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Abstract—Natural Language Inference (NLI) is a fundamen-
tal step towards natural language understanding. The task aims
to detect whether a premise entails or contradicts a given
hypothesis. NLI contributes to a wide range of natural lan-
guage understanding applications such as question answering,
text summarization and information extraction. Recently, the
public availability of big datasets such as Stanford Natural
Language Inference (SNLI) and SciTail, has made it feasible
to train complex neural NLI models. Particularly, Bidirectional
Long Short-Term Memory networks (BiLSTMs) with attention
mechanisms have shown promising performance for NLI. In
this paper, we propose a Combined Attention Model (CAM)
for NLI. CAM combines the two attention mechanisms: intra-
attention and inter-attention. The model first captures the
semantics of the individual input premise and hypothesis with
intra-attention and then aligns the premise and hypothesis with
inter-sentence attention. We evaluate CAM on two benchmark
datasets: Stanford Natural Language Inference (SNLI) and
SciTail, achieving 86.14% accuracy on SNLI and 77.23% on
SciTail. Further, to investigate the effectiveness of individual
attention mechanism and in combination with each other, we
present an analysis showing that the intra- and inter-attention
mechanisms achieve higher accuracy when they are combined
together than when they are independently used.

Keywords-Natural Language Inference, Textual Entailment,
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I. INTRODUCTION

Natural Language Inference (NLI) is a fundamental step
towards natural language understanding. NLI is the task of
determining whether a sentence called hypothesis can be
inferred from a given sentence called the premise. From the
algorithmic perspective, NLI is a multi-class classification
problem. The three classes are Entailment (inferred to be
true), Contradiction (inferred to be false) and Neutral (truth
value unknown).

Traditional approaches to NLI range from machine learn-
ing based, lexical and semantic similarity based, to the meth-
ods that extracts structured information such as discourse
commitments [1]. However, traditional approaches require
extensive feature engineering. Moreover, these approaches
do not generalise well because of the complexity and domain
dependence nature of the feature engineering task.

Machine learning has been a dominant approach to NLI.
However, the machine learning research for NLI is severely

limited in performance by the lack of gold-standard premise-
hypothesis pairs [2]. The field has renewed prosperity by the
recent introduction of big datasets such as Stanford Natural
Language Inference (SNLI) [2] and SciTail [3]. The public
availability of these big datasets has made it feasible to train
complex neural network models for NLI. Recurrent Neural
Networks (RNNs), particularly bidirectional LSTMs [4] in
combination with attention mechanisms [5] have shown
state-of-the-art results on the SNLI dataset [6].

Attention mechanisms allow RNNs to automatically
search for the most relevant parts of an input sequence
and assigns weights to those parts. These weights are used
for creating the attention-weighted representation of the
input sequence [5]. The two broad categories of attention
in research literature are: intra-attention and inter-attention.
The intra-attention mechanism, known as self-attention [7],
involves applying attention to the input sentence itself.
During training, the model learns to assign higher weight to
those parts of the input sentence which are important to its
semantics. The attention-weighted sentence representations
thus generated also capture the global context of the sentence
[8]. In inter-attention mechanism, attention is applied be-
tween the input sentences. The attention-weighted sentence
representation of one sentence is generated based on the
contents of another sentence. In the sentence representation,
the information that is important with respect to other
sentences is assigned higher weights.

Attention mechanism has helped in achieving state-of-
the-art performance for NLI task [9]. However, the current
models that employ only intra-attention [8] do not utilize
information from another sentence. The models utilizing
inter-attention [10], [11] do not exploit contexts in individual
sentences. We propose a Combined Attention Model (CAM)
which employs intra-attention in conjunction with inter-
attention to utilize the benefits from both mechanisms.

Our experiments on the SNLI and SciTail dataset show
that intra- and inter-attention mechanisms work construc-
tively and achieve higher accuracy when they are combined
together in the same model than using them independently.
By combining the intra- and inter-attention mechanism we
achieve an accuracy of 86.14% on SNLI and 77.23% on
SciTail datasets. The model performs exceptionally well
on SciTail outperforming the prominent ESIM model [6]



and decomposable attention model [12] by 6.6% and 4.9%
respectively.

II. RELATED WORK

The intra-attention based model proposed by Liu et al.
[8], applies attention to premise and hypothesis itself in
order to identify the parts of sentences that are important
to sentence semantics. Average pooling is first applied to
the outputs of word-level BiLSTM and then intra-attention
mechanism is employed to replace average pooling on
the same sentence for better sentence representation. The
authors applied various input strategies and achieved the
maximum accuracy of 85.0%.

