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ABSTRACT

This paper proposes a novel approach for colorizing near
infrared (NIR) images using a S-shape network (SNet). The
proposed approach is based on the usage of an encoder-
decoder architecture followed with a secondary assistant
network. The encoder-decoder consists of a contracting path
to capture context and a symmetric expanding path that en-
ables precise localization. The assistant network is a shallow
encoder-decoder to enhance the edge and improve the output,
which can be trained end-to-end from a few image exam-
ples. The trained model does not require any user guidance
or a reference image database. Furthermore, our architecture
will preserve clear edges within NIR images. Our overall
architecture is trained and evaluated on a real-world dataset
containing a significant amount of road scene images. This
dataset was captured by a NIR camera and a corresponding
RGB camera to facilitate side-by-side comparison. In the
experiments, we demonstrate that our SNet works well, and
outperforms contemporary state-of-the-art approaches.

Index Terms— Infrared, Colorization, S-shape network,
Convolutional neural network

1. INTRODUCTION

In recent years, image acquisition devices have largely ex-
panded and sensor technology is increasing. For example, to
improve the safety of driving at night, advanced driver assis-
tance systems have become more popular, which use camer-
a sensors for object detection and driver alerting. At night,
near-infrared (NIR) cameras can get more information than
regular RGB (color) cameras and human vision (e.g. pedes-
trian, animals, road and roadside information). As a result,
NIR images can segment images according to the material of
the object, which means that light reflection in the NIR spec-
tral band depends on the material. As such, NIR light can be
used to illuminate the scene in low light conditions. However,
NIR light is out of the range of human visual perception and
lacks color discrimination, making it difficult for the user to
understand. As a result, conversion from nocturnal, illumi-
nated NIR images to natural looking RGB images has several
applications in the user application and visualization aspects
of NIR sensing solutions.

Fig. 1. Colorization results by our SNet.

Converting a grayscale NIR image into a multi-channel
RGB is closely related to Image Colorization, where regular
grayscale images are colorized. Although they have some par-
ticularities, their techniques are not suitable to colorize NIR
images. For image colorization, the input grayscale images
are used as luminance and only chrominance needs to be es-
timated, so the resulting output is sharp without blurring of
scene detail [1]. However, the NIR images cannot be used
as color luminance directly because they measure material
dependant NIR reflectance. Subsequently, the results of col-
orizing NIR images are often blurry and lack high frequency
scene detail [2].

This paper proposes a novel method based on S-shape net-
work (SNet) to transfer a NIR image to RGB image automat-
ically, which can not only colorize the NIR images but also
retain the NIR images texture (Fig. 1). The skip connect-
ed encoder-decoder mainly generates the RGB outputs while
the shallow encoder-decoder network, which has a ‘loss func-
tion’ between the outputs and ground truth, is used to enhance
edges in the RGB outputs and stabilize the textureless region.
In summary, this paper makes the following contributions:
(1) We construct a dataset of dual infrared and RGB color
image pairs (1978 pairs) and perform feature-based registra-
tion; (2) We propose a novel end-to-end neural network with
encoder-decoder architecture with a skip connection between
the encoder and decoder layers. Although previous work has
considered similar network structures [3][4], we uniquely add
an edge-preserving assistant network to perform NIR images
colorization.

2. RELATED WORK

For Colorization, traditional approaches [5][6][7] require us-
er interactions, such as user strokes (scribbles). In addition,



example-based colorization techniques instead utilize refer-
ence images that are similar to the input images by using fea-
ture extraction and matching [8]. However suitable reference
images are not conveniently available.

Furthermore, fully automatic colorization models are pro-
posed with the recent advancement of Convolutional Neu-
ral Networks (CNN) [1][9][10][11]. Some methods direct-
ly estimate chrominance values [1][9] and others quantize the
chrominance space into discrete colors [10][11] which initial-
ize their networks with publicly available pre-trained models
and adapt them to do colorization. The work of [1] proposes
a model that combines both global and local image features
via a fusion layer. The model is trained by a classification
loss for colorization, which exploits the class labels of the
dataset to more efficiently learn the global features. Addi-
tionally, both [1] and [11] require combining the raw output
of the CNN with the input image that used as luminance and
transfers the details of the grayscale images to the final RGB
images, which is not suitable for NIR colorization.

Recently, Limmer et al. [12] propose an approach that us-
es CNN to perform an automatic integrated colorization from
a NIR image. The transfer is performed by feeding a locally
normalized image pyramid to a deep multi-scale CNN, which
uses the mean filtered input image as an additional input to
the final fully connected layer to deblur the output. Besides,
a triplet based colorization model is proposed in the same
scheme of architectures of DCGAN, which generates three
instances, each corresponding to one of channels of the (RG-
B) image [2]. However [2] is trained and tested via image
patches, which is not suitable for large scale images, and their
results are not clear.

