
Colouring (Pr + Ps)-Free Graphs ∗ †
1

Tereza Klimošová2

Department of Applied Mathematics, Charles University, Prague, Czech Republic3

tereza@kam.mff.cuni.cz4

Josef Malík5

Czech Technical University in Prague, Czech Republic6

malikjo1@fit.cvut.cz7

Tomáš Masařík8

Department of Applied Mathematics, Charles University, Prague, Czech Republic9

masarik@kam.mff.cuni.cz10

Jana Novotná11

Department of Applied Mathematics, Charles University, Prague, Czech Republic12

janca@kam.mff.cuni.cz13

Daniël Paulusma14

Department of Computer Science, Durham University, Durham, UK15

daniel.paulusma@durham.ac.uk16

Veronika Slívová17

Computer Science Institute of Charles University, Prague, Czech Republic18

slivova@iuuk.mff.cuni.cz19

Abstract20

The k-Colouring problem is to decide if the vertices of a graph can be coloured with at most k21

colours for a fixed integer k such that no two adjacent vertices are coloured alike. If each vertex u22

must be assigned a colour from a prescribed list L(u) ⊆ {1, . . . , k}, then we obtain the List k-23

Colouring problem. A graph G is H-free if G does not contain H as an induced subgraph.24

We continue an extensive study into the complexity of these two problems for H-free graphs.25

We prove that List 3-Colouring is polynomial-time solvable for (P2 + P5)-free graphs and26

for (P3 + P4)-free graphs. Combining our results with known results yields complete complexity27

classifications of 3-Colouring and List 3-Colouring on H-free graphs for all graphs H up to28

seven vertices. We also prove that 5-Colouring is NP-complete for (P3 + P5)-free graphs.29
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1 Introduction33

Graph colouring is a popular concept in Computer Science and Mathematics due to a wide34

range of practical and theoretical applications, as evidenced by numerous surveys and books35

on graph colouring and many of its variants (see, for example, [5, 14, 21, 24, 28, 30, 33]).36

Formally, a colouring of a graph G = (V, E) is a mapping c : V → {1, 2, . . .} that assigns each37

vertex u ∈ V a colour c(u) in such a way that c(u) 6= c(v) whenever uv ∈ E. If 1 ≤ c(u) ≤ k,38

then c is also called a k-colouring of G and G is said to be k-colourable. The Colouring39

problem is to decide if a given graph G has a k-colouring for some given integer k.40

It is well known that Colouring is NP-complete even if k = 3 [27]. To pinpoint the41

reason behind the computational hardness of Colouring one may impose restrictions on the42

input. This led to an extensive study of Colouring for special graph classes, particularly43

hereditary graph classes. A graph class is hereditary if it is closed under vertex deletion.44

As this is a natural property, hereditary graph classes capture a very large collection of45

well-studied graph classes. It is readily seen that a graph class G is hereditary if and only46

if G can be characterized by a unique set HG of minimal forbidden induced subgraphs. If47

HG = {H}, then a graph G ∈ G is called H-free.48

Král’, Kratochvíl, Tuza, and Woeginger [23] started a systematic study into the complexity49

of Colouring on H-free graphs for sets H of size at most 2. They showed polynomial-50

time solvability if H is an induced subgraph of P4 or P1 + P3 and NP-completeness for all51

other graphs H. The classification for the case where H has size 2 is far from finished;52

see the summary in [14] or an updated partial overview in [11] for further details. Instead53

of considering sets H of size 2, we consider H-free graphs and follow another well-studied54

direction, in which the number of colours k is fixed, that is, k no longer belongs to the input.55

k-Colouring: Given a graph G does there exist a k-colouring of G?56

A k-list assignment of G is a function L with domain V such that the list of admissible57

colours L(u) of each u ∈ V is a subset of {1, 2, . . . , k}. A colouring c respects L if c(u) ∈ L(u)58

for every u ∈ V. If k is fixed, then we obtain the following generalization of k-Colouring:59

List k-Colouring: Given a graph G and a k-list assignment L does there exist a colouring
of G that respects L?60

For every k ≥ 3, k-Colouring on H-free graphs is NP-complete if H contains a cycle [13]61

or an induced claw [19, 26]. Hence, the case where H is a linear forest (a disjoint union62

of paths) remains. The situation is far from settled yet, although many partial results are63

known [2, 3, 4, 6, 7, 8, 9, 10, 15, 18, 20, 25, 29, 31, 34]. Particularly, the case where H is64

the t-vertex path Pt has been well studied. The cases k = 4, t = 7 and k = 5, t = 6 are65

