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Abstract. The CONNECTED VERTEX COVER problem is to decide if a
graph G has a vertex cover of size at most k that induces a connected
subgraph of GG. This is a well-studied problem, known to be NP-complete
for restricted graph classes, and, in particular, for H-free graphs if H is
not a linear forest. On the other hand, the problem is known to be
polynomial-time solvable for sP»-free graphs for any integer s > 1. We
prove that it is also polynomial-time solvable for (sP; + Ps)-free graphs
for every integer s > 0.

1 Introduction

A set S of vertices in a graph G forms a vertex cover of G if every edge of G is
incident with a vertex of S. The set S is an independent set if no two vertices in S
are adjacent. These definitions lead to two classical graph problems, which are
both NP-complete: the VERTEX COVER problem is to decide if a given graph G
has a vertex cover of size at most k for a given integer k; the INDEPENDENT SET
problem is to decide if a given graph G has an independent set of size at least ¢
for a given integer . A set S of at least k vertices of a graph G on n vertices is
a vertex cover if and only if Vi \ S is an independent set (of size at most n — k).
Hence VERTEX COVER and INDEPENDENT SET are polynomially equivalent. A
vertex cover of a graph G is connected if it induces a connected subgraph of G.
In our paper, we focus on the corresponding decision problem.

CONNECTED VERTEX COVER
Instance: a graph G and an integer k.
Question: does G have a connected vertex cover S with |S| < k?

In 1977, Garey and Johnson [9] proved that CONNECTED VERTEX COVER is NP-
complete for planar graphs of maximum degree 4. More recently, Priyadarsini
and Hemalatha [I§] and Fernau and Manlove [] strengthened this result to 2-
connected planar graphs of maximum degree 4 and planar bipartite graphs of
maximum degree 4, respectively. Wanatabe et al. [22] proved that CONNECTED
VERTEX COVER is NP-complete even for 3-connected graphs. Very recently,
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Munaro [I6] proved the same for line graphs of planar cubic bipartite graphs and
for planar bipartite graphs of arbitrarily large girth, and Li et al. [I3] showed
NP-completeness for 4-regular graphs.

We now turn to tractable cases. Ueno et al. [2I] proved that CONNECTED
VERTEX COVER is polynomial-time solvable for graphs of maximum degree at
most 3. Escoffier et al. [7] proved the same result for chordal graphs. As VERTEX
COVER is also polynomial-time solvable for chordal graphs [10], the authors of [7]
proposed a general study on the complexity of CONNECTED VERTEX COVER on
graph classes for which VERTEX COVER is polynomial-time solvable. This leads
us to the research question of our paper:

For which classes of graphs do the complexities of VERTEX COVER and CON-
NECTED VERTEX COVER coincide?

This question was addressed by Chiarelli et al. [6] who considered classes of
graphs characterized by a single forbidden induced subgraph H. Such graphs
are called H-free. They observed that the results of Munaro [I6] imply that
CONNECTED VERTEX COVER is NP-complete for H-free graphs if H contains
a cycle or a claw. Using Poljak’s construction [I7], VERTEX COVER is readily
seen to be NP-complete for graphs of arbitrarily large girth and thus for H-
free graphs whenever H contains a cycle. When H is the claw, VERTEX COVER
becomes polynomial-time solvable for H-free graphs [15J20]. Hence, there exist
graphs H such that CONNECTED VERTEX COVER and VERTEX COVER have
different complexities when restricted to H-free graphs (assuming P # NP).

So the complexity of CONNECTED VERTEX COVER is known for H-free
graphs unless H is a linear forest (the disjoint union of one or more paths).
Even the case where H is a single path on r vertices (denoted P,) is settled nei-
ther for VERTEX COVER nor for CONNECTED VERTEX COVER; it is not known
if there exists an integer r such that VERTEX COVER or CONNECTED VERTEX
COVER is NP-complete for P,-free graphs. Lokshtanov et al. [I4] proved that
INDEPENDENT SET, and thus VERTEX COVER, is polynomial-time solvable for
Ps-free graphs. Recently, Grzesik et al. [T1] extended this to Ps-free graphs. We
also note that if VERTEX COVER is polynomial-time solvable on H-free graphs
for some graph H, then it is polynomial-time solvable on (P; + H)-free graphs.
This follows from the folklore observation that to solve the complementary prob-
lem of INDEPENDENT SET on a (P, + H)-free graph one solves the problem on
each H-free graph obtained by removing a vertex and all its neighbours.

