
Using Machine Learning to reduce the energy wasted in Volunteer Computing
Environments

A. Stephen McGough and Matthew Forshaw
School of Computing
Newcastle University

Newcastle, UK
Email: {stephen.mcgough,matthew.forshaw}

@newcastle.ac.uk

John Brennan, Noura Al Moubayed, Stephen Bonner
Department of Computer Science

Durham University
Durham, UK

Email: {john.brennan, noura.al-moubayed, s.a.r.bonner}
@durham.ac.uk

Abstract—High Throughput Computing (HTC) provides a
convenient mechanism for running thousands of tasks. Many
HTC systems exploit computers which are provisioned for other
purposes by utilising their idle time – volunteer computing.
This has great advantages as it gives access to vast quantities
of computational power for little or no cost. The downside is
that running tasks are sacrificed if the computer is needed for
its primary use. Normally terminating the task which must be
restarted on a different computer – leading to wasted energy
and an increase in task completion time. We demonstrate,
through the use of simulation, how we can reduce this wasted
energy by targeting tasks at computers less likely to be needed
for primary use, predicting this idle time through machine
learning. By combining two machine learning approaches,
namely Random Forest and MultiLayer Perceptron, we save
51.4% of the energy without significantly affecting the time to
complete tasks.
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I. INTRODUCTION

Many research problems that we face today require the
execution of large computational workloads which can se-
riously hinder progress. To mitigate the impact of these
computational workloads two main approaches have become
prevalent – those of High Performance Computing (HPC)
and High Throughput Computing (HTC). Both of these
approaches take advantage of running the workload across
many computational units1. HPC is used in cases where the
workload requires inter-communication between computers,
whilst HTC allows the workload to be decomposed into
separate, non interacting, tasks2 which run independently.

Although HTC can be seen as a ‘simpler’ problem than
HPC – removing the need to simultaneously provision large
numbers of computers, handle inter-computer communica-
tion issues, and issues over communication versus compu-
tation – the efficient deployment and execution of HTC
tasks have their own problems. These include: the timely

1Here we shall refer to these as computers, without loss of generality.
2In the literature these may be referred to as task or jobs. We will use

the term tasks in this work without loss of generality.

deployment of tasks; ensuring the, potentially thousands
or more, tasks run to completion; and the deployment /
collection of the required data and code. These problems are
compounded when the tasks are run on computers which are
not owned or provisioned for HTC tasks – often referred to
as volunteer computing – as HTC tasks are sacrificed when
the computer is required for its primary role. Despite this,
volunteer computing is often desired due to the significant
computational power it provides – often at little or no cost
to the user. Two common platforms for volunteer HTC are
HTCondor [1] and BOINC [2].

In volunteer computing HTC tasks are normally run when
the computer is ‘idle’ and not performing their primary role.
However, if the computer is needed again for its primary
role then the HTC system needs to relinquish the computer.
This may be through the termination of the HTC task, task
suspension or migrating the task to a different computer.
Task termination can be performed in any environment and
for any task, however, suspension and migration require
support from both the underlying infrastructure and the
task being performed. Thus, in many cases HTC users will
default to task termination in which case the HTC system
will attempt to re-run the task on a different computer.

Re-running the task on a different computer leads to two
detrimental impacts: an increase in the time, in excess of
the task execution time, the user must wait to obtain results
– referred to as task overhead, and an increase in energy
consumed due to the, potentially multiple, aborted task
executions. Thus we seek to reduce the energy consumed,
whilst at the same time maintaining or reducing overhead.
Ideally we wish to identify those computers which are
less likely to be required for their primary use during the
execution time of the task. This will lead to a reduction in
wasted energy as the task will not have aborted executions.
However, this may increase the overhead due to delay in
finding an appropriate computer. Alternatively it may reduce
overhead as time will not be wasted on partial executions.