Our colorization model does not rely on any hand-crafted
or pre-trained model. Due to the proposed architecture, the
network propagates context information to higher resolution
layers, which remain the details of the input NIR images. Fur-
thermore, our model can process images of any resolution and
we learn everything in an end-to-end fashion.

3. S-SHAPE NEURAL NETWORK

This section describes S-shape neural network, in short SNet,
to colorize NIR images. The architecture is inspired by UNet
[3] and combines this with a shallow edge loss network which
is used as a self-generated loss function. The SNet model is
a combination of a skip connected encoder-decoder pipeline
named ColorNet with an edge loss network which is also a
shallow encoder-decoder pipeline to enhance edges, named
EdgeNet, as illustrated in Fig. 2.

3.1. ColorNet

The encoder takes a NIR image as input and produces a latent
feature representation of that image. The decoder takes this
feature representation and generates the RGB image. It is also

Fig. 2. Overview of our S-shape network.

important to connect the encoder and the decoder through a
contracting path.

Our encoder consists of 5 convolution blocks. The input
is a single channel of NIR image and output is a 512× 7× 7
dimensional feature representation. Each block consists of
two 3× 3 convolutions, each followed by a Batch Normaliza-
tion (BN) layer and a rectified linear unit (ReLU). After each
block (except the last block), we use a max pooling (factor=2)
layer and double the number of feature maps.

Our decoder consists of 4 convolution blocks. Each block
firstly up-samples the input feature maps then concatenates
with the cropped feature maps from the symmetric encoder.
Due to the loss of border pixels in every convolution, the crop-
ping is necessary. In addition, each block is followed by two
3 × 3 convolutions with BN layer and ReLU layer, which is
similar to the encoder but we quarter the number of feature
maps. Finally, behind the last block, a 1× 1 convolution fol-
lowed with a tanh() activation layer, which is suitable for gen-
erating images [11], is used to map to a three channel RGB
output.

We train our color network by regressing to the ground
truth of RGB images. We require a loss function for measur-
ing generation errors to minimize the distance between two
images pixel-wise. The first consideration is L2 regression.
Our objective is to learn a mapping predicted ŷ = F(x) to
the ground truth y. For a pixel, we defined the loss function
as:

ℓ(ŷ, y) = ∥ŷ − y∥2, (1)

and subsequently, for a batch of images, the loss function is:

LColor(F(X; θ),Y) =

B∑
b

H,W∑
h,w

ℓ(F(X; θ)b,h,w,Yb,h,w),

(2)



where, X ∈ RH×W×1×B is a set of one channel NIR images;
Y ∈ RH×W×3×B presents a set of the RGB color channels
of the images; H, W, B are height, weight and batch size; the
mapping is learned with ColorNet F , parameterized by θ.

3.2. EdgeNet

Our EdgeNet is illustrated in Fig. 2. It consists of a shallow
encoder-decoder symmetrically: 2 layers of encoding and 2
layers of decoding. In addition, the number of feature maps is
increasing in the encoder and decreasing in the decoder. Each
encoding layer consists convolutions with stride 2 for down-
sizing, batch normalization, leaky ReLU activations and each
decoding layer consists of transposed convolutions with stride
2 for up-sampling, batch normalization and tanh() activation.
Here both are 3× 3 kernel size.

We use this network as a smart ‘loss function’ for not only
enhancing edges but also learning the color of other regions
in the ground truth again, which can be trained together with
the ColorNet to jointly improve performance. The loss net-
work can become the most suitable ‘loss function’ between
the generated result and the ground truth trough training. The
input is the difference map between the generated result and
the ground truth (original RGB images), and the output is the
edges of the original RGB image, which means the ground
truth (GT) of EdgeNet is the edge of the original RGB im-
ages.

Although the ground truth of our loss network is an edge
image of ground truth that is a single channel with value 0
and 1, which seems like a classification task for the EdgeNet
with cross-entropy loss, we instead see it as a regression task
for which we will get a better result. Subsequently, the same
as ColorNet, we also use L2-loss for a batch of images:

LEdge(Fe(D; θe),E) =
B∑
b

H,W∑
h,w

ℓ(Fe(D; θe)b,h,w,Eb,h,w),

(3)
where, LEdge is the loss function of the EdgeNet; D ∈
RH×W×3×B is a set of the difference maps between the out-
put of ColorNet and GT; E ∈ RH×W×3×B presents a set
of the edge of RGB images; the mapping is learned with
EdgeNet Fe, parameterized by θe.