Rocktäschel et al. [10] first applied inter-attention to NLI
models. The model is based on word-by-word attention and
reasons entailment or contradiction over aligned word- and
phrase-pairs. The eminence of inter-attention for NLI task
is further established in the state-of-the-art models of Chen
et al. [6], Tay et al. [9] and Parikh et al. [12]. The key
idea of modeling inter-sentence attention is to soft-align the
sub-phrases of premise and hypothesis. Tay et al. [9] and
Parikh et al. [12] employs a standard projection layer with
ReLU activation function whereas Chen et al. [6] utilize the
similarity between the output hidden states of BiLSTMs of
premise and hypothesis.

The closest work to our research is that by Parikh et
al. [12]; they augmented inter-attention with intra-attention
gaining 0.5% in accuracy by employing feed-forward neural-
network at both the intra- and inter-attention layers. Our
model fundamentally differs from the model proposed by
Parikh et al. [12] both at the intra- and inter-attention layers.
They have employed feed-forward neural-network at both
the intra- and inter-attention layers. However, we used inner-
attention mechanism [8] for intra-attention and dot attention
mechanism [13] at the inter-attention layers.

Parikh et al. [12] have shown the effectiveness of using
combined attention mechanisms, however, the possibility of
using different attention mechanisms at intra- and inter-
attention layers has not been explored to the best of our
knowledge. We experimented with various combinations of
attention mechanisms at intra- and inter-attention layer and
found that not all combined attention mechanisms work
constructively to achieve competitive accuracy for NLI task.
We explored the possibility of employing inner-attention [8]
and word-attention [14] at the intra-attention layer in com-
bination with each of the dot, general and concate attention
mechanisms [13] at inter-attention layer. We achieved the
highest accuracy for the proposed combination of inner-
attention and dot attention mechanisms. Furthermore, with
each attention mechanism at intra- and inter-attention layers
we experimented with the feed-forward neural network of
[12], however that did not further improve the accuracy of
our model.

Figure 1: A high level layered architecture of Combined
Attention Model (CAM).

III. PROPOSED MODEL

The proposed model combines intra-attention and inter-
attention for modeling the interaction between premise-
hypothesis pairs. Fig. 1 demonstrates the high-level view of
the proposed model. The layered architecture is composed
of the following layers: input encoding, intra-attention, inter-
attention, composition and pooling.

In our notations, given the word sequence of premise a =
(a1, . . . , an) and hypothesis b = (b1, . . . , bm) with lengths n
and m respectively. Each ai, bj ∈ Rr, is a word embedding
of r-dimensional, which can be initialized with pre-trained
embeddings vectors, such as Glove [15].

Input Encoding Layer We utilize BiLSTMs to encode
the input premise and hypothesis sentences. The BiLSTM
processes the input sequence in forward and backward
directions to incorporate contextual information at each time
step of processing a word in the input sequence. The hidden
state output at any time step is the concatenation of forward
and backward hidden states. The ā ∈ Rn×2d and b̄ ∈ Rm×2d

in Equation (1) and (2) respectively, represents the 2d-
dimensional representation for each word in the premise and
hypothesis. Where d is the dimension of hidden states of
LSTMs.

āi = BiLSTM(a, i)∀i ∈ [1, . . . , n] (1)

b̄j = BiLSTM(b, j)∀j ∈ [1, . . . ,m] (2)

Intra-Attention Layer This layer applies intra-attention
[8] to premise and hypothesis sentence independently.
Through attention weights, the intra-attention layer empha-
sizes the words important to the semantics of the input sen-
tence. The attention-weighted sentence representation thus
generated represent a more accurate and focused sentence
representations of the input sentence. The attention-weighted



sentence representation is generated according to Equations
(3)− (5)

M = tanh
(
W yY +WhRavg ⊗ eL

)
(3)

α = softmax
(
wTM

)
(4)

r = Y αT (5)

where W y and Wh are trained projection matrices, Y is
the matrix of hidden output vectors of the BiLSTM layer,
Ravg is obtained from the average pooling of Y , eL ∈ RL

is a vector of 1s, wT is the transpose of trained parameter
vector w, α is a vector of attention weights and r is the
attention-weighted sentence representation. The attention-
weighted sentence representation of the premise and the
hypothesis is repeated for the maximum sentence length (L)
and is denoted as rp and rh respectively.

