Colouring $(P_r + P_s)$ -Free Graphs * [†]

Tereza Klimošová

- Department of Applied Mathematics, Charles University, Prague, Czech Republic
- tereza@kam.mff.cuni.cz

Josef Malík

- Czech Technical University in Prague, Czech Republic
- malikjo1@fit.cvut.cz

Tomáš Masařík

- Department of Applied Mathematics, Charles University, Prague, Czech Republic
- masarik@kam.mff.cuni.cz 10

Jana Novotná 11

- Department of Applied Mathematics, Charles University, Prague, Czech Republic 12
- janca@kam.mff.cuni.cz 13

Daniël Paulusma 14

- Department of Computer Science, Durham University, Durham, UK 15
- daniel.paulusma@durham.ac.uk 16

Veronika Slívová 17

- Computer Science Institute of Charles University, Prague, Czech Republic
- slivova@iuuk.mff.cuni.cz 19

– Abstract -20

The k-COLOURING problem is to decide if the vertices of a graph can be coloured with at most k21 colours for a fixed integer k such that no two adjacent vertices are coloured alike. If each vertex u22 must be assigned a colour from a prescribed list $L(u) \subseteq \{1, \ldots, k\}$, then we obtain the LIST k-23 COLOURING problem. A graph G is H-free if G does not contain H as an induced subgraph. 24 We continue an extensive study into the complexity of these two problems for H-free graphs. 25 We prove that LIST 3-COLOURING is polynomial-time solvable for $(P_2 + P_5)$ -free graphs and 26 for $(P_3 + P_4)$ -free graphs. Combining our results with known results yields complete complexity 27 classifications of 3-COLOURING and LIST 3-COLOURING on H-free graphs for all graphs H up to 28 seven vertices. We also prove that 5-COLOURING is NP-complete for $(P_3 + P_5)$ -free graphs. 29

- 2012 ACM Subject Classification G.2.2 Graph Theory 30
- **Keywords and phrases** vertex colouring, *H*-free graph, linear forest 31
- Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.35 32

[†] A preprint of this article is available on arXiv [22].

 $[\]ensuremath{\mathbb O}$ Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël Paulusma, Veronika Slívová; licensed under Creative Commons License CC-BY

Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 35; pp. 35:1-35:12 Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

T. Masařík, J. Novotná and V. Slívová were supported by the project GAUK 1277018 and the grant SVV-2017-260452. T. Klimošová was supported by the Center of Excellence - ITI, project P202/12/G061 of GA ČR, by the Center for Foundations of Modern Computer Science (Charles Univ. project UN-CE/SCI/004), and by the project GAUK 1277018. T. Masařík was also partly supported by the Center of Excellence - ITI, project P202/12/G061 of GA ČR. V. Slívová was partly supported by the project 17-09142S of GA ČR and Charles University project PRIMUS/17/SCI/9. D. Paulusma was supported by the Leverhulme Trust (RPG-2016-258).

²⁹th International Symposium on Algorithms and Computation (ISAAC 2018).

35:2 Colouring $(\mathbf{P_r} + \mathbf{P_s})$ -Free Graphs

1 Introduction

60

Graph colouring is a popular concept in Computer Science and Mathematics due to a wide range of practical and theoretical applications, as evidenced by numerous surveys and books on graph colouring and many of its variants (see, for example, [5, 14, 21, 24, 28, 30, 33]). Formally, a *colouring* of a graph G = (V, E) is a mapping $c : V \to \{1, 2, ...\}$ that assigns each vertex $u \in V$ a *colour c(u)* in such a way that $c(u) \neq c(v)$ whenever $uv \in E$. If $1 \leq c(u) \leq k$, then c is also called a k-colouring of G and G is said to be k-colourable. The COLOURING problem is to decide if a given graph G has a k-colouring for some given integer k.

It is well known that COLOURING is NP-complete even if k = 3 [27]. To pinpoint the 41 reason behind the computational hardness of COLOURING one may impose restrictions on the 42 input. This led to an extensive study of COLOURING for special graph classes, particularly 43 hereditary graph classes. A graph class is *hereditary* if it is closed under vertex deletion. 44 As this is a natural property, hereditary graph classes capture a very large collection of 45 well-studied graph classes. It is readily seen that a graph class \mathcal{G} is hereditary if and only 46 if \mathcal{G} can be characterized by a unique set $\mathcal{H}_{\mathcal{G}}$ of minimal forbidden induced subgraphs. If 47 $\mathcal{H}_{\mathcal{G}} = \{H\}$, then a graph $G \in \mathcal{G}$ is called *H*-free. 48

⁴⁹ Král', Kratochvíl, Tuza, and Woeginger [23] started a systematic study into the complexity ⁵⁰ of COLOURING on \mathcal{H} -free graphs for sets \mathcal{H} of size at most 2. They showed polynomial-⁵¹ time solvability if H is an induced subgraph of P_4 or $P_1 + P_3$ and NP-completeness for all ⁵² other graphs H. The classification for the case where \mathcal{H} has size 2 is far from finished; ⁵³ see the summary in [14] or an updated partial overview in [11] for further details. Instead ⁵⁴ of considering sets \mathcal{H} of size 2, we consider H-free graphs and follow another well-studied ⁵⁵ direction, in which the number of colours k is *fixed*, that is, k no longer belongs to the input.

56 k-COLOURING: Given a graph G does there exist a k-colouring of G?

⁵⁷ A k-list assignment of G is a function L with domain V such that the list of admissible ⁵⁸ colours L(u) of each $u \in V$ is a subset of $\{1, 2, ..., k\}$. A colouring c respects L if $c(u) \in L(u)$ ⁵⁹ for every $u \in V$. If k is fixed, then we obtain the following generalization of k-COLOURING:

LIST k-COLOURING: Given a graph G and a k-list assignment L does there exist a colouring of G that respects L?