Theorem 1 ([I1]). For every s > 0, VERTEX COVER can be solved in polyno-
mial time for (sPy + Ps)-free graphs.

By using the concept of the price of connectivity [B5I12], Chiarelli et al. [6]
proved that CONNECTED VERTEX COVER is polynomial-time solvable for sPs-
free graphs for any integer s > 1. For VERTEX COVER this follows by combining
two classical results [2[T9] (as is well-known). No other complexity results are
known for CONNECTED VERTEX COVER for H-free graphs if H is a linear forest.

Our Contribution. We continue the study of [6l/7] and prove the following
result, which includes polynomial-time solvability for Ps-free graphs.
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Theorem 2. For every s > 0, CONNECTED VERTEX COVER can be solved in
polynomial time for (sPy + Ps)-free graphs.

Our Method. It is easy to construct graphs with a minimum connected vertex
cover that do not contain a minimum vertex cover; see the graph G; in Fig.[1] We
also note that the difference between a minimum vertex cover and a minimum
connected vertex cover in an (sP; + Ps)- free graph is at most 3 if s = 0 and at
most 3s+10 if s > 1 [I2]. We cannot exploit this property directly as that would
require an algorithm to enumerate all minimum vertex covers in polynomial
time. Moreover, the graph G5 in Fig. [l shows that even if this were possible, it
is not immediately obvious how to proceed; one cannot necessarily hope to find
a minimum connected vertex cover by extending a minimum vertex cover. As an
extra complication, for CONNECTED VERTEX COVER one cannot extend results
on H-free graphs to results on (sP; + H)-free graphs in a straightforward way
(certainly one cannot use the technique for VERTEX COVER described before
Theorem .

Our method is based on an analysis of the structure of dominating sets in
(sPy + Ps)-free graphs using a characterization of Ps-free graphs due to Bacsé
and Tuza [I]. We translate the problem into a problem in which we try to extend
a partial vertex cover into a full connected vertex cover. We solve this extension
variant of CONNECTED VERTEX COVER by using Theorem |[1| (applied to the
smaller class of (sP; + Ps)-free graphs). We show how to do this in Section [3|and
then show how to use this result to prove Theorem [2]in Section[d] An important
ingredient of our proof is to reduce the size of the input graph by contracting
an edge between two vertices u and v whenever we detect that u and v will
belong to the connected vertex cover. This idea stems from the observation that
a connected graph G on n vertices has a connected vertex cover of size k if and
only if G contains the star K; ,,—; on n — k + 1 vertices as a contraction.

2 Preliminaries

Let G = (V, E) be a graph. For aset S C V, the graph G[S] denotes the subgraph
of G induced by S, and we say that S is connected if G[S] is connected. We write
G—-S=G[V\S] and if S = {u} we may simply write G — u. For a vertex
u € V, we write Ng(u) = {v | wv € E} to denote the neighbourhood of u.
For a set S C V, we write Ng(S) = (U,cs Na(u)) \ S. A subset D C V is a
dominating set of G if every vertex of V' \ D is adjacent to at least one vertex of
D. An edge uv of a graph G = (V, E) is dominating if {u, v} is dominating. The
contraction of an edge uv € F is the operation that replaces v and v by a new
vertex adjacent to precisely those vertices of V' \ {u,v} adjacent to v or v in G.
Recall that for a graph H, we say that another graph G is H-free if it does not
contain an induced subgraph isomorphic to H. The disjoint union G + H of two
vertex-disjoint graphs G and H is the graph (Vg U Vg, Eq U Eg). The disjoint
union of r copies of a graph G is denoted by rG. A linear forest is the disjoint
union of one or more paths. The following, straightforward lemma holds for any
linear forest.
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| 5 ! g Gz E G2 E
Fig. 1: An example of a Ps-free graph G; with a minimum connected vertex cover
(coloured black in the right-hand drawing) that contains no minimum vertex
cover (there are exactly two, indicated by the sets of black and white vertices in
the left-hand drawing). The graph G5 is an example of a (P; + Ps)-free graph with
a minimum vertex cover (coloured black in the left hand drawing) that is not
contained in any minimum connected vertex cover; clearly any connected vertex
cover that contains it has at least five vertices and an example of a minimum

connected vertex cover on four vertices is indicated by the vertices coloured black
in the right-hand drawing.