In order to identify those computers less likely to be
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needed for their primary use we use machine learning to
predict the time, for each computer, between primary usage
– referred to as idle time. We can then select the computer
with the largest predicted idle time to run a task. We
evaluate two machine learning approaches for predicting the
lengths of idle periods. These are Random Forest [3] and
MultiLayer Perceptron [4] a form of feedforward artificial
neural network [5]. We also combine these using various
Ensemble techniques [6] in order to identify the ‘best’
prediction. In an ideal scenario we would also seek to predict
the execution time of the tasks submitted to the HTC system,
however, prior research has shown that this is not easy for the
user [7]. Nor is this easy for machine learning as although
there is significant correlation between tasks submitted at
the same time there is little correlation to future tasks.

In Section II we discuss the HTC-Sim which we used in
order to evaluate our different machine learning approaches.
This is followed by a discussion of the dataset made avail-
able with the HTC-Sim system in Section III. Related work
is presented in Section IV. We present our machine learning
approaches to predicting computer idle time in Section V
before discussing the experimental setup in Section VI.
We present the results and analysis in Section VII before
providing conclusions and future directions in Section VIII.

II. HTC-SIM SYSTEM

The HTC-Sim System [8] is a trace-driven simulation
framework for a generic High Throughput Computing sys-
tem. It is capable of simulating both dedicated computer
resources and computers which are provided on a voluntary
basis. Each run of HTC-Sim consumes a number of trace
log files – a trace file for the primary users (referred to
as interactive users) of the volunteer computers and a trace
file for the tasks submitted to the HTC system (referred to
as tasks from High-Throughput users). Different scheduling
algorithms can be developed and deployed within the sim-
ulation system and evaluated using the provided metrics.

Figure 1 illustrates the model view of HTC-Sim. Com-
puters within the system may be in one of three states: i)
servicing the primary user of the computer, ii) executing a
HTC task, or, iii) in an idle state. The idle state can be
sub-divided into: a) idle and powered up, or, b) idle and
in sleep state. Computers will transition from idle powered
up to idle sleep after a pre-defined period of inactivity –
thus minimising wasted energy. This is one example of
the Cluster Policy which covers such issues as when the
computers should reboot (for software updates), whether
HTC tasks can be performed on the computer and the
minimum time between a primary user logging out and a
HTC task being deployed. The current state of the HTC
system is maintained by the High-Throughput Management
which handles task deployment along with the transferring
of files. If a computer is in idle sleep, but is required for
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Figure 1. The HTC-Sim model

a task the High-Throughput Management can wake up the
computer, provided that this is currently allowed by policy.

We have augmented Figure 1 with a machine learning
scheduler and a service which constructs models of individ-
ual computer idle times – highlighted in blue.

III. EXEMPLAR DATA

The HTC-Sim system is provided with a set of exemplar
trace-logs for a university environment. Containing 1386
computers separated into 37 clusters. Where computers
within a cluster are assumed to be identical hardware whilst
computers in different clusters may be different. Each com-
puter type is modelled with an energy consumption rate for
the states of: active, idle and sleep.

Each primary user record consists of a tuple of three
elements: i) timestamp of user login, ii) name of computer,
and, iii) timestamp of user logout. Each of the timestamps
is to an accuracy of the nearest millisecond.

Analysis of the primary users (interactive users) reveals
a strong seasonal influence to their usage patterns – based
around the construct of an academic year. For example
Figure 2-top illustrates the number of primary user logins
per day. The three terms can be identified from the trace
along with individual weeks. Figure 2-bottom, by contrast,
shows the number of HTCondor tasks submitted per day. In
this case there is no clearly identifiable pattern to the data.

As a motivation for this work we produced a scheduler
for the HTC-Sim system which broke the temporal rule for
a simulation by allowing the scheduler (called Crystal) to
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know in advance the duration for each task along with the
length of each idle period on each computer, thus providing
a lower bound for the energy consumed by the system –
as no task will be terminated due to the computer returning
to primary use. Table I provides the results along with the
results for the default (random) scheduler. Indicating that
we can save up to 73.6% of the HTC energy. It may seem
counterintuitive that the overhead has increased. This is a
consequence of the scheduler which favours running longer
tasks as opposed to the oldest task awaiting a computer.
Hence, short-running tasks may see significantly more delay
than expected.