For every $k \geq 3$, k-COLOURING on H-free graphs is NP-complete if H contains a cycle [13] 61 or an induced claw [19, 26]. Hence, the case where H is a linear forest (a disjoint union 62 of paths) remains. The situation is far from settled yet, although many partial results are 63 known [2, 3, 4, 6, 7, 8, 9, 10, 15, 18, 20, 25, 29, 31, 34]. Particularly, the case where H is 64 the t-vertex path P_t has been well studied. The cases k = 4, t = 7 and k = 5, t = 6 are 65 NP-complete [20]. For $k \ge 1$, t = 5 [18] and k = 3, t = 7 [2], even LIST k-COLOURING 66 on P_t -free graphs is polynomial-time solvable (see also [14]). For a fixed integer k, the 67 k-PRECOLOURING EXTENSION problem is to decide a given k-colouring defined on an induced 68 subgraph of a graph G can be extended to a k-colouring of G. Recently it was shown in [7, 8] 69 that 4-PRECOLOURING EXTENSION, and therefore 4-COLOURING, is polynomial-time solvable 70 for P₆-free graphs. In contrast, the more general problem LIST 4-COLOURING is NP-complete 71 for P_6 -free graphs [15]. See Table 1 for a summary of all these results. 72

From Table 1 we see that only the cases k = 3, $t \ge 8$ are still open, although some partial results are known for k-COLOURING for the case k = 3, t = 8 [9]. The situation when His a disconnected linear forest $\bigcup P_i$ is less clear. It is known that for every $s \ge 1$, LIST 3-COLOURING is polynomial-time solvable for sP_3 -free graphs [4, 14]. For every graph H,

	k-Colouring				k-Precolouring Extension				List k -Colouring			
t	k = 3	k = 4	k = 5	$k \ge 6$	k = 3	k = 4	k = 5	$k \ge 6$	k = 3	k = 4	k = 5	$k \ge 6$
$t \leq 5$	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
t = 6	P	P	NP-c	NP-c	Р	Р	NP-c	NP-c	P	NP-c	NP-c	NP-c
t = 7	P	NP-c	NP-c	NP-c	Р	NP-c	NP-c	NP-c	Р	NP-c	NP-c	NP-c
$t \geq 8$?	NP-c	NP-c	NP-c	?	NP-c	NP-c	NP-c	?	NP-c	NP-c	NP-c

Table 1 Summary for P_t -free graphs.

⁷⁷ LIST 3-COLOURING is polynomial-time solvable for $(H + P_1)$ -free graphs if it is polynomially ⁷⁸ solvable for *H*-free graphs [4, 14]. If $H = rP_1 + P_5$ $(r \ge 0)$ a stronger result is known.

Theorem 1 ([10]). For all $k \ge 1, r \ge 0$, LIST k-COLOURING is polynomial-time solvable on $(rP_1 + P_5)$ -free graphs.

Theorem 1 cannot be extended to larger linear forests H, as LIST 4-COLOURING is NPcomplete for P_6 -free graphs [15] and LIST 5-COLOURING is NP-complete for $(P_2 + P_4)$ -free graphs [10]. As mentioned, 5-COLOURING is known to be NP-complete for P_6 -free graphs [20], but the existence of integers $k \ge 3$ and $2 \le r \le 5$ such that k-COLOURING is NP-complete for $(P_r + P_5)$ -free graphs has not been shown in the literature.

Another way of making progress is to complete a classification by bounding the size of H. It follows from the above results and the ones in Table 1 that for a graph H with $|V(H)| \le 6$, 3-COLOURING and LIST 3-COLOURING (and consequently, 3-PRECOLOURING EXTENSION) are polynomial-time solvable on H-free graphs if H is a linear forest, and NP-complete otherwise; see also [14]. In [14] it was also shown that, to obtain the same statement for

graphs H with $|V(H)| \leq 7$, only the two cases where $H \in \{P_2 + P_5, P_3 + P_4\}$ must be solved.

⁹² **Our Results** In Section 2 we solve the two missing cases listed above.

Theorem 2. LIST 3-COLOURING is polynomial-time solvable for $(P_2 + P_5)$ -free graphs and for $(P_3 + P_4)$ -free graphs.

We prove Theorem 2 as follows. If the graph G of an instance (G, L) of LIST 3-COLOURING 95 is P_7 -free, then we can use the aforementioned result of Bonomo et al. [2]. Hence we may 96 assume that G contains an induced P_7 . We consider every possibility of colouring the vertices 97 of this P_7 and try to reduce each resulting instance to a polynomial number of smaller 98 instances of 2-SATISFIABILITY. As the latter problem can be solved in polynomial time, the 99 total running time of the algorithm will be polynomial. The crucial proof ingredient is that 100 we partition the set of vertices of G that do not belong to the P_7 into subsets of vertices 101 that are of the same distance to the P_7 . This leads to several "layers" of G. We analyse how 102 the vertices of each layer are connected to each other and to vertices of adjacent layers so as 103 to use this information in the design of our algorithm. 104

Combining Theorem 2 with the aforementioned known results yields the following complexity classifications for graphs H up to seven vertices.

Corollary 3. Let H be a graph with $|V(H)| \leq 7$. If H is a linear forest, then LIST 3-COLOURING is polynomial-time solvable for H-free graphs; otherwise already 3-COLOURING is NP-complete for H-free graphs.

In Section 3 we complement Theorem 2 by proving the following result.

Theorem 4. 5-COLOURING is NP-complete for $(P_3 + P_5)$ -free graphs.

112 Preliminaries

Let G = (V, E) be a graph. For a vertex $v \in V$, we denote its *neighbourhood* by N(v) =113 $\{u \mid uv \in E\}$, its closed neighbourhood by $N[v] = N(v) \cup \{v\}$ and its degree by deg(v) = |N(v)|. 114 For a set $S \subseteq V$, we write $N(S) = \bigcup_{v \in S} N(v) \setminus S$ and $N[S] = N(S) \cup S$, and we let 115 $G[S] = (S, \{uv \mid u, v \in S\})$ be the subgraph of G induced by S. The contraction of an edge 116 e = uv removes u and v from G and introduces a new vertex which is made adjacent to every 117 vertex in $N(u) \cup N(v)$. The *identification* of a set $S \subseteq V$ by a vertex w removes all vertices 118 of S from G, introduces w as a new vertex and makes w adjacent to every vertex in N(S). 119 The length of a path is its number of edges. The distance $dist_G(u, v)$ between two vertices u 120 and v is the length of a shortest path between them in G. The distance $dist_G(u, S)$ between 121 a vertex $u \in V$ and a set $S \subseteq V \setminus \{v\}$ is defined as $\min\{\operatorname{dist}(u, v) \mid v \in S\}$. 122

For two graphs G and H, we use G + H to denote the disjoint union of G and H, and we 123 write rG to denote the disjoint union of r copies of G. Let (G, L) be an instance of LIST 124 3-COLOURING. For $S \subseteq V(G)$, we write $L(S) = \bigcup_{u \in S} L(u)$. We let P_n and K_n denote the 125 path and complete graph on *n* vertices, respectively. The *diamond* is the graph obtained 126 from K_4 after removing an edge. We say that an instance (G', L') is smaller than some 127 other instance (G, L) of LIST 3-COLOURING if either G' is an induced subgraph of G with 128 |V(G')| < |V(G)|; or G' = G and $L'(u) \subseteq L(u)$ for each $u \in V(G)$, such that there exists at 129 least one vertex u^* with $L'(u^*) \subset L(u^*)$. 130

2 The Two Polynomial-Time Results

In this section we show that LIST 3-COLOURING problem is polynomial-time solvable for $(P_2 + P_5)$ -free graphs and for $(P_3 + P_4)$ -free graphs. As arguments for these two graph classes are overlapping, we prove both cases simultaneously. Our proof uses the following two results.