Inter-Attention Layer The inter-attention layer uses soft
alignment to associate relevant sub-components between the
attention weighted representations of premise and hypoth-
esis. The inter-attention layer, first, computes the unnor-
malized attention weights as a similarity of hidden states
of intra-attention weighted representations of premise and
hypothesis following Equation (6).

eij = rTpirhj (6)

Next, for each word in the intra-attention weighted rep-
resentation of the premise, the relevant semantics based on
hypothesis, is extracted following Equation (7). Similarly,
this is done for hypothesis according to Equation (8).

r̃pi =

m∑
j=1

exp(eij)∑m
k=1 exp(eik)

rhj (7)

r̃hj =

n∑
i=1

exp(eij)∑n
k=1 exp(ekj)

rpi (8)

r̃p represents the content in rp which are relevant based on
rh. Similarly, r̃h represents the content in rh which are im-
portant with respect to rp. We enrich the collected inference
information through the element-wise multiplication of the
tuples (rp, r̃p) and (rh, r̃p) as shown in Equations (9) and
(10).

fp = r̃p � rp (9)

fh = r̃h � rh (10)

Pooling Layer To facilitate the classification of the rela-
tionship between premise and hypothesis, a relation vector
is formed from the average and max pooling of the en-
coding of premise and hypothesis generated previously by
inter-attention layer in Equations (9) and (10). Pooling is
performed according to Equations (11) and (12).

vp,avg = average {fp, i}ni=1

vp,max = max {fp, i}ni=1 (11)

vh,avg = average{fh, i}mi=1

vh,max = max{fh, i}mi=1 (12)

where vp,avg and vp,max represents the fixed length vector
for premise sentences resulting from the average and max
pooling over {fp, i}ni=1. Similarly, the fixed length repre-
sentations is generated for hypothesis according to Equation
(12).

Classification Layer To classify the relationship between
premise and hypothesis, we feed the concatenation of vectors
obtained from Equations (11) and (12) to a multilayer
perceptron (MLP) classifier. Specifically, the classifier input
is composed as in Equation (13).

Frelation = [vp,avg; vp,max; vh,avg; vh,max] (13)

The MLP classifier consists of a hidden layer with tanh
activation and a three-way softmax output layer. The
network is then trained in an end-to-end manner with the
standard multi-class cross entropy loss.

IV. EXPERIMENTS AND RESULTS

Data The datasets, SNLI [2] and SciTail [3] used for
evaluating our model are well balanced across NLI classes.
We used the standard train/dev/test splits, as shown in Table
I.

Table I: Experimental Datasets

Dataset Train Validation Test
SNLI 549, 367 9, 842 9, 824
SciTail 23, 596 1, 304 2, 126

Hyperparameters We use pre-trained 300-D Glove 840B
vectors to initialize the word embeddings [15]. The out-of-
vocabulary (OOV) words are initialized by uniform distri-
bution between [-0.05, 0.05]. The hidden states of all the
layers for SciTail and SNLI datasets are set to 100 and
300 respectively. The Adam optimizer [16] with an initial
learning rate of 0.001 is used. Dropout with the rate of 0.4
is applied only to the input of BiLSTM layer for SNLI
and to each feed forward connection with dropout rate 0.3
for SciTail dataset [17]. We tuned the batch size amongst
[32, 256, 512] and L2 regularization amongst [1e-4, 1e-5].
Each model is optimized on development set for the best
performance.

Results on SNLI Table II shows the performance of dif-
ferent models on SNLI benchmark. The first row presents the
lexical classifier by Bowman et al. [2]. Sentence encoding
based models are shown in the second group (from row 2 to
6) of Table II. Bowman et al. [2] used LSTMs to generate
sentence encoding of premise and hypothesis. The sentence
encodings are then fed to a multilayer perceptron to identify
the relationship between premise and hypothesis. Following



Table II: Accuracies of the models on SNLI.

Models Accuracy (%)
Train Test

Lexical Classifier [2] 99.7 78.2
100D LSTM [2] 84.8 77.6
300D LSTM [18] 83.9 80.6
600D BiLSTM (intra-attention) [8] 84.5 84.2
600D Gumbel TreeLSTM [19] 93.1 86.0
Distance-based Self-Attention Network [20] 89.6 86.3
100D LSTMs word-by-word attention [10] 85.3 83.5
100D Deep Fusion LSTM [21] 85.2 84.6
600D BiLSTM (diversing input) [8] 85.9 85.0
50D Stacked TC-LSTMs [11] 86.7 85.1
300D MMA-NSE (attention) [22] 86.9 85.4
300D LSTMN (deep attention fusion) [23] 87.3 85.7
200D Decomposable attention (intra-attention) [12] 90.5 86.8
600D ESIM + 300D TreeLSTM [6] 93.5 88.6
ESIM + ELMo [24] 91.6 88.7
300D CAM (Our Approach) 90.5 86.1

this strategy various sentence encoders are proposed, as
shown in the second group of models in Table II.