IV. RELATED WORK

Previous work by McGough et al. [9], using HTC-Sim,
has used Reinforcement Learning to identify computers less
likely to be needed for primary use. Achieving an energy
reduction of up to 53%. However, this was only possible
by significantly increasing the overhead. Instead we apply
an alternative machine learning approach which allows us to
predict the idle time for each computer – using these for task
execution. This allows us to reduce the energy consumed by
up to 51% without significantly increasing the overheads.

Machine learning is seeing increased use in optimising
the operation of High Throughput and High Performance
Computing environments. We do not seek to provide an
exhaustive survey here, rather to highlight prominent works
and the various areas of opportunity for machine learning to
improve the performance of HTC systems.

A. Scheduling Decisions:

The scheduling decisions made within HTC and HPC
environments are typically governed by heuristics, taking as
input characteristics of the workload and available computa-
tional resources. The use of machine learning opens up the
opportunity to move from fixed heuristic to dynamic policies
for scheduling workloads. Carastan-Santos et al [10] provide
one such work, demonstrating notable improvements in task
slowdown against existing scheduling approaches.

B. Resource Allocation:

A substantial body of work has focused on the resource
selection and allocation using machine learning. In par-
ticular, Reinforcement Learning (RL) has been shown to
provide significant improvements over naive approaches.
Bodı́k et al. [11] apply RL for a datacenter workload

Table I
POTENTIAL ENERGY SAVING FROM KNOWING TASK LENGTH AND IDLE

DURATION

Scheduler Overhead (mins) Energy (MWh)
Random 14.6140 121.5287

Crystal 20.8989 32.0741

subject to QoS constraints. Galstyan et al. [12] applied
Q-learning with an ε-greedy selection rule for resource
selection in a grid environment. Tesauro et al. [13] proposed
the Sarsa(0) approach for resource allocation in multiple
server hosting environments for web applications. Several
works specifically target energy conservation using RL, e.g.
Das et al. [14].

C. Runtime prediction:

Accurate estimates of task execution times can be used
to improve scheduler decision making. However, users of
clusters have been shown to provide poor estimates of task
runtimes [7]. Empirical studies from production environ-
ments have shown tasks typically to consume only 30% of
the estimated time [15], [16], [17]. This sometimes arises
due to premature termination due to misconfiguration [18],
due to performance variability within often-heterogeneous
clusters [19], or due to mis-reporting by users to avoid the
preemption of tasks which exceed their estimated runtime.
Machine learning approaches have shown promise in tack-
ling some of these challenges. For example, Gaussier et
al [20] adopt online regression to predict task running times,
and in turn optimise backfilling strategies with respect to a
task slowdown metric.

D. User assistance:

Machine learning approaches have also been shown to be
useful in assisting the users of HPC systems. Rodrigues et
al [21] demonstrate a tool which uses multiple model types
(including Multilayer Perceptron and Random Forest, as we
use in this work) to assist users to predict the memory
requirements for their workloads. The authors found no
single model provided the best predictions, so adopt an
ensemble of several models. The accurate prediction of
memory utilisation opens up the potential for more efficient
resource allocation and workload consolidation.

V. PREDICTION OF COMPUTER IDLE TIME THROUGH
MACHINE LEARNING

We describe here the process of converting the interactive
user trace-log into a format which can be used for the
purposes of machine learning along with the two machine
learning algorithms used. We train a model for each com-
puter individually as this gave slightly lower Mean Squared
Error (MSE) than working at the cluster or whole system
level – more significantly the training time was much shorter.
Numerous machine learning algorithms were evaluated,
however, as the data was highly non-linear, Random Forest
and MultiLayer Perceptron produced the best results (lowest
MSE). We predict a months worth of interactive user data
based on a number of previous months worth of data.

It should be noted that we do not consider predicting the
duration of tasks – although it is possible to train a machine
learning algorithm accurately on a set of tasks [22], it is not
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Figure 3. Auto Correlation Function for task duration

easy to predict future tasks durations. As although there is
significant local correlation between tasks, this correlation
dissipates quickly – e.g. a user may submit thousands of
tasks of similar duration at the same time, however, once
these are complete their future work differs markedly.