NP-complete [20]. For k ≥ 1, t = 5 [18] and k = 3, t = 7 [2], even List k-Colouring66

on Pt-free graphs is polynomial-time solvable (see also [14]). For a fixed integer k, the67

k-Precolouring Extension problem is to decide a given k-colouring defined on an induced68

subgraph of a graph G can be extended to a k-colouring of G. Recently it was shown in [7, 8]69

that 4-Precolouring Extension, and therefore 4-Colouring, is polynomial-time solvable70

for P6-free graphs. In contrast, the more general problem List 4-Colouring is NP-complete71

for P6-free graphs [15]. See Table 1 for a summary of all these results.72

From Table 1 we see that only the cases k = 3, t ≥ 8 are still open, although some partial73

results are known for k-Colouring for the case k = 3, t = 8 [9]. The situation when H74

is a disconnected linear forest
⋃

Pi is less clear. It is known that for every s ≥ 1, List75

3-Colouring is polynomial-time solvable for sP3-free graphs [4, 14]. For every graph H,76
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k-Colouring k-Precolouring Extension List k-Colouring
t k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

t ≤ 5 P P P P P P P P P P P P
t = 6 P P NP-c NP-c P P NP-c NP-c P NP-c NP-c NP-c
t = 7 P NP-c NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c NP-c
t ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

Table 1 Summary for Pt-free graphs.

List 3-Colouring is polynomial-time solvable for (H + P1)-free graphs if it is polynomially77

solvable for H-free graphs [4, 14]. If H = rP1 + P5 (r ≥ 0) a stronger result is known.78

I Theorem 1 ([10]). For all k ≥ 1, r ≥ 0, List k-Colouring is polynomial-time solvable79

on (rP1 + P5)-free graphs.80

Theorem 1 cannot be extended to larger linear forests H, as List 4-Colouring is NP-81

complete for P6-free graphs [15] and List 5-Colouring is NP-complete for (P2 + P4)-free82

graphs [10]. As mentioned, 5-Colouring is known to be NP-complete for P6-free graphs [20],83

but the existence of integers k ≥ 3 and 2 ≤ r ≤ 5 such that k-Colouring is NP-complete84

for (Pr + P5)-free graphs has not been shown in the literature.85

Another way of making progress is to complete a classification by bounding the size of H.86

It follows from the above results and the ones in Table 1 that for a graph H with |V (H)| ≤ 6,87

3-Colouring and List 3-Colouring (and consequently, 3-Precolouring Extension)88

are polynomial-time solvable on H-free graphs if H is a linear forest, and NP-complete89

otherwise; see also [14]. In [14] it was also shown that, to obtain the same statement for90

graphs H with |V (H)| ≤ 7, only the two cases where H ∈ {P2 + P5, P3 + P4} must be solved.91

Our Results In Section 2 we solve the two missing cases listed above.92

I Theorem 2. List 3-Colouring is polynomial-time solvable for (P2 + P5)-free graphs and93

for (P3 + P4)-free graphs.94

We prove Theorem 2 as follows. If the graph G of an instance (G, L) of List 3-Colouring95

is P7-free, then we can use the aforementioned result of Bonomo et al. [2]. Hence we may96

assume that G contains an induced P7. We consider every possibility of colouring the vertices97

of this P7 and try to reduce each resulting instance to a polynomial number of smaller98

instances of 2-Satisfiability. As the latter problem can be solved in polynomial time, the99

total running time of the algorithm will be polynomial. The crucial proof ingredient is that100

we partition the set of vertices of G that do not belong to the P7 into subsets of vertices101

that are of the same distance to the P7. This leads to several “layers” of G. We analyse how102

the vertices of each layer are connected to each other and to vertices of adjacent layers so as103

to use this information in the design of our algorithm.104

Combining Theorem 2 with the aforementioned known results yields the following com-105

plexity classifications for graphs H up to seven vertices.106

I Corollary 3. Let H be a graph with |V (H)| ≤ 7. If H is a linear forest, then List107

3-Colouring is polynomial-time solvable for H-free graphs; otherwise already 3-Colouring108

is NP-complete for H-free graphs.109

In Section 3 we complement Theorem 2 by proving the following result.110

I Theorem 4. 5-Colouring is NP-complete for (P3 + P5)-free graphs.111

ISAAC 2018
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Preliminaries112

Let G = (V, E) be a graph. For a vertex v ∈ V , we denote its neighbourhood by N(v) =113

{u | uv ∈ E}, its closed neighbourhood by N [v] = N(v)∪{v} and its degree by deg(v) = |N(v)|.114

For a set S ⊆ V , we write N(S) =
⋃

v∈S N(v) \ S and N [S] = N(S) ∪ S, and we let115

G[S] = (S, {uv | u, v ∈ S}) be the subgraph of G induced by S. The contraction of an edge116

e = uv removes u and v from G and introduces a new vertex which is made adjacent to every117

vertex in N(u) ∪N(v). The identification of a set S ⊆ V by a vertex w removes all vertices118

of S from G, introduces w as a new vertex and makes w adjacent to every vertex in N(S).119