Lemma 1. Let G be a connected (sPy+ Ps)-free graph for some s > 0. The graph
obtained from G after contracting an edge is also connected and (sPy + Ps)-free.

We will use the following result of Bacsé and Tuza [I] as a lemma.

Lemma 2 ([I]). Every connected Ps-free graph G has a dominating set D,
computable in O(n3) time, that induces either a P3 or a complete graph.

Note that it is not difficult to compute the set D in polynomial time; this also
follows from a more general result of Camby and Schaudt [4] for P,.-free graphs
(r>1).

Proofs of some lemmas are omitted due to space restrictions.

3 An Auxiliary Problem

In this section we prove that a variant of CONNECTED VERTEX COVER can be
solved in polynomial time for (sP; + Ps)-free graphs for every integer s > 0.

To prove Theorem [2] we will solve a polynomial number of instances of this
variant, which we show can be solved in polynomial time for (sP; + Ps)-free
graphs for every s > 0. We introduce the variant by first describing its input.
Let G be a connected graph, let J C Vi be a subset of the vertex set of G and
let y be a vertex of J. We call the triple (G, J,y) cover-complete if it has the
following properties (see also Fig. [2)):

(A) J is an independent set;
(B) y is adjacent to every vertex of G — J;
(C) the neighbours of each vertex in J \ {y} form an independent set in G — J.

We now describe the problem.
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CONNECTED VERTEX COVER COMPLETION
Instance: a cover-complete triple (G, J,y).
Goal: find a smallest connected vertex cover S of G such that J C S.

We will show how to solve this problem in polynomial time for (sP; + Ps)-free
graphs for any s > 0.

Let (G, J,y) be a cover-complete triple, where G is a connected (sP; + Ps)-
free graph. For a vertex w € Ng(J \ {y}), we write J,, = Ng(w) N J. Note that,
by (B), y € J,. Let G’ be the graph obtained from G by contracting every edge
of G[Jy, U{w}]. As G[J, U {w}] is connected, contracting its edges reduces it to
a single vertex which we denote y,,. We say that we have set-contracted G into
G’ via w and that we contracted J,, U {w} into y,.

LI

Jl

Fig.2: An example of a cover-complete triple (G, J,y) and the cover-complete
triple (G, J', y) obtained from set-contracting G via vertex w. The sets J' =
(J\ Jw) U{yw}, L = Na(J \{y}) and L' = Ne/(J'\ {yw}) are also displayed
(the latter two sets will be formally introduced later).

Lemma 3. Let (G,J,y) be a cover-complete triple, where G is a connected
(sPy + Ps)-free graph for some s > 0. Let w € Ng(J \ {y}), and let G’ be
the graph obtained from G after set-contracting via w. Let J' = (J\ Jyu)) U{yw}
and y' = y,,. Then the following hold:

1. G’ is a connected (sP) + Ps)-free graph;
2. (G, J,y') is a cover-complete triple;
3. A set S C Vg is a (smallest) connected vertex cover of G that contains

JU{w} if and only if (S\ (JU{w})UJ" is a (smallest) connected vertex
cover of G’ that contains J'.

Let (G, J,y) be a cover-complete triple. We define Ly = Ng(J\{y}). If there
is no ambiguity, we will just write L = L ;. Note that, by (C), L is the union of a
number of independent sets, but L itself might not be independent. However we
can deduce the following lemma, which follows immediately from property (C).
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Lemma 4. Let (G, J,y) be a cover-complete triple. If wi and wy are two adja-
cent vertices in L, then no vertex of J\ {y} is adjacent to both wy and ws.

