w.h.p. or the all-fail configuration w.l.p.

Two interacting nodes first check the consistency of their time counters (the counters of
interactions) and switch to fail states if the difference between the counters is greater than
(1/4)C logn. If the counters are consistent but the nodes are in different epochs (so one near
the end of an epoch with the other being near the beginning of the next) then the node in
the lower epoch jumps up to the beginning of the next epoch. This is the synchronization
mechanism at the boundaries of epochs, analogous to the synchronization by broadcast at
the boundaries of phases in the Majority protocol. In the FastMajority1 protocol, however,
it is not possible to synchronize the nodes at the boundaries of (short) phases.

For details of the FastMajority1 protocol we refer the reader to the full version [9].

4 Analysis of the FastMajority1 protocol

Ideally we would like for all tokens to progress through the phases of the current epoch
synchronously, w.h.p., that is, all tokens being roughly in the same part of the same phase, as
in the Majority protocol. This would mean that w.h.p. at some (global) time all nodes are
in the beginning part of the same phase, ensuring that all tokens have the same value x, and
at some later point all nodes are in the end part of this phase and all surviving tokens have
value x/2. This ideal behavior is achieved by the Majority protocol at the cost of having
Θ(logn)-step phases. As discussed in Section 2, the logarithmic length of a phase also gives
sufficient time to synchronize w.h.p. the local times of all nodes at the end of a phase so that
they all end up together in the beginning part of the next phase.

Now, with phases having only Θ(log1−a n) steps, we face the following two difficulties
in the analysis. Firstly, while a good number of tokens split during such a shorter phase,
w.h.p. there are also some tokens which do not split. Secondly, phases of length o(logn)
are too short to keep the local times of the nodes synchronized. We can again show that a
good number of nodes proceed in synchronously, but w.h.p. there are nodes falling behind or
rushing ahead and our analysis has to account for them.

Counting the phases across the epochs, we define the critical phase pc as in (1). Similarly
as in the O(log2 n)-time Majority protocol, the computation proceeds through the phases
moving from epoch to epoch until it reaches the critical phase pc. The computation will
then get stuck in this phase or in the next phase pc + 1. Some tokens do not split in that
final phase, nor in any subsequent phase of the current epoch, because there are not enough
empty nodes to accommodate new tokens. Almost all minority tokens have been eliminated,
and so the creation of empty nodes by cancellations of opposite tokens has all but stopped.
This is the final epoch jf and the nodes which do not split to the value required by the
end of this epoch trigger the additional epoch of O(loga n) phases, each having Θ(logn)
steps. The additional epoch is needed because we do not have a high-probability guarantee
that all minority tokens are eliminated by the end of the final epoch. The small number of
remaining minority tokens may have various values which are inconsistent with the values of
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the majority tokens, so further cancellations of tokens might not be possible. The additional
epoch includes the phases of the three consecutive epochs jf − 1, jf and jf + 1 to ensure that
w.h.p. both phases pc and pc + 1 are included. Phase pc can be as early as the last phase in
epoch jf − 1 and phase pc + 1 can be as late as the first phase in epoch jf + 1.

The following conditions describe the regular configuration of the whole system at the
beginning of epoch j, and the corresponding Lemma 1 summarizes the progress of the
computation through this epoch. Recall that the FastMajority1 protocol is parameterized
by a suitably large constant C > 1 and our analysis refers also to another smaller constant
c = C3/4. We refer to the first (last) c log1−a n steps of a phase or a stage as the beginning
(end) part of this phase or stage. The (global) time steps count the number of interactions of
the whole system.
EpochInvariant(j) :
1. At least n(1− 1/23 loga n) nodes are in normal states, are in epoch j, and their epoch_step

counters are at most c loga n.
2. For each remaining node u,

a. u is in a normal state in epoch j − 1 and u.epoch_step ≥ (3/2)C logn (that is, u is in
the last quarter of epoch j − 1), or

b. u is in a normal or out-of-sync state in epoch j and u.epoch_step ≤ 4c logn.