The length of a path is its number of edges. The distance distG(u, v) between two vertices u120

and v is the length of a shortest path between them in G. The distance distG(u, S) between121

a vertex u ∈ V and a set S ⊆ V \ {v} is defined as min{dist(u, v) | v ∈ S}.122

For two graphs G and H, we use G + H to denote the disjoint union of G and H, and we123

write rG to denote the disjoint union of r copies of G. Let (G, L) be an instance of List124

3-Colouring. For S ⊆ V (G), we write L(S) =
⋃

u∈S L(u). We let Pn and Kn denote the125

path and complete graph on n vertices, respectively. The diamond is the graph obtained126

from K4 after removing an edge. We say that an instance (G′, L′) is smaller than some127

other instance (G, L) of List 3-Colouring if either G′ is an induced subgraph of G with128

|V (G′)| < |V (G)|; or G′ = G and L′(u) ⊆ L(u) for each u ∈ V (G), such that there exists at129

least one vertex u∗ with L′(u∗) ⊂ L(u∗).130

2 The Two Polynomial-Time Results131

In this section we show that List 3-Colouring problem is polynomial-time solvable for132

(P2 + P5)-free graphs and for (P3 + P4)-free graphs. As arguments for these two graph classes133

are overlapping, we prove both cases simultaneously. Our proof uses the following two results.134

I Theorem 5 ([2]). List 3-Colouring is polynomial-time solvable for P7-free graphs.135

I Theorem 6 ([12]). The 2-List Colouring problem is linear-time solvable.136

Outline of the proof of Theorem 2. Our goal is to reduce, in polynomial time, an instance137

(G, L) of List 3-Colouring, where G is (P2 + P5)-free or (P3 + P4)-free, to a polynomial138

number of smaller instances of 2-List-Colouring in such a way that (G, L) is a yes-instance139

if and only if at least one of the new instances is a yes-instance. As for each of the smaller140

instances, we can apply Theorem 6, the total running time of our algorithm will be polynomial.141

If G is P7-free, then we do not have to do the above and may apply Theorem 5 instead.142

Hence, we assume that G contains an induced P7. We put the vertices of the P7 in a set N0143

and define sets Ni (i ≥ 1) of vertices of the same distance i from N0; we say that the sets Ni144

are the layers of G. We then analyse the structure of these layers using the fact that G is145

(P2 + P5)-free or (P3 + P4)-free. The first phase of our algorithm is about preprocessing146

(G, L) after colouring the seven vertices of N0 and applying a number of propagation rules.147

We consider every possible colouring of the vertices of N0. In each branch we may have to148

deal with vertices u that still have a list L(u) of size 3. We call such vertices active and prove149

that they all belong to N2. We then enter the second phase of our algorithm. In this phase150

we show, via some further branching, that N1-neighbours of active vertices either all have151

a list from {{h, i}, {h, j}}, where {h, i, j} = {1, 2, 3}, or they all have the same list {h, i}.152

In the third phase we reduce, again via some branching, to the situation where only the153

latter option applies: N1-neighbours of active vertices all have the same list. Then in the154

fourth and final phase of our algorithm we know so much structure of the instance that we155
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can reduce to a polynomial number of smaller instances of 2-List-Colouring via a new156

propagation rule identifying common neighbourhoods of two vertices by a single vertex.157

Theorem 2 (restated). List 3-Colouring is polynomial-time solvable for (P2 + P5)-free158

graphs and for (P3 + P4)-free graphs.159

Proof Sketch. Due to space limitation we omit the proof for the (more involved) case where160

H = P3 + P4. Hence, let (G, L) be an instance of List 3-Colouring, where G = (V, E) is161

a (P2 + P5)-free graph. Whenever possible, we base our arguments on (P3 + P5)-freeness.162

Since the problem can be solved component-wise, we may assume that G is connected. If G163

contains a K4, then G is not 3-colourable, and thus (G, L) is a no-instance. As we can decide164

if G contains a K4 in O(n4) time by brute force, we assume that from now on G is K4-free.165

By brute force we either deduce in O(n7) time that G is P7-free or we find an induced P7 on166

vertices v1, . . . , v7 in that order. In the first case we use Theorem 5. It remains to deal with167

the second case.168

Definition (Layers). Let N0 = {v1, . . . , v7}. For i ≥ 1, we define Ni = {u| dist(u, N0) = i}.169

We call the sets Ni (i ≥ 0) the layers of G.170

In the remainder, we consider N0 to be a fixed set of vertices. That is, we will update (G, L)171

by applying a number of propagation rules and doing some (polynomial) branching, but we172

will never delete the vertices of N0. This will enable us to exploit the H-freeness of G.173