The task of loss network is to assist ColorNet to get a
clearer result but not to really get an edge image from the
difference map that presents weak regions of the generated
color image compared to the GT. The goal of this network is
to reduce the errors of difference map which is similar to the
purpose of a loss function. In fact, we expect that the loss
network works well, but if we set the GT of EdgeNet to 0,
the weights of loss network will tend to be all 0, and cannot
perform well. Instead, we change the GT of EdgeNet to be an
edge image of the original RGB image, which can not only be
successfully trained but also enhance the edge and stabilize
other regions to improve the result of ColorNet. As we know,

except the edge of GT, most values are equal to 0 in the edge
image, which means that the edge loss network tries to let the
values of the difference map tend to be all 0 except edges.
Subsequently, if color regions in a color image are learned
well, the edges of these regions will be clear too. In fact, this
is a better way to enhance the edges in color images. From
Equation 4 to Equation 6, we see how EdgeNet works (’→’
means ’tend to’):

D = F(X; θ)− Y → E, (4)

F(X; θ) → E + Y, (5)

LEdge(Fe(D; θ),E)

=

B∑
b

H,W∑
h,w

ℓ(Fe(F(X; θ)− Y; θ)b,h,w,Eb,h,w).
(6)

We define the overall loss function as:

L = Lcolor + Ledge. (7)

4. HIBIKINO DATASET

The model was trained and evaluated by real-world images of
Japanese road scenes. As the mentioned application scope is
mainly for assisting drivers and [12] does not open its dataset
to the public, a dataset needs to be assembled accordingly.
The images in the dataset were taken by two cameras: one
is RGB camera (Artary camera Artcam-1300mi-nir); one is
NIR camera (Logitech web camera Carl Zeiss Tessar). Al-
though these two cameras are fixed together, they have differ-
ent extrinsic alignment and intrinsic parameters. Therefore,
the RGB images and NIR images are matched using a pixel
to pixel registration. We use a feature-based method to find
correspondence between image features such as points, lines,
and contours. Given manually the correspondence between
a number of points in two images, a geometrical transforma-
tion is then determined to map the target image to the refer-
ence images, thereby establishing point-by-point correspon-
dence. Finally, 1806 image pairs were collected for the train-
ing set, 97 pairs for validation set and 75 pairs for the testing
set, which is smaller than [12] but more complex with regard
to contents (containing buildings road). The image pairs in
the testing set are not contained in training set. Fig. 3 shows
various example image pairs from the dataset.

Fig. 3. Exemplary images from the dataset.



5. EXPERIMENTS

We train the SNet model with images of 224 × 224 pixel-
s. While our model is able to process images of any size, it
is optimum when the size of the input image is 224 × 224
pixels. The SNet was trained using stochastic Adam opti-
mizer which prevents overfitting and leads to convergence
faster [13]. During the learning process, we use the following
hyper-parameters: learning rate 0.0001 for both ColorNet and
EdgeNet; leak ReLU 0.2; batch size 4.

Fig. 4. Experimental results: the first row is the results of
SNet and the second row is from ColorNet without EdgeNet.

Fig. 5. Comparison with prior work of [2].

We can see our EdgeNet improves the clearness of edges
and enhances the color of trees and cars from Fig. 4. Besides,
Fig. 5 shows results applied on images from [14] in the same
situation with [2]. Our results are much clearer than [2].

Fig. 6 shows results from other contemporary coloriza-
tion methods. We can see our method is more suitable for
infrared images colorization than other colorization methods,
producing a qualitative output that is most similar to the GT.
We calculate the cosine similarity and PNSR statistical eval-
uation measures to provide quantitative performance analysis
based on the GT in Table.1.

The proposed method can colorize NIR images fully au-
tomatically by our SNet. However, some information cannot
be recovered from a single channel NIR images. For example,
the traffic signal, cars, and buildings sometimes are colorized

Fig. 6. Comparison with other Colorization methods.

by false color that depends on the color of the object in the
dataset (Fig. 7). In addition, the dataset is small and only
contains the road scene, which limits the general robustness
of our network trained by this dataset.

Table 1. Comparison results with other methods.
NIR Image [15] [11] [1] SNet

cosine() 0.9211 0.9164 0.9158 0.9144 0.9080
PSNR 13.89 14.09 14.03 14.07 22.53

Fig. 7. Exemplar erroneous colorization results.

6. CONCLUSION

This paper presented a novel architecture called SNet for the
colorization of NIR image, which consists of a ColorNet and
an EdgeNet. It is a novel way to use the EdgeNet to not on-
ly enhance the edges but also stabilize color regions. We can
see from the results that the SNet is able to obtain colorful
and clear RGB images from the given NIR image. Compared
to other grayscale image colorization or NIR image coloriza-
tion. Our SNet has many potential applications such as seg-
mentation. Future work focuses on collecting NIR and RGB
images to make a bigger training and testing dataset, try other
datasets, and improve the results.
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