The third group of models (from row 7 to 15) used
inter-attention mechanism to align the sub-phrases between
premise and hypothesis. Peters et al. [24] holds the cur-
rent state-of-the-art performance on SNLI among the inter-
attention, non-ensemble models. Embeddings from Lan-
guage Models (ELMo) word embeddings of Peters et al.
[24], when used with ESIM model of Chen et al. [6]
improved the accuracy from 88.6% to 88.7%.

Among the models employing inter-sentence attention,
our model (Combined Attention Model (CAM)) achieves
a competitive accuracy of 86.14% on the SNLI dataset.
Our model outperforms the previous models proposed by
Rocktäschel et al. [10], Liu et al. [21], Liu et al. [8], Liu
et al. [11], Munkhdalai and Yu [22] and Cheng et al. [23].
CAM achieves higher accuracy than the intra-attention with
diversing input model of Liu et al. [8] by 1.4%.

Results on SciTail SciTail dataset contains the labelled
data for the classes of NLI - neutral and entailment. The
NLI, thus transforms into binary classification task. Table
III shows our empirical results on the SciTail dataset. The
low accuracies of the state-of-the-art ESIM [6] and decom-
posable attention model [12] suggest that SciTail is a difficult
dataset to model. The performance gain of CAM over the
strong ESIM and decomposable attention model is 6.6% and
4.9% in terms of accuracy.

V. ANALYSIS AND DISCUSSION

Ablation Analysis We evaluate the effectiveness of in-
dividual components of our model on SciTail and SNLI
datasets. Table IV depicts the results. For SciTail, both
of our intra-attention-only and inter-attention-only models
outperform the models of Parikh et al. [12] and Chen et al.
[6] by a large margin, as detailed below.

Table III: Accuracies of the models on SciTail. The model
accuracies are reported from [3] except for CAFE which is
reported from [9]

Models Test Accuracy(%)
Majority class 60.3
NGram 70.6
ESIM 70.6
DGEM w/o edges 70.8
Decomposable attention 72.3
DGEM 77.3
CAFE 83.3
CAM (our approach) 77.2

Table IV: Ablation analysis for SCI and SNLI datasets

Models Test Accuracy(%)
SciTail SNLI

Combined Attention 77.23 86.14
Intra-attention-only 75.49 80.27
Inter-attention-only 76.06 85.04

When we remove inter-attention mechanism from CAM,
the intra-attention-only model has an accuracy of 75.49%
and outperforms the decomposable attention model of Parikh
et al. [12] and ESIM model of Chen et al. [6] (please refer
Table III for the model accuracy of Parikh et al. [12] and
Chen et al. [6]) by 3.1% and 4.9% respectively.

When we remove the intra-attention mechanism from
CAM, the inter-attention-only model achieves an accuracy
of 76.06%. The inter-attention-only model improves over the
accuracy of decomposable attention of Parikh et al. [12] by
3.76% and by 5.46% over the ESIM model of Chen et al.
[6]. CAM performs comparatively with DGEM model of
Khot et al. [3].

For SNLI, the intra-attention-only model does not perform
well and it achieves an accuracy of 80.27%. However, the
inter-attention-only model achieves an accuracy of 85.04%,
which is higher than the word-by-word attention model of
Rocktäschel et al. [10] by 1.5% and deep fusion LSTM
model of Liu et al. [21] by 0.4%. The inter-attention-only
model performs competitively with the intra-attention with
diversing input model of Liu et al. [8]

It is worth to note that the SciTail dataset contains longer
premises and hypotheses than the SNLI dataset [3]. The
results of the ablation analysis for SciTail suggest that for
long sentences, it is crucial to first capture the semantics of
the input sentence by intra-attention mechanism. The results
on both of the datasets suggest that intra-attention and inter-
attention work constructively and achieve high accuracy
when they are combined.

Further Analysis To investigate the effectiveness of each
attention mechanism individually and in combination with
each other, we further analyse the performance of each



model in Table IV. Fig. 2 present the result of the analysis.
For SNLI: The three models correctly classified 74%

the test samples (central region (e) Fig. 2(a)). Combined
attention model outperforms each of the individual atten-
tion mechanism by correctly classifying 2.2% of test cases
individually (region(c) in Fig. 2(a)) as compared to 1.8%
of intra-attention only and 2.1% of inter-attention only
model. The inter-attention model and combined attention
model correctly classify 7.0% of test samples whereas intra-
attention and combined attention correctly classify 3.0% of
test samples. This suggests that inter attention is crucial for
the high performance on SNLI. The intra-attention and inter-
attention correctly classifies 2.0% of test samples. There are
7.9% test samples which cannot be classified correctly by
any of the three models.