We show the following two claims about layers (proofs omitted).174

Claim 1. V = N0 ∪N1 ∪N2 ∪N3.175

176

177

Claim 2. G[N2 ∪ N3] is the disjoint union of complete graphs of size at most 3, each178

containing at least one vertex of N2 (and thus at most two vertices of N3).179

180 We will now introduce a number of propagation rules, which run in polynomial time. We are181

going to apply these rules on G exhaustively, that is, until none of the rules can be applied182

anymore. Note that during this process some vertices of G may be deleted (due to Rules 4183

and 10), but as mentioned we will ensure that we keep the vertices of N0, while we may184

update the other sets Ni (i ≥ 1). We say that a propagation rule is safe if the new instance185

is a yes-instance of List 3-Colouring if and only if the original instance is so.186
187

Rule 1. (no empty lists) If L(u) = ∅ for some u ∈ V , then return no.188189

Rule 2. (not only lists of size 2) If |L(u)| ≤ 2 for every u ∈ V , then apply Theorem 6.190191

Rule 3. (connected graph) If G is disconnected, then solve List 3-Colouring on each192

instance (D, LD), where D is a connected component of G that does not contain N0193

and LD is the restriction of L to D. If D has no colouring respecting LD, then194

return no; otherwise remove the vertices of D from G.195196

Rule 4. (no coloured vertices) If u /∈ N0, |L(u)| = 1 and L(u)∩L(v) = ∅ for all v ∈ N(u),197

then remove u from G.198199

Rule 5. (single colour propagation) If u and v are adjacent, |L(u)| = 1, and L(u) ⊆ L(v),200

then set L(v) := L(v) \ L(u).201202

Rule 6. (diamond colour propagation) If u and v are adjacent and share two com-203

mon neighbours x and y with L(x) 6= L(y), then set L(x) := L(x) ∩ L(y) and204

L(y) := L(x) ∩ L(y).205206

Rule 7. (twin colour propagation) If u and v are non-adjacent, N(u) ⊆ N(v), and207

L(v) ⊂ L(u), then set L(u) := L(v).208209

Rule 8. (triangle colour propagation) If u, v, w form a triangle, |L(u) ∪ L(v)| = 2 and210

|L(w)| ≥ 2, then set L(w) : = L(w) \ (L(u) ∪ L(v)), so |L(w)| ≤ 1.211212

ISAAC 2018
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Rule 9. (no free colours) If |L(u) \ L(N(u))| ≥ 1 and |L(u)| ≥ 2 for some u ∈ V , then213

set L(u) := {c} for some c ∈ L(u) \ L(N(u)).214215

Rule 10. (no small degrees) If |L(u)| > | deg(u)| for some u ∈ V \ N0, then remove u216

from G.217

As mentioned, our algorithm will branch at several stages to create a number of new but218

smaller instances, such that the original instance is a yes-instance if and only if at least one219

of the new instances is a yes-instance. Unless we explicitly state otherwise, we implicitly220

assume that Rules 1–10 are applied exhaustively immediately after we branch (see also221

Claim 3). If we apply Rule 1 or 2 on a new instance, then a no-answer means that we222

will discard the branch. So our algorithm will only return a no-answer for the original223

instance (G, L) if we discarded all branches. On the other hand, if we can apply Rule 2224

on some new instance and obtain a yes-answer, then we can extend the obtained colouring225

to a colouring of G that respects L, simply by restoring all the already coloured vertices226

that were removed from the graph due to the rules. We will now state (without proof) Claim 3.227
228

Claim 3. Rules 1–10 are safe and their exhaustive application takes polynomial time.229

Moreover, if we have not obtained a yes- or no-answer, then afterwards G is a connected230

(H, K4)-free graph, such that V = N0∪N1∪N2∪N3 and 2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0.231

232 Phase 1. Preprocessing (G, L)233

In Phase 1 we will preprocess (G, L) using the above propagation rules. To start off the234

preprocessing we will branch via colouring the vertices of N0 in every possible way. By235

colouring a vertex u, we mean reducing the list of permissible colours to size exactly one.236

(When L(u) = {c}, we consider vertex coloured by colour c.) Thus, when we colour some237

vertex u, we always give u a colour from its list L(u), moreover, when we colour more than238

one vertex we will always assign distinct colours to adjacent vertices.239

Branching I (O(1) branches)240

We now consider all possible combinations of colours that can be assigned to the vertices241

in N0. That is, we branch into at most 37 cases, in which v1, . . . , v7 each received a colour242

from their list. We note that each branch leads to a smaller instance and that (G, L) is243

a yes-instance if and only if at least one of the new instances is a yes-instance. Hence, if244

we applied Rule 1 in some branch, then we discard the branch. If we applied Rule 2 and245

obtained a no-answer, then we discard the branch as well. If we obtained a yes-answer, then246

we are done. Otherwise we continue by considering each remaining branch separately. For247

each remaining branch, we denote the resulting smaller instance by (G, L) again.248

We will now introduce a new rule, namely Rule 11. We apply Rule 11 together with the249

other rules. That is, we now apply Rules 1–11 exhaustively. However, each time we apply250