Figure 3 presents an autocorrelation plot (correlogram) for
task durations within the trace. The plot presents levels of
autocorrelation for data values at varying time lags. Values
deemed significantly non-zero fall outside of the blue dotted
lines. We see a very strong positive correlation for lags
up to 20000, demonstrating that successive tasks are likely
to exhibit similar durations. For lag values greater than
20000 we see negative correlation, arising from the interplay
between dominant groups of tasks exhibiting relatively large
and relatively small durations.

A. Data
Each interactive user interaction is a tuple:

(Li, c, Lo)

where Li, Lo are the login and logout times, and c is the
computer used. We extend this with a predicted idle time:

(Li, c, Lo, i)

where i is the actual or predicted time between two consec-
utive interactions on the same computer.
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Figure 4. Timeline for computer idle periods

1) Dealing with Reboots: There are two types of event
which cause a task to terminate: logging in of an interactive
user, or, an automated computer reboot – for software
updates and system clearing. If an interactive user is logged
in at reboot time then the reboot is postponed until the
user logs out. This effectively extends the interactive user’s
login time and can be ignored here. However, if the reboot
happens during an idle period then the idle period is split into
multiple shorter idle periods. Figure 4 illustrates the different
scenarios. In case A there is no reboot between a logout
and the next login, therefore the idle period is equivalent
to the time difference between the logout and login events.
Case B contains a reboot between the logout and the next
login event. We place a ‘synthetic’ interactive user at the
time of the reboot – splitting the idle interval. Note that
these synthetic interactive users consume zero time and once
we have predicted the idle periods they are extracted into a
separate file used for setting the predicted idle time after
reboots. Case C is the extension of Case B where there
are no interactive user login events over several days. Thus
multiple ‘synthetic’ interactive users are entered for each
reboot time. As these computers have very little interactive
user activity these are potentially the best computers to run
HTC tasks on and hence we wish to capture this information.

2) Dealing with sparse data: Sparsity of the interactive
user log when used for training can reduce the ability for
the machine learning approaches to accurately predict –
especially for points far from the training data – e.g. a
computer in a locked cluster room will only have synthetic
reboots in the log and will lack training data for what may
happen far from the reboots. The same applies if there are
long periods between interactive users. To overcome this
we create a further set of ‘synthetic’ interactive users at
regular intervals between each logout and subsequent login
(including reboot synthetic users). For a logout at time
Lo and subsequent login at time Li we create the set of
‘synthetic’ (overlapping) users:

{(Li, c, Lo, i), (Li + δ, c, Lo, i− δ), ...,
{(Li + nδ, c, Lo, i− nδ)},

such that n = bi/δc, and δ is the time between these syn-
thetic interactive user records. This significantly improves
the ability of the machine learning approaches to predict.

3) Preparation of data for Machine Learning: Machine
learning algorithms require numeric data ideally in the
range of -1 to 1. As our trace-log contains timestamps and
computer names these need converting:

Timestamps: Can be converted into a Unix epoch. How-
ever, this does not make such concepts as day of the week,
month or term available as features. Thus we add to the
tuple the following features extracted from the logout time:
• activeDuration: duration for the last interactive user,
• minute: number of minutes past the hour,
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• hourOfDay: hour of the day,
• dayOfWeek: day of the week,
• dayOfMonth: day of the month,
• month: month of the year,
• year: the year,
• termWeeks: week of the current term – in the range 1

– 10, with -1 representing outside of the term,
• term: term [1–3] with -1 indicating outside of a term.
Computer: One hot encoding could be used where each

computer becomes a separate feature. However, as we have
1386 computers this would lead to an equivalent number of
features, slowing down training and prediction. Instead we
use an integer encoder based on the cluster name, and the
computer within that cluster – only adding two features.

In order to scale our features to be in the range 0 – 1 we
divide each feature by the maximum value that the feature
can take – e.g. the dayOfMonth value can be divided by 31.

We now train the machine learning algorithms on several
months’ worth of training data (including actual idle times).
Once trained we can predict the idle times for the following
month (which lacks the idle times). As the data we are
predicting on only contains information that would be known
at the time the interactive user logs out we do not break the
temporal rule for our simulation.