- ▶ Theorem 5 ([2]). LIST 3-COLOURING is polynomial-time solvable for P_7 -free graphs.
- ¹³⁶ ► **Theorem 6** ([12]). The 2-LIST COLOURING problem is linear-time solvable.

Outline of the proof of Theorem 2. Our goal is to reduce, in polynomial time, an instance (G, L) of LIST 3-COLOURING, where G is $(P_2 + P_5)$ -free or $(P_3 + P_4)$ -free, to a polynomial number of smaller instances of 2-LIST-COLOURING in such a way that (G, L) is a yes-instance if and only if at least one of the new instances is a yes-instance. As for each of the smaller instances, we can apply Theorem 6, the total running time of our algorithm will be polynomial.

If G is P_7 -free, then we do not have to do the above and may apply Theorem 5 instead. 142 Hence, we assume that G contains an induced P_7 . We put the vertices of the P_7 in a set N_0 143 and define sets N_i $(i \ge 1)$ of vertices of the same distance i from N_0 ; we say that the sets N_i 144 are the layers of G. We then analyse the structure of these layers using the fact that G is 145 $(P_2 + P_5)$ -free or $(P_3 + P_4)$ -free. The first phase of our algorithm is about preprocessing 146 (G, L) after colouring the seven vertices of N_0 and applying a number of propagation rules. 147 We consider every possible colouring of the vertices of N_0 . In each branch we may have to 148 deal with vertices u that still have a list L(u) of size 3. We call such vertices active and prove 149 that they all belong to N_2 . We then enter the second phase of our algorithm. In this phase 150 we show, via some further branching, that N_1 -neighbours of active vertices either all have 151 a list from $\{\{h, i\}, \{h, j\}\}$, where $\{h, i, j\} = \{1, 2, 3\}$, or they all have the same list $\{h, i\}$. 152 In the third phase we reduce, again via some branching, to the situation where only the 153 latter option applies: N_1 -neighbours of active vertices all have the same list. Then in the 154 fourth and final phase of our algorithm we know so much structure of the instance that we 155

¹⁵⁶ can reduce to a polynomial number of smaller instances of 2-LIST-COLOURING via a new

¹⁵⁷ propagation rule identifying common neighbourhoods of two vertices by a single vertex.

Theorem 2 (restated). LIST 3-COLOURING is polynomial-time solvable for $(P_2 + P_5)$ -free graphs and for $(P_3 + P_4)$ -free graphs.

Proof Sketch. Due to space limitation we omit the proof for the (more involved) case where 160 $H = P_3 + P_4$. Hence, let (G, L) be an instance of LIST 3-COLOURING, where G = (V, E) is 161 a $(P_2 + P_5)$ -free graph. Whenever possible, we base our arguments on $(P_3 + P_5)$ -freeness. 162 Since the problem can be solved component-wise, we may assume that G is connected. If G163 contains a K_4 , then G is not 3-colourable, and thus (G, L) is a no-instance. As we can decide 164 if G contains a K_4 in $O(n^4)$ time by brute force, we assume that from now on G is K_4 -free. 165 By brute force we either deduce in $O(n^7)$ time that G is P_7 -free or we find an induced P_7 on 166 vertices v_1, \ldots, v_7 in that order. In the first case we use Theorem 5. It remains to deal with 167 the second case. 168

169 **Definition (Layers).** Let $N_0 = \{v_1, \ldots, v_7\}$. For $i \ge 1$, we define $N_i = \{u \mid \text{dist}(u, N_0) = i\}$. 170 We call the sets N_i $(i \ge 0)$ the *layers* of G.

171 In the remainder, we consider N_0 to be a fixed set of vertices. That is, we will update (G, L)

¹⁷² by applying a number of propagation rules and doing some (polynomial) branching, but we

will never delete the vertices of N_0 . This will enable us to exploit the *H*-freeness of *G*.

We show the following two claims about layers (proofs omitted).

¹⁷⁷₁₇₅ Claim 1. $V = N_0 \cup N_1 \cup N_2 \cup N_3$.

Claim 2. $G[N_2 \cup N_3]$ is the disjoint union of complete graphs of size at most 3, each containing at least one vertex of N_2 (and thus at most two vertices of N_3).

¹⁸⁰ We will now introduce a number of propagation rules, which run in polynomial time. We are ¹⁸¹ going to apply these rules on *G* exhaustively, that is, until none of the rules can be applied ¹⁸³ anymore. Note that during this process some vertices of *G* may be deleted (due to Rules 4 ¹⁸⁴ and 10), but as mentioned we will ensure that we keep the vertices of N_0 , while we may ¹⁸⁵ update the other sets N_i ($i \ge 1$). We say that a propagation rule is *safe* if the new instance ¹⁸⁷ is a yes-instance of LIST 3-COLOURING if and only if the original instance is so.

Rule 1. (no empty lists) If $L(u) = \emptyset$ for some $u \in V$, then return no.

- Rule 2. (not only lists of size 2) If $|L(u)| \le 2$ for every $u \in V$, then apply Theorem 6.
- Rule 3. (connected graph) If G is disconnected, then solve LIST 3-COLOURING on each instance (D, L_D) , where D is a connected component of G that does not contain N_0 and L_D is the restriction of L to D. If D has no colouring respecting L_D , then return no; otherwise remove the vertices of D from G.
- Rule 4. (no coloured vertices) If $u \notin N_0$, |L(u)| = 1 and $L(u) \cap L(v) = \emptyset$ for all $v \in N(u)$, then remove u from G.
- Rule 5. (single colour propagation) If u and v are adjacent, |L(u)| = 1, and $L(u) \subseteq L(v)$, then set $L(v) := L(v) \setminus L(u)$.
- Rule 6. (diamond colour propagation) If u and v are adjacent and share two common neighbours x and y with $L(x) \neq L(y)$, then set $L(x) := L(x) \cap L(y)$ and $L(y) := L(x) \cap L(y)$.
- Rule 7. (twin colour propagation) If u and v are non-adjacent, $N(u) \subseteq N(v)$, and $L(v) \subset L(u)$, then set L(u) := L(v).
- Rule 8. (triangle colour propagation) If u, v, w form a triangle, $|L(u) \cup L(v)| = 2$ and $|L(w)| \ge 2$, then set $L(w) := L(w) \setminus (L(u) \cup L(v))$, so $|L(w)| \le 1$.