Rule 11 we first ensure that Rules 1–10 have been applied exhaustively.251

Rule 11 (N3-reduction) If u and v are in N3 and are adjacent, then remove u and v from G.252

We state (without proofs) the following claims.253

Claim 4. Rule 11, applied after exhaustive application of Rules 1–10, is safe and takes254

polynomial time. Moreover, afterwards G is a connected (H, K4)-free graph, such that255

V = N0 ∪N1 ∪N2 ∪N3 and 2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0.256

257
258

Claim 5. The set N3 is independent, and moreover, each vertex u ∈ N3 has |L(u)| = 2 and259

exactly two neighbours in N2 which are adjacent.260

261

The following claim follows immediately from Claims 2 and 5.262
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Claim 6. Every connected component D of G[N2 ∪ N3] is a complete graph with either263

|D| ≤ 2 and D ⊆ N2, or |D| = 3 and |D ∩N3| ≤ 1.264

265

The following claim (proof omitted) describes the location of the vertices with a list of size 3.266

Claim 7. For every u ∈ V , if |L(u)| = 3, then u ∈ N2.267

268 We will now show how to branch in order to reduce the lists of the vertices u ∈ N2 with269

|L(u)| = 3 by at least one colour. We formalize this approach in the following definition.270

Definition (Active vertices). A vertex u ∈ N2 and its neighbours in N1 are called active271

if |L(u)| = 3. Let A be the set of all active vertices. Let A1 = A ∩N1 and A2 = A ∩N2. We272

deactivate a vertex u ∈ A2 if we reduce the list L(u) by at least one colour. We deactivate a273

vertex w ∈ A1 by deactivating all its neighbours in A2.274

Note that every vertex w ∈ A1 has |L(w)| = 2 by Rule 5 applied on the vertices of N0. Hence,275

if we reduce L(w) by one colour, all neighbours of w in A2 become deactivated by Rule 5,276

and w is removed by Rule 4. For 1 ≤ i ≤ j ≤ 7, we let A(i, j) ⊆ A1 be the set of active277

neighbours of vi that are not adjacent to vj and similarly, we let A(j, i) ⊆ A1 be the set of278

active neighbours of vj that are not adjacent to vi.279

Phase 2. Reduce the number of distinct sets A(i, j)280

We will now branch into O(n45) smaller instances such that (G, L) is a yes-instance of List281

3-Colouring if and only if at least one of these new instances is a yes-instance. Each new282

instance will have the following property:283
284

(P) for 1 ≤ i ≤ j ≤ 7 with j − i ≥ 2, either A(i, j) = ∅ or A(j, i) = ∅.285

Branching II (O
(
n

(
3·((7

2)−6)
))

= O(n45) branches)286

Consider two vertices vi and vj with 1 ≤ i ≤ j ≤ 7 and j − i ≥ 2. Assume without loss of287

generality that vi is coloured 3 and that vj is coloured either 1 or 3. Hence, every w ∈ A(i, j)288

has L(w) = {1, 2}, whereas every w ∈ A(j, i) has L(w) = {2, q} for q ∈ {1, 3}. We branch as289

follows. We consider all possibilities where at most one vertex of A(i, j) receives colour 2290

(and all other vertices of A(i, j) receive colour 1) and all possibilities where we choose two291

vertices from A(i, j) to receive colour 2. This leads to O(n) + O(n2) = O(n2) branches. In292

the branches where at most one vertex of A(i, j) receives colour 2, every vertex of A(i, j)293

will be deactivated. So Property (P) is satisfied for i and j.294

Now consider the branches where two vertices x1, x2 of A(i, j) both received colour 2.295

We update A(j, i) accordingly. In particular, afterwards no vertex in A(j, i) is adjacent296

to x1 or x2, as 2 is a colour in the list of each vertex of A(j, i). We now do some further297

branching for those branches where A(j, i) 6= ∅. We consider the possibility where each vertex298

of N(A(j, i))∩A2 is given the colour of vj and all possibilities where we choose one vertex in299

N(A(j, i)) ∩A2 to receive a colour different from the colour of vj (we consider both options300

to colour such a vertex). This leads to O(n) branches. In the first branch, every vertex of301

A(j, i) will be deactivated. So Property (P) is satisfied for i and j.302

Now consider a branch where a vertex u ∈ N(A(j, i))∩A2 receives a colour different from303

the colour of vj . We will show that also in this case every vertex of A(j, i) will be deactivated.304

For contradiction, assume that A(j, i) contains a vertex w that is not deactivated after305

colouring u. As u was in N(A(j, i)) ∩A2, we find that u had a neighbour w′ ∈ A(j, i). As u306

is coloured with a colour different from the colour of vj , the size of L(w′) is reduced by one307