I Lemma 1. Consider an arbitrary epoch j ≥ 0 such that phase pc belongs to an epoch
j′ ≥ j and assume that at some (global) step t the condition EpochInvariant(j) holds.
1. If phase pc does not belong to epoch j (that is, phase pc is in a later epoch j′ > j), then

w.h.p. there is a step t̃ ≤ t+ 2Cn logn when the condition EpochInvariant(j + 1) holds.
2. If both phases pc and pc+ 1 belong to epoch j, then w.h.p. there is a step t̃ ≤ t+ 2Cn logn

when
(∗) a node completes epoch j and enters the additional_epoch state (because it has a token

which has not split to the value required by the end of this epoch); and
all other nodes are in normal or out-of-sync states in the second part of epoch j or the
first part of epoch j + 1.

3. Otherwise, that is, if phase pc is the last phase in epoch j (and pc + 1 is the first phase in
epoch j + 1), then w.h.p. either there is a step t̃ ≤ t+ 2Cn logn when the above condition
(∗) for the end of epoch j holds, or all nodes eventually proceed to epoch j + 1 and there
is a step t̂ ≤ t+ 3Cn logn when the condition analogous to (∗) but for the end of epoch
j + 1 holds.

The condition PhaseInvariant1(j, i) given below describes the regular configuration of
the whole system at the beginning of phase 0 ≤ i ≤ loga n in epoch j ≥ 0. We note that the
last phase in an epoch is phase loga n− 1 and the condition PhaseInvariant1(j, loga n) refers
in fact to the beginning of the second part of the epoch. A normal token in the beginning
of phase i in epoch j has (absolute) value 2−(j loga n+i) and relative values 1, 2, 1/2i and
2loga n−i w.r.t. the beginning of this phase, the end of this phase, the beginning of this epoch
and the end of this epoch, respectively. It may also be helpful to recall that for a given
node v, phase i starts at v’s epoch step Ci log1−a n. Observe that EpochInvariant(j) implies
PhaseInvariant1(j, 0).
PhaseInvariant1(j, i) :
1. The set W of nodes which are normal and in the beginning part of phase i in epoch j has

size at least n(1−(i+1)/22 loga n). That is, a node v is inW if and only if v.normal is true,
v.phase_step ≤ c log1−a n, v.epoch = j, and either v.epoch_part = 0 and v.phase = i if
i < loga n, or v.epoch_part = 1 and v.phase = 0 if i = loga n.
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2. Let U = V \W denote the set of the remaining nodes.
a. For each u ∈ U :

u is a normal node in epoch j − 1, u.epoch_step ≥ (3/2)C logn and i < (c/C) loga n;
or u is in a normal or out-of-sync state in epoch j and |u.epoch_step− Ci log1−a n| ≤
4c logn.

b. The total value of the tokens in U w.r.t. the end of epoch j is at most n(i+ 1)/22 loga n.

For an epoch 0 ≤ j and a phase 0 ≤ i < loga n in this epoch, let p(j, i) = j loga n+i denote
the global index of this phase. We show that w.h.p. the condition PhaseInvariant1(j, i) holds
at the beginning of each phase p(j, i) ≤ pc.

I Lemma 2. For arbitrary 0 ≤ j and 0 ≤ i ≤ loga n − 1 such that p(j, i) ≤ pc, assume
that the condition EpochInvariant(j) holds at some (global) time step t and the condition
PhaseInvariant1(j, i) holds at the step ti = t+i(C/2)n log1−a n. Then the following conditions
hold, where ti+1 = t+ (i+ 1)(C/2)n log1−a n.
1. If p(j, i) < pc, then w.h.p. at step ti+1 the condition PhaseInvariant1(j, i+ 1) holds.
2. If p(j, i) = pc, then w.h.p. at step ti+1 the total value, w.r.t. the end of epoch j, of the

minority-opinion tokens is O(n logn/22 loga n).

Lemma 2 is proven by analyzing the cancellations and duplications of tokens in one phase.
This lemma heavily uses Claim 6, in which it is essential that a ≤ 1/3. Lemma 1 is proven
by inductively applying Lemma 2. In turn, Theorem 3 below, which states the O(log5/3 n)
bound on the completion time of the FastMajority1 protocol, can be proven by inductively
applying Lemma 1 and by choosing a = 1/3.