We introduce two key definitions. Two vertices wy,ws € L form a pseudo-
dominating pair if wy and wy are non-adjacent; w; has a neighbour 7 € J not
adjacent to ws; and wo has a neighbour x2 € J not adjacent to wy. Three vertices
w1, we, w3 € L form a pseudo-dominating triple if wy is adjacent to neither wo
nor ws; wy and ws are adjacent; J contains two distinct vertices 1 and x5 such
that 1 € Ng(w1) \ Ng({wa,ws}) and z2 € (Ng(w1) N Ng(ws)) \ Ng(ws). See
the illustrations in Fig.[3] from which we also observe that no pseudo-dominating
pair or pseudo-dominating triple can be found in a Ps-free graph.

Fig.3: Examples, on the left, of a pseudo-dominating pair (ws,ws), and, on the
right, of a pseudo-dominating triple (w1, ws, w3). As easily seen, the presence of
either implies the existence of at least one induced Ps.

Let S be a connected vertex cover of GG that contains J. Recall that J is an
independent set. A subset L* C L NS is a connector of S if JU L* is connected.

Lemma 5. Let (G,J,y) be a cover-complete triple, where G is an (sPy + Ps)-
free graph for some s > 0. Let S be a connected vertex cover of G that contains
J. If S contains both vertices of a pseudo-dominating pair wy, we, then S has a
connector of size at most s + 1 that contains both wi and wa.

Lemma 6. Let (G, J,y) be a cover-complete triple, where G is an (sPy+ Ps)-free
graph for some s > 0. Let S be a connected vertex cover of G that contains J.
If S contains all three vertices of a pseudo-dominating triple wy, wq, ws, then S
has a connector of size at most s + 2 that contains {wy, wa, ws3}.

Let (G, J,y) be a cover-complete triple. Let S be a connected vertex cover of
G that contains J. If S contains both vertices of some pseudo-dominating pair of
G or all three vertices of some pseudo-dominating triple of G, then S is of type
1. Otherwise S must contain at most one vertex of any pseudo-dominating pair
and at most two vertices of any pseudo-dominating triple of G. In that case we
say that S is of type 2. We observe that G might have connected vertex covers
of only one type.
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We will now see, in Lemma|8] how to find a smallest type 1 connected vertex
cover of a graph G of a cover-complete triple (G, J,y) in polynomial time (if it
exists). After that we shall prove how to find a smallest type 2 connected vertex
cover of GG in polynomial time (if it exists). To compute these sets we need the
following lemma, which uses Theorem [1]in its proof.

Lemma 7. Let (G,{y},y) be a cover-complete triple, where G is an (sPy + Ps)-
free graph for some s > 0. Then it is possible to compute a smallest connected
vertex cover of G that contains y in polynomial time.

Using Lemmas we can now prove the following lemma.

Lemma 8. Let (G, J,y) be a cover-complete triple. Then it is possible to find in
polynomial time a smallest type 1 connected vertex cover of G.

Let (G, J,y) be a cover-complete triple. Using Lemmawe can find a smallest
type 1 connected vertex cover of G. However, it might be possible that G has a
smaller connected vertex cover of type 2. To investigate this, we introduce two
reduction rules that will transform a cover-complete triple (G, J,y) into a triple
(G',J',y") with |J'| < |J|. We say that such a rule is safe if the following holds:

1. If G is (s P+ Ps)-free and connected, then G’ is (s Py + Ps )-free and connected.

2. (G',J',y") is cover-complete.

3. Given a smallest connected vertex cover S’ of G’ that contains J', it is
possible, in polynomial time, to find a smallest connected vertex cover S of
G that contains J.

Rule 1. Set-contract via x whenever z is a vertex in L N Ng(w1) N Ng(ws) for
some pseudo-dominating pair (w1, ws).

Rule 2. For any vertex ws € L that is not adjacent to any vertex of a clique
of four vertices wy,ws, w3, wy in L, delete ws and set-contract via u for every
u € LN Ng (’LU5)

Lemma 9. Rules 1 and 2 are safe.