(due to Rule 4). Hence w′ got deactivated after colouring u, and thus w′ 6= w. As w is still308

active, w has a neighbour u′ ∈ A2. As u′ and w are still active, u′ and w are not adjacent to309

w′ or u. Hence, u, w′, vj , w, u′ induce a P5 in G. As x1 and x2 both received colour 2, we find310
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35:8 Colouring (Pr + Ps)-Free Graphs

that x1 and x2 are not adjacent to each other. Hence, x1, vi, x2 induce a P3 in G. Recall that311

all vertices of A(j, i), so also w and w′, are not adjacent to x1 or x2. As u and u′ were still312

active after colouring x1 and x2, we find that u and u′ are not adjacent to x1 or x2 either.313

By definition of A(j, i), w and w′ are not adjacent to vi. By definition of A(i, j), x1 and x2314

are not adjacent to vj . Moreover, vi and vj are non-adjacent, as j − i ≥ 2. We conclude315

that G contains an induced P3 + P5, namely with vertex set {x1, vi, x2} ∪ {u, w′, vj , w, u′}, a316

contradiction. Hence, every vertex of A(j, i) is deactivated. So Property (P) is satisfied for i317

and j also for these branches.318

Finally by recursive application of the above procedure for all pairs vi, vj such that319

1 ≤ i ≤ j ≤ 7 and j − i ≥ 2 we get a graph satisfying Property (P).320

We now consider each resulting instance from Branching II. We denote such an instance by321

(G, L) again. Note that vertices from N2 may now belong to N3, as their neighbours in N1322

may have been removed due to the branching. The exhaustive application of Rules 1– 11323

preserves (P) (where we apply Rule 11 only after applying Rules 1–10 exhaustively). Hence324

(G, L) satisfies (P).325

We observe that if two vertices in A1 have a different list, then they must be adjacent to326

different vertices of N0. Hence, by Property (P), at most two lists of {{1, 2}, {1, 3}, {2, 3}}327

can occur as lists of vertices of A1. Without loss of generality this leads to two cases: either328

every vertex of A1 has list {1, 2} or {1, 3} and both lists occur on A1; or every vertex of A1329

has list {1, 2} only. In the next phase of our algorithm we reduce, via some further branching,330

every instance of the first case to a polynomial number of smaller instances of the second331

case.332

Phase 3. Reduce to the case where vertices of A1 have the same list333

Recall that we assume that every vertex of A1 has list {1, 2} or {1, 3}. In this phase we334

deal with the case when both types of lists occur in A1. We first show, without proof, the335

following two claims.336

Claim 8. Let i ∈ {1, 3, 5, 7}. Then every vertex from A1 ∩N(vi) is adjacent to some vertex337

vj with j 6∈ {i− 1, i, i + 1}.338

339

340

Claim 9. It holds that N(A1) ∩ N0 = {vi−1, vi, vi+1} for some 2 ≤ i ≤ 6. Moreover, we341

may assume without loss of generality that vi−1 and vi+1 have colour 3 and both are adjacent342

to all vertices of A1 with list {1, 2}, whereas vi has colour 2 and is adjacent to all vertices of343

A1 with list {1, 3}.344

345 By Claim 9, we can partition the set A1 into two (non-empty) sets X1,2 and X1,3, where346

X1,2 is the set of vertices in A1 with list {1, 2} whose only neighbours in N0 are vi−1 and347

vi+1 (which both have colour 3) and X1,3 is the set of vertices in A1 with list {1, 3} whose348

only neighbour in N0 is vi (which has colour 2).349

Our goal is to show that we can branch into at most O(n2) smaller instances, in which350

either X1,2 = ∅ or X1,3 = ∅, such that (G, L) is a yes-instance of List 3-Colouring if and351

only if at least one of these smaller instances is a yes-instance. Then afterwards it suffices to352

show how to deal with the case where all vertices in A1 have the same list in polynomial time;353

this will be done in Phase 4 of the algorithm. We start with the following O(n) branching354

procedure (in each of the branches we may do some further O(n) branching later on).355

Branching III (O(n) branches)356

We branch by considering the possibility of giving each vertex in X1,2 colour 2 and all357

possibilities of choosing a vertex in X1,2 and giving it colour 1. This leads to O(n) branches.358

In the first branch we obtain X1,2 = ∅. Hence we can start Phase 4 for this branch. We now359

consider every branch in which X1,2 and X1,3 are both nonempty. For each such branch we360
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will create O(n) smaller instances of List 3-Colouring, where X1,3 = ∅, such that (G, L)361

is a yes-instance of List 3-Colouring if and only if at least one of the new instances is a362

yes-instance.363

Let w ∈ X1,2 be the vertex that was given colour 1 in such a branch. Although by Rule 4364

vertex w will need to be removed from G, we make an exception by temporarily keeping w365

after we coloured it. The reason is that the presence of w will be helpful for analysing the366

structure of (G, L) after Rules 1–11 have been applied exhaustively (where we apply Rule 11367

only after applying Rules 1–10 exhaustively). In order to do this, we first show the following368