Rule 9. (no free colours) If $|L(u) \setminus L(N(u))| \ge 1$ and $|L(u)| \ge 2$ for some $u \in V$, then set $L(u) := \{c\}$ for some $c \in L(u) \setminus L(N(u))$.

²¹⁶ Rule 10. (no small degrees) If $|L(u)| > |\deg(u)|$ for some $u \in V \setminus N_0$, then remove u²¹⁷ from G.

As mentioned, our algorithm will branch at several stages to create a number of new but 218 smaller instances, such that the original instance is a yes-instance if and only if at least one 219 of the new instances is a yes-instance. Unless we explicitly state otherwise, we *implicitly* 220 assume that Rules 1–10 are applied exhaustively immediately after we branch (see also 221 Claim 3). If we apply Rule 1 or 2 on a new instance, then a no-answer means that we 222 will discard the branch. So our algorithm will only return a no-answer for the original 223 instance (G, L) if we discarded all branches. On the other hand, if we can apply Rule 2 224 on some new instance and obtain a ves-answer, then we can extend the obtained colouring 225 to a colouring of G that respects L, simply by restoring all the already coloured vertices 226 228 227 that were removed from the graph due to the rules. We will now state (without proof) Claim 3. Claim 3. Rules 1–10 are safe and their exhaustive application takes polynomial time. 229 Moreover, if we have not obtained a yes- or no-answer, then afterwards G is a connected 230 (H, K_4) -free graph, such that $V = N_0 \cup N_1 \cup N_2 \cup N_3$ and $2 \le |L(u)| \le 3$ for every $u \in V \setminus N_0$. 231

²³²₂₃₃ Phase 1. Preprocessing (G, L)

In Phase 1 we will preprocess (G, L) using the above propagation rules. To start off the preprocessing we will branch via colouring the vertices of N_0 in every possible way. By colouring a vertex u, we mean reducing the list of permissible colours to size exactly one. (When $L(u) = \{c\}$, we consider vertex coloured by colour c.) Thus, when we colour some vertex u, we always give u a colour from its list L(u), moreover, when we colour more than one vertex we will always assign distinct colours to adjacent vertices.

²⁴⁰ Branching I (O(1) branches)

We now consider all possible combinations of colours that can be assigned to the vertices 241 in N_0 . That is, we branch into at most 3^7 cases, in which v_1, \ldots, v_7 each received a colour 242 from their list. We note that each branch leads to a smaller instance and that (G, L) is 243 a yes-instance if and only if at least one of the new instances is a yes-instance. Hence, if 244 we applied Rule 1 in some branch, then we discard the branch. If we applied Rule 2 and 245 obtained a no-answer, then we discard the branch as well. If we obtained a yes-answer, then 246 we are done. Otherwise we continue by considering each remaining branch separately. For 247 each remaining branch, we denote the resulting smaller instance by (G, L) again. 248

We will now introduce a new rule, namely Rule 11. We apply Rule 11 together with the other rules. That is, we now apply Rules 1–11 exhaustively. However, each time we apply Rule 11 we first ensure that Rules 1–10 have been applied exhaustively.

²⁵² Rule 11 (N₃-reduction) If u and v are in N_3 and are adjacent, then remove u and v from G.

²⁵³ We state (without proofs) the following claims.

Claim 4. Rule 11, applied after exhaustive application of Rules 1–10, is safe and takes polynomial time. Moreover, afterwards G is a connected (H, K_4) -free graph, such that $V = N_0 \cup N_1 \cup N_2 \cup N_3$ and $2 \le |L(u)| \le 3$ for every $u \in V \setminus N_0$.

250

Claim 5. The set N_3 is independent, and moreover, each vertex $u \in N_3$ has |L(u)| = 2 and exactly two neighbours in N_2 which are adjacent.

261

 $_{262}$ The following claim follows immediately from Claims 2 and 5.

Claim 6. Every connected component D of $G[N_2 \cup N_3]$ is a complete graph with either $|D| \leq 2$ and $D \subseteq N_2$, or |D| = 3 and $|D \cap N_3| \leq 1$.

265

²⁶⁶ The following claim (proof omitted) describes the location of the vertices with a list of size 3.

Claim 7. For every $u \in V$, if |L(u)| = 3, then $u \in N_2$.

We will now show how to branch in order to reduce the lists of the vertices $u \in N_2$ with

|L(u)| = 3 by at least one colour. We formalize this approach in the following definition.

Definition (Active vertices). A vertex $u \in N_2$ and its neighbours in N_1 are called *active* if |L(u)| = 3. Let A be the set of all active vertices. Let $A_1 = A \cap N_1$ and $A_2 = A \cap N_2$. We

²⁷² If |L(u)| = 5. Let A be the set of an active vertices. Let $A_1 = A + N_1$ and $A_2 = A + N_2$. We ²⁷³ deactivate a vertex $u \in A_2$ if we reduce the list L(u) by at least one colour. We deactivate a ²⁷⁴ vertex $w \in A_1$ by deactivating all its neighbours in A_2 .

Note that every vertex $w \in A_1$ has |L(w)| = 2 by Rule 5 applied on the vertices of N_0 . Hence, if we reduce L(w) by one colour, all neighbours of w in A_2 become deactivated by Rule 5, and w is removed by Rule 4. For $1 \le i \le j \le 7$, we let $A(i, j) \subseteq A_1$ be the set of active neighbours of v_i that are not adjacent to v_j and similarly, we let $A(j, i) \subseteq A_1$ be the set of active neighbours of v_j that are not adjacent to v_i .