I Theorem 3. The FastMajority1 protocol uses Θ(log2 n) states, computes the majority
w.h.p. within O(log5/3 n) time, and reaches the correct all-done configuration or the all-fail
configuration within expected O(log5/3 n) time.

I Corollary 4. The majority can be computed with Θ(log2 n) states in O(log5/3 n) time w.h.p.
and in expectation.

We now give some further explanation of the structure of our analysis, referring the reader
to the full version [9] for the formal proofs. Lemma 5 and Claim 6 show the synchronization
of the nodes which we rely on in our analysis. Lemma 5 is used in the proof of Lemma 1,
where we analyze the progress of the computation through one epoch consisting of O(n logn)
interactions (O(logn) parallel steps). Lemma 5 can be easily proven using first Chernoff
bounds for a single node and then the union bound over all nodes. The proof of Claim 6
is considerably more involved, but we need this claim in the proof of Lemma 2, where we
look at the finer scale of individual phases and have to consider intervals of Θ(log1−a n)
interactions of a given node. This claim shows, in essence, that most of the nodes stay tightly
synchronized when they move from phase to phase through one epoch. The epoch_step
counters of these nodes stay in a range of size at most c log1−a n.

I Lemma 5. For any constant C and for c = C3/4, during a sequence of t ≤ 2Cn logn
interactions, with probability at least 1−n−α(C) (for a suitable function α = ω(1)) the number
of interactions of each node is within c logn of the expectation of 2t/n interactions.

I Claim 6. For a fixed j ≥ 0, assume that EpochInvariant(j) holds at a time step t.
Let W ⊆ V be the set of n(1 − o(1)) nodes which satisfy at this step the condition 1 of
EpochInvariant(j) (that is, W is the set of nodes which are in epoch j with epoch_step
counters at most c loga n). Then at an arbitrary but fixed time step t < t′ ≤ t+ (3/4)Cn logn,
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w.h.p. all nodes in W are in epoch j and all but O(n/26 loga n) of them have their epoch_step
counters within c/2 · log1−a n from 2(t′ − t)/n.

Note that this claim only holds if a ≤ 1/3, otherwise one can not guarantee that w.h.p. all
but O(n/26 loga n) of the nodes in W have their epoch_step counters within c/2 · log1−a n of
2(t′ − t)/n.

Lemmas 7 and 8 describe the performance of the broadcast process in the population-
protocol model. Lemma 7 has been used before and is proven, for example, in [11]. Lemma 8
is a more detailed view at the dynamics of the broadcast process, which we need in the
context of Lemma 1 to show that the synchronization at the end epoch j gives w.h.p.
EpochInvariant(j + 1).

I Lemma 7. For any constant c, the broadcast completes with probability at least 1− n−α(c)

(for a suitable function α = ω(1)) within cn logn interactions.

I Lemma 8. Let b ∈ (0, 1) and c > 0 be arbitrary constants and let c1 be a sufficiently large
constant. Consider the broadcast process and let t1 be the first step when n/26 logb n nodes
are already informed and t2 = t1 + c1n logb n. Then the following conditions hold.
1. With probability at least 1− n−ω(1), n−O(n/26 logb n) nodes receive the message for the

first time within the c1n logb n consecutive interactions {t1 + 1, t1 + 2, . . . , t2}.
2. With probability at least 1− n−α(c) (for a suitable function α = ω(1)), t1 ≤ cn logn and

each node interacts at most 4c logn times in interval [1, t2].
3. With probability at least 1 − n−ω(1), there are n − O(n/26 logb n) nodes which interact

within interval [t1 + 1, t2] at least c1 logb n times but not more than 3c1 logb n times.

5 Reducing the number of states to Θ(log n)

Our FastMajority1 protocol described in Section 3 requires Θ(log2 n) states per node. Using
the idea underlying the constructions of leaderless phase clocks in [15] and [2], we now modify
FastMajority1 into the protocol FastMajority2, which still works in O(log5/3 n) time but
has only the asymptotically optimal Θ(logn) states per node.7 The general idea is to separate
from the whole population a subset of clock nodes, whose only functionality is to keep the
time for the whole system. The other nodes work on computing the desired output and check
whether they should proceed to the next stage of the computation when they interact with
clock nodes. We note that while we use similar general structure and terminology as in [2],
the meaning of some terms and the dynamics of our phase clock are somewhat different.
A notable difference is that in [2] the clock nodes keep their time counters synchronized on
the basis of the power of two choices in load balancing: when two nodes meet, only the lower
counter is incremented. In contrast, we keep the updates of time counters as in the Majority
and FastMajority1 protocols: both interacting clock nodes increment their time counters,
with the exception that the slower node is pulled up to the next Θ(logn)-length phase or
epoch, if the faster node is already there.