three claims (proofs omitted).369

Claim 10. Vertex w is not adjacent to any vertex in A2 ∪X1,2 ∪X1,3.370

371

372

Claim 11. The graph G[X1,3 ∪ (N(X1,3) ∩A2) ∪N3] is the disjoint union of one or more373

complete graphs, each of which consists of either one vertex of X1,3 and at most two vertices374

of A2, or one vertex of N3.375

376

377

Claim 12. For every pair of adjacent vertices s, t with s ∈ A2 and t ∈ N2, either t is378

adjacent to w, or N(s) ∩X1,3 ⊆ N(t).379

380
381

We now continue as follows. Recall that X1,3 6= ∅. Hence there exists a vertex s ∈ A2 that382

has a neighbour r ∈ X1,3. As s ∈ A2, we have that |L(s)| = 3. Then, by Rule 10, we find383

that s has at least two neighbours t and t′ not equal to r. By Claim 11, we find that neither384

t nor t′ belongs to X1,3 ∪N3. We are going to fix an induced 3-vertex path P s of G, over385

which we will branch, in the following way.386

If t and t′ are not adjacent, then we let P s be the induced path in G with vertices t, s, t′387

in that order. Suppose that t and t′ are adjacent. As G is K4-free and s is adjacent to r, t, t′,388

at least one of t, t′ is not adjacent to r. We may assume without loss of generality that t is389

not adjacent to r.390

First assume that t ∈ N2. Recall that s has a neighbour in X1,3, namely r, and that r is391

not adjacent to t. We then find that t must be adjacent to w by Claim 12. As s ∈ A2, we392

find that s is not adjacent to w by Claim 10. In this case we let P s be the induced path in393

G with vertices s, t, w in that order.394

Now assume that t /∈ N2. Recall that t /∈ N3. Hence, t must be in N1. Then, as t /∈ X1,3395

but t is adjacent to a vertex in A2, namely s, we find that t ∈ X1,2. Recall that t′ /∈ X1,3. If396

t′ ∈ N1 then the fact that t′ /∈ X1,3, combined with the fact that t′ is adjacent to s ∈ A2,397

implies that t′ ∈ X1,2. However, by Rule 8 applied on s, t, t′, vertex s would have a list of398

size 1 instead of size 3, a contradiction. Hence, t′ /∈ N1. As t′ /∈ N3, this means that t′ ∈ N2.399

If t′ is adjacent to r, then t ∈ X1,2 with L(t) = {1, 2} and r ∈ X1,3 with L(r) = {1, 3} would400

have the same lists by Rule 6 applied on r, s, t, t′, a contradiction. Hence t′ is not adjacent401

to r. Then, by Claim 12, we find that t′ must be adjacent to w. Note that s is not adjacent402

to w due to Claim 10. In this case we let P s be the induced path in G with vertices s, t′, w403

in that order. We conclude that either P s = tst′ or P s = stw or P s = st′w. We are now404

ready to apply two more rounds of branching.405

Branching IV (O(n) branches)406

We branch by considering the possibility of removing colour 2 from the list of each vertex in407

N(X1,3)∩A2 and all possibilities of choosing a vertex in N(X1,3)∩A2 and giving it colour 2.408

In the branch where we removed colour 2 from the list of every vertex in N(X1,3) ∩ A2,409

we obtain that X1,3 = ∅. Hence for that branch we can enter Phase 4. Now consider a410

branch where we gave some vertex s ∈ N(X1,3) ∩A2 colour 2. Let P s = tst′ or P s = stw or411

P s = st′w. We do some further branching by considering all possibilities of colouring the412

vertices of P s that are not equal to the already coloured vertices s and w (should w be a413

ISAAC 2018



35:10 Colouring (Pr + Ps)-Free Graphs

vertex of P s) and all possibilities of giving a colour to the vertex from N(s) ∩X1,3 (recall414

that by Claim 11, |N(s) ∩X1,3| = 1). This leads to a total of O(n) branches. We claim that415

in both branches, |X1,3| has reduced to at most 1 (proof omitted).416

Branching V (O(1) branches)417

We branch by considering both possibilities of colouring the unique vertex of X1,3. This leads418

to two new but smaller instances of List 3-Colouring, in each of which the set X1,3 = ∅.419

Hence, our algorithm can enter Phase 4.420

Phase 4. Reduce to a set of instances of 2-List Colouring421

Recall that in this stage of our algorithm we have an instance (G, L) in which every vertex422

of A1 has the same list, say {1, 2}. As G is (P2 + P5)-free, G[N2 ∪N3] is an independent423

set; otherwise two adjacent vertices of N2 ∪N3 form, together with v1, . . . , v5, an induced424

P2 + P5. Hence, we can safely colour each vertex in A2 with colour 3, and afterwards we425

may apply Theorem 6.426

The correctness of our algorithm follows from the description. The branching in the five427

stages (Branching I-V), yields a total number of O(n47) branches and each branch we created428

takes polynomial time to process. Hence, the running time of our algorithm is polynomial. J429