280 Phase 2. Reduce the number of distinct sets A(i, j)

We will now branch into $O(n^{45})$ smaller instances such that (G, L) is a yes-instance of LIST 3-COLOURING if and only if at least one of these new instances is a yes-instance. Each new

instance will have the following property:

(P) for $1 \le i \le j \le 7$ with $j - i \ge 2$, either $A(i, j) = \emptyset$ or $A(j, i) = \emptyset$.

Branching II $(O(n^{(3\cdot(\binom{7}{2})-6)}) = O(n^{45})$ branches)

Consider two vertices v_i and v_j with $1 \le i \le j \le 7$ and $j - i \ge 2$. Assume without loss of 287 generality that v_i is coloured 3 and that v_j is coloured either 1 or 3. Hence, every $w \in A(i,j)$ 288 has $L(w) = \{1, 2\}$, whereas every $w \in A(j, i)$ has $L(w) = \{2, q\}$ for $q \in \{1, 3\}$. We branch as 289 follows. We consider all possibilities where at most one vertex of A(i, j) receives colour 2 290 (and all other vertices of A(i, j) receive colour 1) and all possibilities where we choose two 291 vertices from A(i, j) to receive colour 2. This leads to $O(n) + O(n^2) = O(n^2)$ branches. In 292 the branches where at most one vertex of A(i, j) receives colour 2, every vertex of A(i, j)293 will be deactivated. So Property (\mathbf{P}) is satisfied for i and j. 294

Now consider the branches where two vertices x_1, x_2 of A(i, j) both received colour 2. 295 We update A(j,i) accordingly. In particular, afterwards no vertex in A(j,i) is adjacent 296 to x_1 or x_2 , as 2 is a colour in the list of each vertex of A(j,i). We now do some further 297 branching for those branches where $A(j,i) \neq \emptyset$. We consider the possibility where each vertex 298 of $N(A(j,i)) \cap A_2$ is given the colour of v_j and all possibilities where we choose one vertex in 299 $N(A(j,i)) \cap A_2$ to receive a colour different from the colour of v_i (we consider both options 300 to colour such a vertex). This leads to O(n) branches. In the first branch, every vertex of 301 A(j,i) will be deactivated. So Property (**P**) is satisfied for *i* and *j*. 302

Now consider a branch where a vertex $u \in N(A(j,i)) \cap A_2$ receives a colour different from 303 the colour of v_i . We will show that also in this case every vertex of A(j,i) will be deactivated. 304 For contradiction, assume that A(j,i) contains a vertex w that is not deactivated after 305 colouring u. As u was in $N(A(j,i)) \cap A_2$, we find that u had a neighbour $w' \in A(j,i)$. As u 306 is coloured with a colour different from the colour of v_i , the size of L(w') is reduced by one 307 (due to Rule 4). Hence w' got deactivated after colouring u, and thus $w' \neq w$. As w is still 308 active, w has a neighbour $u' \in A_2$. As u' and w are still active, u' and w are not adjacent to 309 w' or u. Hence, u, w', v_i, w, u' induce a P_5 in G. As x_1 and x_2 both received colour 2, we find 310

35:8 Colouring $(\mathbf{P_r} + \mathbf{P_s})$ -Free Graphs

that x_1 and x_2 are not adjacent to each other. Hence, x_1, v_i, x_2 induce a P_3 in G. Recall that 311 all vertices of A(j,i), so also w and w', are not adjacent to x_1 or x_2 . As u and u' were still 312 active after colouring x_1 and x_2 , we find that u and u' are not adjacent to x_1 or x_2 either. 313 By definition of A(j,i), w and w' are not adjacent to v_i . By definition of A(i,j), x_1 and x_2 314 are not adjacent to v_j . Moreover, v_i and v_j are non-adjacent, as $j-i \ge 2$. We conclude 315 that G contains an induced $P_3 + P_5$, namely with vertex set $\{x_1, v_i, x_2\} \cup \{u, w', v_i, w, u'\}$, a 316 contradiction. Hence, every vertex of A(j, i) is deactivated. So Property (P) is satisfied for i 317 and j also for these branches. 318

Finally by recursive application of the above procedure for all pairs v_i, v_j such that $1 \le i \le j \le 7$ and $j - i \ge 2$ we get a graph satisfying Property (**P**).

We now consider each resulting instance from Branching II. We denote such an instance by (G, L) again. Note that vertices from N_2 may now belong to N_3 , as their neighbours in N_1 may have been removed due to the branching. The exhaustive application of Rules 1– 11 preserves (**P**) (where we apply Rule 11 only after applying Rules 1–10 exhaustively). Hence (G, L) satisfies (**P**).

We observe that if two vertices in A_1 have a different list, then they must be adjacent to different vertices of N_0 . Hence, by Property (**P**), at most two lists of $\{\{1,2\},\{1,3\},\{2,3\}\}$ can occur as lists of vertices of A_1 . Without loss of generality this leads to two cases: either every vertex of A_1 has list $\{1,2\}$ or $\{1,3\}$ and both lists occur on A_1 ; or every vertex of A_1 has list $\{1,2\}$ only. In the next phase of our algorithm we reduce, via some further branching, every instance of the first case to a polynomial number of smaller instances of the second case.

³³³ Phase 3. Reduce to the case where vertices of A_1 have the same list

Recall that we assume that every vertex of A_1 has list $\{1,2\}$ or $\{1,3\}$. In this phase we deal with the case when both types of lists occur in A_1 . We first show, without proof, the following two claims.

³³⁷ Claim 8. Let $i \in \{1, 3, 5, 7\}$. Then every vertex from $A_1 \cap N(v_i)$ is adjacent to some vertex ³⁴⁰ v_j with $j \notin \{i - 1, i, i + 1\}$.

Claim 9. It holds that $N(A_1) \cap N_0 = \{v_{i-1}, v_i, v_{i+1}\}$ for some $2 \le i \le 6$. Moreover, we may assume without loss of generality that v_{i-1} and v_{i+1} have colour 3 and both are adjacent to all vertices of A_1 with list $\{1, 2\}$, whereas v_i has colour 2 and is adjacent to all vertices of A_1 with list $\{1, 3\}$.

³⁴⁵ By Claim 9, we can partition the set A_1 into two (non-empty) sets $X_{1,2}$ and $X_{1,3}$, where ³⁴⁷ $X_{1,2}$ is the set of vertices in A_1 with list $\{1,2\}$ whose only neighbours in N_0 are v_{i-1} and ³⁴⁸ v_{i+1} (which both have colour 3) and $X_{1,3}$ is the set of vertices in A_1 with list $\{1,3\}$ whose ³⁴⁹ only neighbour in N_0 is v_i (which has colour 2).