The nodes in the FastMajority2 protocol are partitioned into two sets with Θ(n) nodes
in each set. One set consists of worker nodes, which may carry opinion tokens and work
through canceling-doubling phases to establish the majority opinion. These nodes maintain
only information on whether they carry any token, and if so, then the value of the token

7 It may be possible to use instead the ideas underlying other phase clocks, e.g. the Θ(log logn)-state
phase clock from [13], but this would not result in fewer states being needed for our protocol.
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(equivalently, the age of the token, that is, the number of times this token has been split).
Each worker node has also a constant number of flags which indicate the current activities
of the node (for example, whether it is in the canceling stage of a phase), but it does not
maintain a detailed step counter. The other set consists of clock nodes, which maintain
their detailed epoch-step counters, counting interactions with other clock nodes modulo
2C logn, for a suitably large constant C, and synchronizing with other clocks by the broadcast
mechanism at the end of epoch. Thus the clock nodes update their counters in the same way
as all nodes would update their counters in the FastMajority1 protocol.

The worker nodes interact with each other in a similar way as in FastMajority1, but now
to progress orderly through the computation they rely on the relatively tight synchronization
of clock nodes. A worker node v advances to the next part of the current phase (or to the
next phase, or the next epoch), when it interacts with a clock node whose clock indicates
that v should progress. There is also a third type of nodes, the terminator nodes, which
will appear later in the computation. A worker or clock node becomes a terminator node
when it enters a done or fail state. The meaning and function of these special states are as
in protocols Majority and FastMajority1.

A standard input instance, when each node is a worker with a token of value 1, is
converted into a required initial workers-clocks configuration during the following O(logn)-
time pre-processing. When two value-1 tokens of opposite type interact they cancel out and
one of the two involved nodes, say the one which has had the token B, becomes a clock node.
If two value-1 tokens of the same type interact and their step counters have different parity,
then the tokens are combined into one token of value 2. The combined toke is taken by one
node, while the other node, say the one with the odd counter, becomes a clock node. All
nodes count their interactions during the pre-processing, but the O(logn) states needed for
this are re-used when the pre-processing completes. At this point the worker nodes have an
input instance with the base value of tokens equal to 2. Some tokens may have value 1 (one
may view them as if already split in the first phase) and some nodes may be empty.

Referring to the state space of the FastMajority1 protocol, in the FastMajority2 pro-
tocol each worker node v maintains data fields v.token, v.epoch and v.age_in_epoch to carry
information about tokens and their ages, and a constant number of flags to keep track of
the status of the node and its progress through the current epoch and the current phase.
These include the status flags from the FastMajority1 protocol v.doubled, v.out_of_sync
and v.additional_epoch, and flags indicating the progress: the v.epoch_part flag from
FastMajority1 and a new (multi-valued) flag stage ∈ {beginning, canceling,middle, doubling,
ending}. The clock nodes maintain the epoch_step counters. The nodes have constant num-
ber of further flags, for example to support the initialization to workers and clocks and the
implementation of the additional epoch and the slow backup protocol. Thus in total each
node has only Θ(logn) states.

Further details of FastMajority2, including pseudocodes, details of the pre-processing
and outline of the proof of Theorem 9 which summarizes the performance of this protocol,
are given in the full version [9].

I Theorem 9. The FastMajority2 protocol uses Θ(logn) states, computes the exact majority
w.h.p. within O(log5/3 n) parallel time and stabilizes (in the correct all-done configuration or
in the all-fail configuration) within the expected O(log5/3 n) parallel time.

I Corollary 10. The exact majority can be computed with Θ(logn) states in O(log5/3 n)
parallel time w.h.p. and in expectation.
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