B. Random Forest

Random Forest [3] (RF) is a machine learning method
which combines multiple decision trees into a single model
and can be used for classification or regression. With regres-
sion being used in the work presented here. A RF creates
a collection of decision trees each trained on a subset of
the features. A decision tree is a construct where at each
branching point a question is answered which moves one
closer to the leaf containing the ‘correct’ result. When pre-
dicting, each decision tree produces a predicted value with
the modal value returned for the whole RF. An advantage
of RF is that it is tolerant to overfitting to the data.

Figure 5 depicts a simple RF of three trees derived from
three features (c - cluster number, m - machine number, d
- day of week) to predict the idle time. To predict the idle
time for (c=1, m=1, d=1) each tree evaluates a prediction
(10,10,11) with the value 10 returned.

C. MultiLayer Perceptron

A MultiLayer Perceptron [4] (MLP) is a feed-forward
artificial neural network [5] with a minimum of three fully

connected layers – an input layer, one or more hidden
layers and an output layer. Each hidden and output layer
contains a non-liner activation function, examples of which
include ReLU, sigmoid or tanh. The MLP is trained through
backpropagation, most commonly via some form of the
Gradient Decent algorithm.

The MLP works by taking a set of features in on the
input layer. These values are fed forward to the next layer
where they are scaled via a learnt weighting value at each
node in the hidden layer, before being summed together.
This summed value is then passed through the activation
function before being fed forwards to the next layer. The
network is trained by repeatedly feeding the network with
input data and an output target label, where the prediction
of the network is compared with the target label using a
loss function – mean squared error for regression tasks. The
weights of the network are then tuned via backpropagation
to minimise the error given by the loss function.

D. Ensemble Approaches

A machine learning ensemble approach combines the
predictions from multiple independently trained machine
learning models to produce a ‘better’ overall result. We
present a number of ensemble techniques used to improve
the accuracy of our predictions:
• Max: of the RF and MLP predictions. The expectation

is that this will lead to a more speculative scheduler.
• Min: of the RF and MLP predictions. The expectation

is that this will lead to a more conservative scheduler.
• Average: of the RF and MLP predictions. The expec-

tation is that this will reduce extreme values.
• Last Month: At the end of a month evaluate the MSE

between the real and predicted values for both RF and
MLP and use the lower for the following month. The
expectation is that a good approach for one month is
likely to be good for the next month.

• Best on average: Extending the ‘Last Month’ to take
into account the best from all previous months.

E. Scheduler for HTC-Sim

Here we describe Machine Learning scheduler developed
to work within HTC-Sim – Algorithm 1. The algorithm first
determines if the task has been attempted before and uses the
longest attempt as a lower bound on the execution length. It
then finds the idle computer with the longest predicted idle
time and returns it (unless the predicted idle duration is less
than the previous run attempt). If no suitable idle computer
is free it attempts to find a sleeping computer which has
at least the previous runtime free. If no sleeping computer
is found then no computer is returned. Where runBefore is
a boolean indicating if the task has been run previously,
maxPreviousRunDuration returns the maximum duration of
the previous run attempts, idle is the set of all currently
idle computers, sleep is the set of all currently sleeping



Algorithm 1 ML Scheduler
1: MLScheduler(time t, task τ ) returns computer to use
2: if τ .runBefore then
3: p = τ .maxPreviousRunDuration
4: else
5: p = 0
6: end if
7: c = idle.findLongestIdle
8: if c.predictedIdle(t) > p then
9: return c

10: end if
11: c = sleep.findLongestIdle
12: if c.predictedIdle(t) > p then
13: return c
14: end if
15: return null

computers, findLongestIdle returns the computer from the
set with the longest predicted idle time and predictedIdle
computes the remaining idle time at time t as the computer
holds the idle time since the last logout. Hence:

predictedIdle = lastLogout+ idle− t.

F. Metrics
We define task overhead as the time a task is within the

HTC system and the time the task would take on a dedicated
computer. The average overhead can be defined as:

1

|T |
∑t∈T

(ft − st − dt)

where T is the set of tasks, st, ft are the submission and
finish times of task t, and dt is the execution time of task
t. We define the energy consumption (Et) for each task t:

Et =
∑k∈At

(et,k − bt,k) · Et,k

where At is the set of all attempts at task t, Et,k is the energy
consumption rate of the computer chosen for attempt k of
task t, et,k is the end time of attempt k of task t, and bt,k is
the corresponding start time. We can then compute the total
energy consumed by summing Et for all t.