We call a cover-complete triple (G, J,y) free if G has no pseudo-dominating
pair with a common neighbour in L, and moreover, G[L] is (P, + Ky)-free. By
exhaustively applying Rules 1 and 2 in arbitrary order, which we may safely do
due to Lemma [9] we have the following lemma.

Lemma 10. A cover-complete triple (G, J,y) can be modified, in polynomial
time, into a free cover-complete triple (G, J’,y) with the following properties:

1. If G is (sP1+Ps)-free and connected, then G' is (sP1+Ps)-free and connected.

2. Given a smallest connected vertex cover S' of G' that contains J', it is possi-
ble to find in polynomial time a smallest connected vertex cover S of G that
contains J.
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Let (G, J,y) be a free cover-complete triple. A connector of a connected vertex
cover S of G is minimal if it does not properly contain a smaller connector of .S.

Lemma 11. Let (G, J,y) be a free cover-complete triple that has a pseudo-
dominating pair (wi,ws). Then every minimal connector L* of every type 2
connected vertex cover S of G has size at most 5.

Lemma 12. Let (G, J,y) be a free cover-complete triple that has no pseudo-
dominating pair. It is possible to find in polynomial time a clique K C L with

Ng(K) NnJ=4J.
We are now ready to prove the following theorem.

Theorem 3. For every s > 0, CONNECTED VERTEX COVER COMPLETION can
be solved in polynomial time for (sPy + Ps)-free graphs.

Proof. Let s > 0 and let (G, J,y) be a cover-complete triple, where G is an
(sPy + Ps)-free graph. We first apply Lemma |10/ to obtain a free cover-complete
triple (G’, J',y’) in polynomial time. By the same lemma, G’ is (sP; + Ps)-free.
Our aim is to find a smallest connected vertex cover of G’ that contains J’
in polynomial time, so that we can apply statement 2 of Lemma [I0] We first
compute in polynomial time a smallest type 1 connected vertex cover S* of G’
using Lemma [8 We now need to compute a smallest type 2 connected vertex
cover S’ of G’ and compare |S’| with |S*|.

First suppose that G’ contains a pseudo-dominating pair. We guess a minimal
connector of size at most 5 and apply Lemma [3| on its vertices. (By guess, we
mean choose a set of up to b vertices and test to see if they form a minimal
connector. We eventually look at all such sets.) If we obtain an instance of the
form (G”,{y"},y"”), then we apply Lemma Then we uncontract all contracted
edges to get a connected vertex cover of G’ of type 2. By Lemma doing this
for every guessed minimal connector of size at most 5 gives us a smallest type 2
connected vertex cover S’ of G'. As we process each guess in polynomial time
and there are at most O(n®) guesses, we find S’ in polynomial time. We compare
S’” and S* and choose the smaller of the two.

Now suppose that G’ has no pseudo-dominating pair. Let L' = Ng/ (J'\{y'}).
By Lemma we can obtain in polynomial time a clique K C L’ with Ng/(K)N
J =J. Let K = {wy,...,w.} for some r > 1. As K is a clique, every vertex
cover contains at least r — 1 vertices of K. We will do as follows: first we will find
in polynomial time a smallest connected vertex cover of G’ that contains J' UK,
and then we will find in polynomial time, for ¢ = 1,...,r, a smallest connected
vertex cover of G’ that contains J' U (K \ {w;}) and that does not contain w;.
As there are O(n) cases, the total time is polynomial.

We start by computing a smallest connected vertex cover of G’ that contains
J'UK by set-contracting via each vertex of K. By Lemma [3] this yields a cover-
complete triple (G”,{y"},y") to which we apply Lemma[7] Then we uncontract
all contracted edges in polynomial time. By Lemma [3| this yields a smallest
connected vertex cover Sx of G’ that contains J' U K.



Connected Vertex Cover for (sP; + Ps)-Free Graphs 9

We now show how to compute, in polynomial time, a smallest connected
vertex cover of G’ that contains J' U (K \ {w;}) and that does not contain w;.
The case ¢ > 2 is done in the same way.