Our goal is to show that we can branch into at most $O(n^2)$ smaller instances, in which either $X_{1,2} = \emptyset$ or $X_{1,3} = \emptyset$, such that (G, L) is a yes-instance of LIST 3-COLOURING if and only if at least one of these smaller instances is a yes-instance. Then afterwards it suffices to show how to deal with the case where all vertices in A_1 have the same list in polynomial time; this will be done in Phase 4 of the algorithm. We start with the following O(n) branching procedure (in each of the branches we may do some further O(n) branching later on).

Branching III (O(n) branches)

We branch by considering the possibility of giving each vertex in $X_{1,2}$ colour 2 and all possibilities of choosing a vertex in $X_{1,2}$ and giving it colour 1. This leads to O(n) branches. In the first branch we obtain $X_{1,2} = \emptyset$. Hence we can start Phase 4 for this branch. We now consider every branch in which $X_{1,2}$ and $X_{1,3}$ are both nonempty. For each such branch we will create O(n) smaller instances of LIST 3-COLOURING, where $X_{1,3} = \emptyset$, such that (G, L)is a yes-instance of LIST 3-COLOURING if and only if at least one of the new instances is a yes-instance.

Let $w \in X_{1,2}$ be the vertex that was given colour 1 in such a branch. Although by Rule 4 vertex w will need to be removed from G, we make an exception by temporarily keeping wafter we coloured it. The reason is that the presence of w will be helpful for analysing the structure of (G, L) after Rules 1–11 have been applied exhaustively (where we apply Rule 11 only after applying Rules 1–10 exhaustively). In order to do this, we first show the following three claims (proofs omitted).

³⁷² Claim 10. Vertex w is not adjacent to any vertex in $A_2 \cup X_{1,2} \cup X_{1,3}$.

373 Claim 11. The graph $G[X_{1,3} \cup (N(X_{1,3}) \cap A_2) \cup N_3]$ is the disjoint union of one or more 374 complete graphs, each of which consists of either one vertex of $X_{1,3}$ and at most two vertices 375 of A_2 , or one vertex of N_3 .

Claim 12. For every pair of adjacent vertices s, t with $s \in A_2$ and $t \in N_2$, either t is adjacent to w, or $N(s) \cap X_{1,3} \subseteq N(t)$.

We now continue as follows. Recall that $X_{1,3} \neq \emptyset$. Hence there exists a vertex $s \in A_2$ that has a neighbour $r \in X_{1,3}$. As $s \in A_2$, we have that |L(s)| = 3. Then, by Rule 10, we find that s has at least two neighbours t and t' not equal to r. By Claim 11, we find that neither t nor t' belongs to $X_{1,3} \cup N_3$. We are going to fix an induced 3-vertex path P^s of G, over which we will branch, in the following way.

If t and t' are not adjacent, then we let P^s be the induced path in G with vertices t, s, t'in that order. Suppose that t and t' are adjacent. As G is K_4 -free and s is adjacent to r, t, t', at least one of t, t' is not adjacent to r. We may assume without loss of generality that t is not adjacent to r.

First assume that $t \in N_2$. Recall that s has a neighbour in $X_{1,3}$, namely r, and that r is not adjacent to t. We then find that t must be adjacent to w by Claim 12. As $s \in A_2$, we find that s is not adjacent to w by Claim 10. In this case we let P^s be the induced path in G with vertices s, t, w in that order.

Now assume that $t \notin N_2$. Recall that $t \notin N_3$. Hence, t must be in N_1 . Then, as $t \notin X_{1,3}$ 395 but t is adjacent to a vertex in A_2 , namely s, we find that $t \in X_{1,2}$. Recall that $t' \notin X_{1,3}$. If 396 $t' \in N_1$ then the fact that $t' \notin X_{1,3}$, combined with the fact that t' is adjacent to $s \in A_2$, 397 implies that $t' \in X_{1,2}$. However, by Rule 8 applied on s, t, t', vertex s would have a list of 398 size 1 instead of size 3, a contradiction. Hence, $t' \notin N_1$. As $t' \notin N_3$, this means that $t' \in N_2$. 399 If t' is adjacent to r, then $t \in X_{1,2}$ with $L(t) = \{1,2\}$ and $r \in X_{1,3}$ with $L(r) = \{1,3\}$ would 400 have the same lists by Rule 6 applied on r, s, t, t', a contradiction. Hence t' is not adjacent 401 to r. Then, by Claim 12, we find that t' must be adjacent to w. Note that s is not adjacent 402 to w due to Claim 10. In this case we let P^s be the induced path in G with vertices s, t', w403 in that order. We conclude that either $P^s = tst'$ or $P^s = stw$ or $P^s = st'w$. We are now 404 ready to apply two more rounds of branching. 405

406 **Branching IV** (O(n) branches)

We branch by considering the possibility of removing colour 2 from the list of each vertex in $N(X_{1,3}) \cap A_2$ and all possibilities of choosing a vertex in $N(X_{1,3}) \cap A_2$ and giving it colour 2. In the branch where we removed colour 2 from the list of every vertex in $N(X_{1,3}) \cap A_2$, we obtain that $X_{1,3} = \emptyset$. Hence for that branch we can enter Phase 4. Now consider a branch where we gave some vertex $s \in N(X_{1,3}) \cap A_2$ colour 2. Let $P^s = tst'$ or $P^s = stw$ or $P^s = st'w$. We do some further branching by considering all possibilities of colouring the vertices of P^s that are not equal to the already coloured vertices s and w (should w be a

35:10 Colouring $(\mathbf{P_r} + \mathbf{P_s})$ -Free Graphs

- ⁴¹⁴ vertex of P^s) and all possibilities of giving a colour to the vertex from $N(s) \cap X_{1,3}$ (recall ⁴¹⁵ that by Claim 11, $|N(s) \cap X_{1,3}| = 1$). This leads to a total of O(n) branches. We claim that ⁴¹⁶ in both branches, $|X_{1,3}|$ has reduced to at most 1 (proof omitted).
- ⁴¹⁷ **Branching V** (O(1) branches)
- ⁴¹⁸ We branch by considering both possibilities of colouring the unique vertex of $X_{1,3}$. This leads
- to two new but smaller instances of LIST 3-COLOURING, in each of which the set $X_{1,3} = \emptyset$.
- ⁴²⁰ Hence, our algorithm can enter Phase 4.