Remark. Except for Phase 4 of our algorithm, all arguments in our proof hold for (P3 + P5)-430

free graphs. The difficulty in Phase 4 is that in contrary to the previous phases we cannot431

use the vertices from N0 to find an induced P3 + P5 and therefore obtain the contradiction.432

3 The Hardness Result433

We show that 5-Colouring is NP-complete for (P3 + P5)-free graphs by reducing from434

the NP-complete problem [32] Not-All-Equal 3-Satisfiability with positive literals435

only, defined as follows: given a set X = {x1, x2, ..., xn} of logical variables and a set436

C = {C1, C2, ..., Cm} of 3-literal clauses over X in which all literals are positive, is there a437

truth assignment for X such that each clause contains at least one true literal and at least438

one false literal? We call such a truth assignment satisfying.439

Theorem 4 (restated). 5-Colouring is NP-complete for (P3 + P5)-free graphs.440

Proof Sketch. From a given instance (C, X) of Not-All-Equal 3-Satisfiability with441

positive literals only, we first construct a graph G with a list assignment L. For each xi ∈ X442

we introduce two vertices xi and xi, which we make adjacent to each other. We say that443

xi and xi are of x-type. We set L(xi) = L(xi) = {4, 5}. For each Cj ∈ C we introduce a444

vertex Cj and a vertex C ′j called the copy of Cj . We say that Cj and C ′j are of C-type.445

We set L(Cj) = L(C ′j) = {1, 2, 3}. We add an edge between each x-type vertex and each446

C-type vertex. For each Cj ∈ C we do as follows. We fix an arbitrary order of the literals in447

Cj . Say Cj = {xg, xh, xi} in that order. Then we add six vertices ag,j , ah,j , ai,j , a′g,j , a′h,j ,448

a′i,j and edges xgag,j , ag,jCj , xhah,j , ah,jCj , xiai,j , ai,jCj and also edges xga′g,j , a′g,jC ′j ,449

xha′h,j , a′h,jC ′j , xia
′
i,j , a′i,jC ′j . We say that ag,j , ah,j , ai,j , a′g,j , a′h,j , a′i,j are of a-type. We450

set L(ag,j) = L(a′g,j) = {1, 4}, L(ah,j) = L(a′h,j) = {2, 4} and L(ai,j) = L(a′i,j) = {3, 4}.451

We now extend G into a graph G′ by adding a clique consisting of five new vertices452

k1, . . . , k5, which we say are of k-type, and by adding an edge between a vertex k` and a453

vertex u ∈ V (G) if and only if ` /∈ L(u). We can show that (C, X) has a satisfying truth454

assignment if and only if G′ has a 5-colouring, and moreover that G′ is (P3 + P5)-free (proof455

omitted). As 5-Colouring belongs to NP, this proves the theorem. J456
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4 Conclusions457

By solving two new cases we completed the complexity classifications of 3-Colouring458

and List 3-Colouring on H-free graphs for graphs H up to seven vertices. We showed459

that both problems become polynomial-time solvable if H is a linear forest, while they stay460

NP-complete in all other cases. Recall that k-Colouring (k ≥ 3) is NP-complete on H-free461

graphs whenever H is not a linear forest. For the case where H is a linear forest, our new462

NP-hardness result for 5-Colouring for (P3 + P5)-free graphs bounds, together with the463

known NP-hardness results of [20] for 4-Colouring for P7-free graphs and 5-Colouring464

for P6-free graphs, the number of open cases of k-Colouring from above.465

For future research we aim to our extend our results. In fact we still do not know if466

there exists a linear forest H such that 3-Colouring is NP-complete for H-free graphs.467

This is, however, a notorious open problem studied in many papers; for a recent discussion468

see [16]. It is also open for List 3-Colouring, where an affirmative answer to one469

of the two problems yields an affirmative answer to the other one [15]. For k ≥ 4, we470

emphasize that all open cases involve linear forests H whose connected components are471

small. For instance, if H has at most six vertices, then the polynomial-time algorithm for472

4-Precolouring Extension on P6-free graphs [7, 8] implies that there are only three473

graphs H with |V (H)| ≤ 6 for which we do not know the complexity of 4 Colouring on474

H-free graphs, namely H ∈ {P1 + P2 + P3, P2 + P4, 2P3} (see [14]).475

The main difficulty to extend the known complexity results is that hereditary graph classes476

characterized by a forbidden induced linear forest are still not sufficiently well understood due477

to their rich structure. We need a better understanding of these graph classes to make further478

progress on a wide range of problems. For example, Independent Set is polynomial-time479

solvable for P6-free graphs [17], but it is not known if there exists a linear forest H such that480

it is NP-complete for H-free graphs. A similar situation holds for Odd Cycle Transversal481

and Feedback Vertex Set and many other problems; see [1] for a survey.482
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