Let A= L'\ Ng (wy) consist of all non-neighbours of wy in L'. As G'[L'] is
(K4 + Py)-free by definition, we find that G'[A] is Ky-free. As w; is not in the
connected vertex cover we are looking for we remove w;, and we set-contract
via each neighbour of wy in L. By Lemma [3] we may now consider the resulting
cover-complete triple (G”, J”,y"") where G” is connected and (sP; + Ps)-free. As
G’ had no pseudo-dominating pairs, we have that G has no pseudo-dominating
pairs. We write L = Ng (J"\{y"}). As L C A, we find that G”[L"] is K -free.

Claim. Every minimal connector L* of every connected vertex cover of G' that
contains J" has size at most 3.

We prove the claim by showing that L* is a clique, which implies that L* has
size at most 3, as G''[L"] is Ky-free. Suppose instead that L* is not a clique.
Then L* contains two non-adjacent vertices w; and ws. As L* is a minimal
connector, wy has a neighbour in J” not adjacent to ws, and vice versa. But
then (wq,ws) is a pseudo-dominating pair of G”: this is not possible, as G’ has
no pseudo-dominating pairs. This contradiction proves the claim.

We now guess a minimal connector by considering all subsets in L that have
size at most 3. For each guess we apply Lemma [3| on its vertices. If we obtain
an instance (G”,{y”’},y"”), then we apply Lemma [7] Then we uncontract all
contracted edges to obtain in polynomial time a connected vertex cover of G”
that contains J”. We take the smallest one of these connected vertex covers of
G”. For this connected vertex cover of G”, we uncontract all contracted edges
again to obtain in polynomial time a smallest connected vertex cover S, of G’
that contains J' U (K \ {w;}) and that does not contain w;.

As mentioned, we pick the smallest one out of the connected vertex covers
Sk and S,,;, 1 <1i < r, to obtain a smallest type 2 connected vertex cover of G,
the size of which we compare with the size of S*. We pick the smallest one.

Thus we obtain in polynomial time a smallest connected vertex cover of G’
that contains J’ (both in the case where G’ has a pseudo-dominating pair and in
the case where G’ has no pseudo-dominating pair). As stated, it remains to apply
statement 2 of Lemma/[I0]to find in polynomial time a smallest connected vertex
cover of G that contains J. The correctness of our algorithm follows immediately
from the above case analysis and the description of the cases. a

4 Our Main Result

In this section we prove Theorem We need two more lemmas (we use Lemma
to prove the first one).

Lemma 13. Let s > 0 and let G be a connected (sPy + Ps)-free graph. Then
G has a connected dominating set D that is eit/ger a clique or has size at most
252 + s+ 3. Moreover, D can be found in O(n?s T5+3) time.
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Lemma 14. Let J be an independent set in a connected graph G such that J
has a vertex y that is adjacent to every vertex of G — J. Let J' consist of those
vertices of J \ {y} that have two adjacent neighbours in G — J (or equivalently,
in G). Then a subset S is a connected vertex cover of G that contains J if and
only if S\ J' is a connected vertex cover of G — J' that contains J\ J'.

We are now ready to prove our main result.

Theorem |2, (Restated) For every s > 0, CONNECTED VERTEX COVER can
be solved in polynomial time for (sPy + Ps)-free graphs.

Proof. Let G be an (sPy+ Ps)-free graph for some s > 0. We may assume without
loss of generality that G is connected. By Lemma [I3] we can first compute in
O(n232+5+3) time a connected dominating set D that either has size at most
252 4+ s+ 3 or is a clique. We note that, if D is a clique, any vertex cover of G
contains all but at most one vertex of D. This leads to a case analysis where we
guess the subset D* C D of vertices not in a minimum connected vertex cover
of G. Because |D*| < 2s? + s + 3, the number of guesses is polynomial. For each
guess of D*, we compute a smallest connected vertex cover Sp+ that contains
all vertices of D\ D* and no vertex of D*. Then, in the end, we return one that
has minimum size overall.
Let D* be a guess. We first show the following claim (proof omitted).

Claim 1. We may assume without loss of generality that D\ D* is connected.

Case 1. D* = {).

We compute a minimum vertex cover S’ of G — D in polynomial time by Theo-
rem Clearly S’U D is a vertex cover of G. As D is a connected dominating set,
S’ U D is a connected vertex cover of G. Let Sy = S’ U D. As S’ is a minimum
vertex cover of G — D, Sy is a smallest connected vertex cover of G that contains
all vertices of D. We remember Sy, which we found in polynomial time.