⁴²¹ Phase 4. Reduce to a set of instances of 2-List Colouring

- Recall that in this stage of our algorithm we have an instance (G, L) in which every vertex of A_1 has the same list, say $\{1, 2\}$. As G is $(P_2 + P_5)$ -free, $G[N_2 \cup N_3]$ is an independent set; otherwise two adjacent vertices of $N_2 \cup N_3$ form, together with v_1, \ldots, v_5 , an induced $P_2 + P_5$. Hence, we can safely colour each vertex in A_2 with colour 3, and afterwards we may apply Theorem 6.
- ⁴²⁷ The correctness of our algorithm follows from the description. The branching in the five ⁴²⁸ stages (Branching I-V), yields a total number of $O(n^{47})$ branches and each branch we created ⁴²⁹ takes polynomial time to process. Hence, the running time of our algorithm is polynomial.
- ⁴³⁰ **Remark.** Except for Phase 4 of our algorithm, all arguments in our proof hold for $(P_3 + P_5)$ -⁴³¹ free graphs. The difficulty in Phase 4 is that in contrary to the previous phases we cannot ⁴³² use the vertices from N_0 to find an induced $P_3 + P_5$ and therefore obtain the contradiction.

3 The Hardness Result

We show that 5-COLOURING is NP-complete for $(P_3 + P_5)$ -free graphs by reducing from the NP-complete problem [32] NOT-ALL-EQUAL 3-SATISFIABILITY with positive literals only, defined as follows: given a set $X = \{x_1, x_2, ..., x_n\}$ of logical variables and a set $\mathcal{C} = \{C_1, C_2, ..., C_m\}$ of 3-literal clauses over X in which all literals are positive, is there a truth assignment for X such that each clause contains at least one true literal and at least one false literal? We call such a truth assignment *satisfying*.

Theorem 4 (restated). 5-COLOURING is NP-complete for $(P_3 + P_5)$ -free graphs.

Proof Sketch. From a given instance (\mathcal{C}, X) of NOT-ALL-EQUAL 3-SATISFIABILITY with 441 positive literals only, we first construct a graph G with a list assignment L. For each $x_i \in X$ 442 we introduce two vertices x_i and $\overline{x_i}$, which we make adjacent to each other. We say that 443 x_i and \overline{x}_i are of x-type. We set $L(x_i) = L(\overline{x}_i) = \{4, 5\}$. For each $C_j \in \mathcal{C}$ we introduce a 444 vertex C_j and a vertex C'_j called the *copy* of C_j . We say that C_j and C'_j are of C-type. 445 We set $L(C_j) = L(C'_j) = \{1, 2, 3\}$. We add an edge between each x-type vertex and each 446 C-type vertex. For each $C_i \in \mathcal{C}$ we do as follows. We fix an arbitrary order of the literals in 447 C_j . Say $C_j = \{x_g, x_h, x_i\}$ in that order. Then we add six vertices $a_{g,j}, a_{h,j}, a_{i,j}, a'_{g,j}, a'_{h,j}\}$ 448 $a'_{i,j}$ and edges $x_g a_{g,j}$, $a_{g,j} C_j$, $x_h a_{h,j}$, $a_{h,j} C_j$, $x_i a_{i,j}$, $a_{i,j} C_j$ and also edges $\overline{x}_g a'_{g,j}$, $a'_{g,j} C'_j$, $\overline{x}_h a'_{h,j}$, $a'_{h,j} C'_j$, $\overline{x}_i a'_{i,j}$, $a'_{i,j} C'_j$. We say that $a_{g,j}$, $a_{h,j}$, $a_{i,j}$, $a'_{g,j}$, $a'_{h,j}$, $a'_{i,j}$ are of a-type. We 449 450 set $L(a_{g,j}) = L(a'_{g,j}) = \{1,4\}, L(a_{h,j}) = L(a'_{h,j}) = \{2,4\}$ and $L(a_{i,j}) = L(a'_{i,j}) = \{3,4\}.$ 451

We now extend G into a graph G' by adding a clique consisting of five new vertices k_{1}, \ldots, k_{5} , which we say are of k-type, and by adding an edge between a vertex k_{ℓ} and a vertex $u \in V(G)$ if and only if $\ell \notin L(u)$. We can show that (\mathcal{C}, X) has a satisfying truth assignment if and only if G' has a 5-colouring, and moreover that G' is $(P_{3} + P_{5})$ -free (proof omitted). As 5-COLOURING belongs to NP, this proves the theorem.

457 **4** Conclusions

By solving two new cases we completed the complexity classifications of 3-COLOURING 458 and LIST 3-COLOURING on H-free graphs for graphs H up to seven vertices. We showed 459 that both problems become polynomial-time solvable if H is a linear forest, while they stay 460 NP-complete in all other cases. Recall that k-COLOURING $(k \ge 3)$ is NP-complete on H-free 461 graphs whenever H is not a linear forest. For the case where H is a linear forest, our new 462 NP-hardness result for 5-COLOURING for $(P_3 + P_5)$ -free graphs bounds, together with the 463 known NP-hardness results of [20] for 4-COLOURING for P_7 -free graphs and 5-COLOURING 464 for P_6 -free graphs, the number of open cases of k-COLOURING from above. 465

For future research we aim to our extend our results. In fact we still do not know if 466 there exists a linear forest H such that 3-COLOURING is NP-complete for H-free graphs. 467 This is, however, a notorious open problem studied in many papers; for a recent discussion 468 see [16]. It is also open for LIST 3-COLOURING, where an affirmative answer to one 469 of the two problems yields an affirmative answer to the other one [15]. For $k \ge 4$, we 470 emphasize that all open cases involve linear forests H whose connected components are 471 small. For instance, if H has at most six vertices, then the polynomial-time algorithm for 472 4-PRECOLOURING EXTENSION on P_6 -free graphs [7, 8] implies that there are only three 473 graphs H with $|V(H)| \leq 6$ for which we do not know the complexity of 4 COLOURING on 474 *H*-free graphs, namely $H \in \{P_1 + P_2 + P_3, P_2 + P_4, 2P_3\}$ (see [14]). 475

The main difficulty to extend the known complexity results is that hereditary graph classes characterized by a forbidden induced linear forest are still not sufficiently well understood due to their rich structure. We need a better understanding of these graph classes to make further progress on a wide range of problems. For example, INDEPENDENT SET is polynomial-time solvable for P_6 -free graphs [17], but it is not known if there exists a linear forest H such that it is NP-complete for H-free graphs. A similar situation holds for ODD CYCLE TRANSVERSAL and FEEDBACK VERTEX SET and many other problems; see [1] for a survey.