VI. EXPERIMENTAL SETUP

As HTC-Sim consumes a trace-log of interactive user and
HTC tasks we have augmented the interactive user trace-log
with the predicted idle values. We used Scikit-Learn (version
0.19.1) to generate the predicted RF and MLP values.

A. Data
We run our experiments against the 2010 exemplar

datasets used with HTC-Sim. We train the interactive user
time in intervals of one month and train on all data from
the start of 2009 until immediately before the start of the
month to be predicted. I.e. to predict February 2010 we train
on January 2009 through to January 2010 inclusive.

B. Parameters and Features

1) Maximising prediction accuracy through ‘synthetic’
tasks: We performed a search-space analysis on δ – the
time interval between ‘synthetic’ users when reducing data
sparsity. Evaluating δ between 5 and 60minutes, achieved
maximal accuracy at δ = 10minutes.

2) Identification of optimal feature set: Although we
could use all of our features as defined in Section V
it is often the case that training on a subset will give
better accuracy. RF allows for the identification of the
most important features. This identified the best feature set
as: {epochLogin, epochLogout, activeDuration, hourOfDay,
dayOfWeek, dayOfMonth, month}.

3) MLP hidden layers: The number of hidden layers
and number of nodes per layer can significantly affect the
accuracy of a MLP. We performed a search space analysis of
all possible networks with up to four hidden layers and forty
nodes per layer. This identified a four hidden layer MLP with
18, 14, 9, and 10 nodes per layer minimised the MSE for
the majority of computers. The best activation function was
RELU along with the Adam solver.

VII. RESULTS

Table II presents the overheads observed and energy con-
sumed for all of the approaches presented within the paper.
Random is the original task scheduler provided with HTC-
Sim whist Crystal is the scheduler which breaks the temporal
rules and has full knowledge of future events. Crystal is not
considered here as a valid approach – presented here only for
comparison. The lowest overhead is observed for the MAX
ensemble approach – which matches in with our assumption
that this would be more speculative on deploying tasks to
computers. It would appear that this approach paid off with
tasks completing within the predicted idle time. Likewise
MIN leads to the largest overhead for the machine learning
approaches as it is more conservative when considering
computers which may not have enough time to complete
the task. This would suggest that the time waiting to find
a computer to run a task has a more significant impact on
overhead than the time incurred through aborted executions.
All other machine learning approaches have overheads lower
than the Random scheduler, though there is no significant
difference between them.

Table II
ENERGY AND OVERHEAD OF DIFFERENT APPROACHES

Scheduler Overhead Energy Productive Wasted
(mins) (MWhs) (MWhs) (MWhs)

Random 14.61 121.53 33.85 87.68
Crystal 20.90 32.07 32.07 0
RF 12.81 60.95 33.96 26.99
MLP 12.94 63.72 33.17 30.55
MAX 11.80 63.51 32.89 30.63
MIN 15.32 59.12 33.91 25.21
Average 12.77 63.14 33.36 29.79
Last month 12.10 64.75 32.99 31.76
Best on average 12.24 66.06 32.70 33.36
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Figure 6. Overhead vs. Energy for different machine learning approaches

The energy consumption due to the HTC system is
decomposed into productive energy consumed – i.e. the
successful execution of the task, and wasted HTC energy –
aborted executions. As the Crystal approach is fully aware
of the future state of the system it has no wasted energy.
It should be noted that the productive energy in all cases is
approximately the same – around 33MWh. The variation
here is a consequence of different computers within the
exemplar setup having different energy consumption rates –
different computers leads to different energy consumption.

In all machine learning cases the energy consumption was
brought down to a very similar value – in the range 59.1 to
66.1MWh. The lowest energy consumption was observed
for MIN (59.1MWh) which matches in with the assumption
that this approach is being more conservative with computer
selection. Though as noted above this leads to a slightly
higher overhead. However, all machine learning approaches
significantly reduce the energy consumed.