For SciTail: The three models correctly classified 64%
of test cases (central region, Fig. 2(b)). Similar to SNLI, the
combined attention model gets the highest percent (3.3%) of
test samples classified correctly. Unlike for SNLI, the intra-
attention-only and combined attention models agree on a
larger number of test cases (5.1%) than the inter-attention-
only and combined attention model, which agree on 4.6% of
test cases. Given the fact that SciTail is difficult to model [9],
the result suggest that capturing the semantics of individual
sequence first with intra-sentence attention is crucial for
modeling complex datasets. Moreover, a significant number
of test samples (13.4%) are not classified correctly by any
of the model. This further indicates the high complexity
SciTail.

Linguistic analysis of the test samples in each region
of Fig. 2 is an interesting investigation to understand the
behaviour of each model. Particularly, it is interesting to
analyze syntax and semantics of the premise-hypothesis
pairs, which are incorrectly classified by the intra-attention-
only and inter-attention-only models but correctly classified
by combined attention model. Region (c) in Fig. 2 depicts
these test cases. A preliminary linguistic observation on the
syntactic structure of premise-hypothesis pairs in this region
suggest that for longer premises (word count > 20) the
combined attention model predicts the test classes correctly
more often than the intra-attention-only and inter-attention-
only models.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a natural language inference
model called Combined Attention Model (CAM), that ben-
efits from intra-attention and inter-attention mechanisms.
Experiments on two benchmark datasets: SNLI and Sci-
Tail demonstrate that CAM performs competitively to the
previous models. CAM achieves an accuracy of 86.14% on
SNLI and 77.23% on SciTail. We show that, CAM performs
particularly effectively on the hard to model SciTail dataset
and outperforms the state-of-the-art ESIM by 6.6% and
decomposable attention models by 4.9%. Further, the results

of ablation analysis shows that the intra-attention and inter-
attention mechanism work constructively and achieve higher
accuracy when they are combined together in the same
model than when they are independently used. In future
work, we will investigate the effectiveness of incorporating
syntactic information such as part-of-speech tags and parse
trees into the input sentences. We believe those linguistic
features would further benefit the model to capture some
semantic aspects of the sentences.
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[12] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A
decomposable attention model for natural language infer-
ence,” in Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Association for
Computational Linguistics, 2016, pp. 2249–2255.

[13] T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” in
Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for Computa-
tional Linguistics, 2015, pp. 1412–1421.

[14] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy,
“Hierarchical attention networks for document classification,”
in Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2016, pp. 1480–1489.

[15] J. Pennington, R. Socher, and C. Manning, “Glove: Global
vectors for word representation,” in Proceedings of the 2014
conference on empirical methods in natural language pro-
cessing (EMNLP), 2014, pp. 1532–1543.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online].
Available: http://arxiv.org/abs/1412.6980

[17] A. Gajbhiye, S. Jaf, N. Al-Moubayed, A. S. McGough, and
S. Bradley, “An exploration of dropout with rnns for natural
language inference.” in 27th international Conference on
Artificial Neural Networks, Rhodes, Greece, October 4-7,
2018, proceedings. Part III., ser. Lecture notes in computer
science. Cham: Springer, October 2018, no. 11141, pp.
157–167. [Online]. Available: http://dro.dur.ac.uk/25791/

[18] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D.
Manning, and C. Potts, “A fast unified model for parsing and
sentence understanding,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, 2016, pp. 1466–1477.

[19] J. Choi, K. M. Yoo, and S. goo Lee, “Learning to compose
task-specific tree structures.” AAAI, 2017.

[20] J. Im and S. Cho, “Distance-based self-attention net-
work for natural language inference,” arXiv preprint
arXiv:1712.02047, 2017.

[21] P. Liu, X. Qiu, J. Chen, and X. Huang, “Deep fusion lstms for
text semantic matching,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, 2016, pp. 1034–1043.

[22] T. Munkhdalai and H. Yu, “Neural tree indexers for text
understanding,” in Proceedings of the conference. Association
for Computational Linguistics. Meeting, vol. 1. NIH Public
Access, 2017, p. 11.

[23] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-
networks for machine reading,” in Proceedings of the 2016
Conference on Empirical Methods in Natural Language Pro-
cessing, 2016, pp. 551–561.

[24] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer, “Deep contextualized word
representations,” in Proc. of NAACL, 2018.