483 Acknowledgments. We thank Karel Král for helpful comments.

484 — References —

485	1	Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël
486		Paulusma. Independent feedback vertex set for P_5 -free graphs. Algorithmica, to appear.
487	2	Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and
488		Mingxian Zhong. Three-coloring and list three-coloring of graphs without induced paths
489		on seven vertices. Combinatorica, (in press).
490	3	Hajo Broersma, Fedor V. Fomin, Petr A. Golovach, and Daniël Paulusma. Three complexity
491		results on coloring P_k -free graphs. European Journal of Combinatorics, 34(3):609–619, 2013.
492	4	Hajo Broersma, Petr A. Golovach, Daniël Paulusma, and Jian Song. Updating the com-
493		plexity status of coloring graphs without a fixed induced linear forest. TCS , $414(1)$:9–19,
494		2012.
495	5	Maria Chudnovsky. Coloring graphs with forbidden induced subgraphs. Proc. ICM 2014,
496		IV:291–302, 2014.
497	6	Maria Chudnovsky, Peter Maceli, Juraj Stacho, and Mingxian Zhong. 4-Coloring P_6 -free
108		graphs with no induced 5-cycles Journal of Graph Theory 84(3):262-285 2017

- ⁴⁹⁹ 7 Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P₆-free graphs. I.
 ⁵⁰⁰ Extending an excellent precoloring. CoRR, 1802.02282, 2018.
- ⁵⁰¹ 8 Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P_6 -free graphs. II. ⁵⁰² Finding an excellent precoloring. *CoRR*, 1802.02283, 2018.

ISAAC 2018

35:12 Colouring $(\mathbf{P_r} + \mathbf{P_s})$ -Free Graphs

- $_{503}$ 9 Maria Chudnovsky and Juraj Stacho. 3-colorable subclasses of P_8 -free graphs. Man., 2017.
- ⁵⁰⁴ **10** Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, and Daniël Paulusma. List
- coloring in the absence of a linear forest. Algorithmica, 71(1):21–35, 2015. Konrad K. Dabrowski and Daniël Paulusma. On colouring $(2P_2, H)$ -free and (P5, H)-free
- ⁵⁰⁷ graphs. Information Processing Letters, 131:26–32, 2018.
- Keith Edwards. The complexity of colouring problems on dense graphs. TCS, 43:337–343, 1986.
- Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable graphs
 and the hardness of colouring graphs of large girth. *Combinatorics, Probability and Com- puting*, 7(04):375–386, 1998.
- Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey on the computational complexity of colouring graphs with forbidden subgraphs. *Journal of Graph Theory*, 84(4):331–363, 2017.
- Petr A. Golovach, Daniël Paulusma, and Jian Song. Closing complexity gaps for coloring
 problems on *H*-free graphs. *Information and Computation*, 237:204–214, 2014.
- ⁵¹⁸ **16** Carla Groenland, Karolina Okrasa, Pawel Rzążewski, Alex Scott, Paul Seymour, and ⁵¹⁹ Sophie Spirkl. *h*-colouring p_t -free graphs in subexponential time. *CoRR*, 1803.05396, 2018.
- ⁵²⁰ **17** Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michał Pilipczuk. Polynomial-⁵²¹ time algorithm for maximum weight independent set on P_6 -free graphs. *CoRR*, 1707.05491, ⁵²² 2017.
- 18 Chính T. Hoàng, Marcin Kamiński, Vadim V. Lozin, Joe Sawada, and Xiao Shu. Deciding
 k-colorability of P₅-free graphs in polynomial time. Algorithmica, 57(1):74–81, 2010.
- ⁵²⁵ 19 Ian Holyer. The NP-Completeness of edge-coloring. SIAM J Comput, 10(4):718–720, 1981.
- ⁵²⁶ **20** Shenwei Huang. Improved complexity results on k-coloring P_t -free graphs. European ⁵²⁷ Journal of Combinatorics, 51:336–346, 2016.
- ⁵²⁸ 21 Tommy R. Jensen and Bjarne Toft. *Graph coloring problems*. John Wiley & Sons, 1995.
- Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël Paulusma, and
 Veronika Slívová. Colouring (P_r+ P_s)-free graphs. CoRR, 2018. arXiv:1804.11091v2.
- Daniel Král', Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity of coloring
 graphs without forbidden induced subgraphs. *Proc. WG 2001, LNCS*, 2204:254–262, 2001.
- Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. New trends in the theory of graph colorings:
 choosability and list coloring. *Proc. DIMATIA-DIMACS Conference*, 49:183–197, 1999.
- Van Bang Le, Bert Randerath, and Ingo Schiermeyer. On the complexity of 4-coloring graphs without long induced paths. TCS, 389(1-2):330-335, 2007.
- ⁵³⁷ **26** Daniel Leven and Zvi Galil. NP completeness of finding the chromatic index of regular ⁵³⁸ graphs. *Journal of Algorithms*, 4(1):35–44, 1983.
- ⁵³⁹ 27 László Lovász. Coverings and coloring of hypergraphs. Congr. Numer., VIII:3–12, 1973.
- Daniël Paulusma. Open problems on graph coloring for special graph classes. Proc. WG
 2015, LNCS, 9224:16–30, 2015.
- ⁵⁴² 29 Bert Randerath and Ingo Schiermeyer. 3-colorability in P for p₆-free graphs. Discrete
 ⁵⁴³ Applied Mathematics, 136(2-3):299–313, 2004.
- Bert Randerath and Ingo Schiermeyer. Vertex colouring and forbidden subgraphs a survey.
 Graphs and Combinatorics, 20(1):1–40, 2004.
- Bert Randerath, Ingo Schiermeyer, and Meike Tewes. Three-colourability and forbidden
 subgraphs. II: polynomial algorithms. *Discrete Mathematics*, 251(1–3):137–153, 2002.
- 548 32 Thomas J. Schaefer. The complexity of satisfiability problems. STOC, pages 216–226, 1978.
- ⁵⁴⁹ 33 Zsolt Tuza. Graph colorings with local constraints a survey. Discussiones Mathematicae
 ⁵⁵⁰ Graph Theory, 17(2):161-228, 1997.
- Gerhard J. Woeginger and Jiří Sgall. The complexity of coloring graphs without long induced paths. *Acta Cybernetica*, 15(1):107–117, 2001.