Case 2. 1 < |D*| < |D| (recall that |D| < 2s? 4 s + 3).
Recall that we are looking for a smallest connected vertex cover of G that con-
tains every vertex of D\ D* but does not contain any vertex of D*. Hence D*
must be an independent set and G — D* must be connected (if one of these
conditions is false, then we stop considering the guess D*). Moreover, a vertex
cover that contains no vertex of D* must contain all vertices of Ng(D*). Hence
we can safely contract not only any edge between two vertices of D \ D*, but
also any edge between two vertices in Ng(D*) or between a vertex of D\ D*
and a vertex in Ng(D*). We perform edge contractions recursively and as long
as possible while remembering all the edges that we contract. Let G* be the
resulting graph.

Note that the set D* still exists in G*, as we did not contract any edges with
an endpoint in D*. By Claim 1, the set D\ D* in G corresponds to exactly one
vertex of G*. We denote this vertex by y. We observe the following equivalence.

Claim 2. FEvery smallest connected vertexr cover of G* that contains y and that
does not contain any vertexr of D* corresponds to a smallest connected vertex
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cover of G that contains D\ D* and that does not contain any vertex of D*, and
vice Versa.

As we obtained G* in polynomial time, and we can uncontract all contracted
edges in polynomial time as well, Claim 2 tells us that we may consider G*
instead of G. As G is connected and (sP; + Ps)-free, G* is connected and (sP; +
Ps)-free as well by Lemma

We write J* = Ng«(D*) and note that y belongs to J* as D is connected
in G. We now consider the graph G* — D*. As G — D* is connected, G* — D*
is connected. By Claim 2, our new goal is to find a smallest connected vertex
cover of G* — D* that contains J*. By our procedure, J* is an independent set
of G* — D*. As D dominates G, we find that D \ D* dominates every vertex
of G — D* that is not adjacent to a vertex of D*. Hence the vertex y, which
corresponds to the set D\ D*, is adjacent to every vertex of (G* — D*) — J* in
the graph G* — D*.

Let J C J* consist of y and those vertices in J* whose neighbourhood in
G* — D* is an independent set. As y is adjacent to every vertex of (G*—D*)— J*
in G* — D*, and we can remember the set J* \ J, we can apply Lemma [14] and
remove J* \ J. That is, it suffices to find a smallest connected vertex cover of
the graph G’ = (G* — D*) — (J*\ J) that contains J.

As J* is an independent set of G* — D*, we find that J is an independent set
of G’. By definition, y € J. As y is adjacent to every vertex of (G* — D*) — J*
in G* — D*, we find that y is adjacent to every vertex in G’ — J. By definition,
the neighbours of each vertex in J \ {y} form an independent set in G’ — J.
Hence the triple (G’, J,y) is cover-complete. This means that we can apply The-
orem |3| to find in polynomial time a smallest connected vertex cover S’ of G’
that contains J.

We translate S’ in polynomial time into a smallest connected vertex cover
S* of G* — D* that contains J* by adding J* \ J to S’. We translate S* in
polynomial time into a smallest connected vertex cover Sp« of G that contains
no vertex of D* by uncontracting any contracted edges.

As mentioned, in the end we pick, in polynomial time, a smallest set of the sets
Sp+. This set is then a minimum connected vertex cover of G, which is obtained
in polynomial time. We have not sought to optimize the running time of the
algorithm so do not provide a detailed analysis, but observe that, for sufficiently
large s, it is n0G*) | The running time is dominated by obtaining a connected
D\ D* (in Claim 1). As D\ D* has O(n2s"+3) components and the paths
required to join them each have O(s) vertices, the time required to find them
is n°*). The correctness of our algorithm follows immediately from the above
case analysis and the description of the cases. a

5 Future Work

We pose two open problems. First, determine the complexity of CONNECTED
VERTEX COVER for Pgs-free graphs. Second, is there an integer r such that
CONNECTED VERTEX COVER is NP-complete for P,.-free graphs?
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