Figure 6 compares the energy to overhead for the different
machine learning approaches. The values have been scaled to
a percentage of the Random scheduler. Note that the Crystal
scheduler is dropped here as it would not be a practical
scheduler in the real world. The graph is broken up into four
quadrants, by the dotted line, where the bottom left quadrant
beats the Random scheduler in both energy and overhead.
All machine learning schedulers except for MIN fall into
this quadrant. Although the MIN approach fails to beat the
overhead it does have the lowest energy consumption rate
and only increases the overhead by 4.9%. Hence, if energy
saving is the most important consideration then MIN would
be best – saving 51.4% energy. Alternatively if overhead is
more important then Max would reduce energy consumption
by 47.7% and overhead by 19.3%. All other approaches
provide similar performance to MAX.

Table III illustrates the training time (in seconds) for
the two machine learning approaches. Both exhibit a linear
relationship with the number of months of training data, with
MLP scaling better when the number of months increase.
This is not considered a significant impact on the task
execution time and can be computed off-line. Prediction
impact is negligible taking less than 5ms for RF and 0.03ms

Table III
ENERGY AND OVERHEAD OF DIFFERENT APPROACHES

App Months of Training
12 13 14 15 16 17 18 19 20 21 22 23

RF 3.5 3.8 4.1 4.4 4.7 5.1 5.4 5.8 6.1 6.5 7.1 7.3
MLP 3.8 4.0 4.1 4.2 4.5 4.6 4.7 4.8 5.0 5.2 5.4 5.4

for MLP and is independent of the number of months.
Figure 7 presents a box and whisker plot for the r2 value

for each computer within the cluster for each month. The r2

value is a statistical representation of how well the predicted
idle time matches with the real idle time. A value of 1
indicating a perfect match with lower values indicating a
less accurate match – with no lower bound on ‘badness’.
In all cases but one the median value is greater than zero –
where zero implies a constant value would be as good. The
only exception to this is RF for October – which could be a
consequence of the fact that RF is thrown by the start of a
new term. In all cases MLP has a median value closer to one
than RF, which would suggest that it should work better for
the simulation. As this is not the case it would suggest that
although MLP is more accurate it predicts values which are
too large more often than RF. It should be noted that Figure
7 has been clipped at -3.2. Although there are some outlier
points below this value these represent only a small fraction
of the 1386 values.

VIII. CONCLUSION

In this paper we have utilised two machine learning
algorithms – Random Forest (RF) and MultiLayer Percep-
tron (MLP) – to predict the amount of idle time between
consecutive primary user activity on a computer within a
volunteer computing environment. Allowing us to develop
a scheduler which targets work to those computers with the
longest expected idle time. Reducing the amount of energy
consumed by reducing the number of aborted task executions
due to the primary user wishing to make use of their com-
puter. To improve the results we use ensemble approaches
to combine the different machine learning algorithms.

We demonstrate, through the use of simulation that we
can save between 45.6% and 51.4% of the energy consumed
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through the High Throughput Computing (HTC) system with
minimal impact on the overhead observed by the HTC user
– in the worst case increasing the overhead by 4.9%. If
energy saving is the primary goal then taking the minimum
of the RF and MLP predictions is best – saving 51.4%.
However, this increases the overhead by 4.9%. If reducing
the overhead is most important then taking the maximum
of RF and MLP will reduce the overhead by 19.3% whilst
still decreasing the energy consumption by 47.7% – only
3.6MWh more per year.

We re-train the machine learning algorithms on a monthly
basis. However, it may be possible to improve energy
savings by performing re-training more frequently. Currently
we take no account of the execution time of the tasks –
save for using prior (aborted) runs to provide a minimum
– although this has proven to be a hard value to predict a
priori it may be possible to provide course intervals and
classify tasks into these. In addition, as there is strong local
correlation between tasks submitted at the same time, it may
be possible to exploit this local correlation by predicting task
duration based on other temporally close tasks.

Although our approach uses real trace-logs, allowing for
complex situations to occur, it would be good to deploy this
work into a real HTC environment to evaluate it in real-time.
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