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Abstract
The k-Colouring problem is to decide if the vertices of a graph can be coloured with at most k

colours for a fixed integer k such that no two adjacent vertices are coloured alike. If each vertex u

must be assigned a colour from a prescribed list L(u) ⊆ {1, . . . , k}, then we obtain the List k-
Colouring problem. A graph G is H-free if G does not contain H as an induced subgraph.
We continue an extensive study into the complexity of these two problems for H-free graphs.
We prove that List 3-Colouring is polynomial-time solvable for (P2 + P5)-free graphs and
for (P3 + P4)-free graphs. Combining our results with known results yields complete complexity
classifications of 3-Colouring and List 3-Colouring on H-free graphs for all graphs H up to
seven vertices. We also prove that 5-Colouring is NP-complete for (P3 + P5)-free graphs.
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5:2 Colouring (Pr + Ps)-Free Graphs

1 Introduction

Graph colouring is a popular concept in Computer Science and Mathematics due to a wide
range of practical and theoretical applications, as evidenced by numerous surveys and books
on graph colouring and many of its variants (see, for example, [5, 14, 21, 24, 28, 30, 33]).
Formally, a colouring of a graph G = (V, E) is a mapping c : V → {1, 2, . . .} that assigns each
vertex u ∈ V a colour c(u) in such a way that c(u) 6= c(v) whenever uv ∈ E. If 1 ≤ c(u) ≤ k,
then c is also called a k-colouring of G and G is said to be k-colourable. The Colouring
problem is to decide if a given graph G has a k-colouring for some given integer k.

It is well known that Colouring is NP-complete even if k = 3 [27]. To pinpoint the
reason behind the computational hardness of Colouring one may impose restrictions on the
input. This led to an extensive study of Colouring for special graph classes, particularly
hereditary graph classes. A graph class is hereditary if it is closed under vertex deletion.
As this is a natural property, hereditary graph classes capture a very large collection of
well-studied graph classes. It is readily seen that a graph class G is hereditary if and only
if G can be characterized by a unique set HG of minimal forbidden induced subgraphs. If
HG = {H}, then a graph G ∈ G is called H-free.

Král’, Kratochvíl, Tuza, and Woeginger [23] started a systematic study into the complexity
of Colouring on H-free graphs for sets H of size at most 2. They showed polynomial-
time solvability if H is an induced subgraph of P4 or P1 + P3 and NP-completeness for all
other graphs H. The classification for the case where H has size 2 is far from finished;
see the summary in [14] or an updated partial overview in [11] for further details. Instead
of considering sets H of size 2, we consider H-free graphs and follow another well-studied
direction, in which the number of colours k is fixed, that is, k no longer belongs to the input.

k-Colouring: Given a graph G does there exist a k-colouring of G?

A k-list assignment of G is a function L with domain V such that the list of admissible
colours L(u) of each u ∈ V is a subset of {1, 2, . . . , k}. A colouring c respects L if c(u) ∈ L(u)
for every u ∈ V. If k is fixed, then we obtain the following generalization of k-Colouring:

List k-Colouring: Given a graph G and a k-list assignment L does there exist a colouring
of G that respects L?

For every k ≥ 3, k-Colouring on H-free graphs is NP-complete if H contains a cycle [13]
or an induced claw [19, 26]. Hence, the case where H is a linear forest (a disjoint union
of paths) remains. The situation is far from settled yet, although many partial results are
known [2, 3, 4, 6, 7, 8, 9, 10, 15, 18, 20, 25, 29, 31, 34]. Particularly, the case where H is
the t-vertex path Pt has been well studied. The cases k = 4, t = 7 and k = 5, t = 6 are
NP-complete [20]. For k ≥ 1, t = 5 [18] and k = 3, t = 7 [2], even List k-Colouring
on Pt-free graphs is polynomial-time solvable (see also [14]). For a fixed integer k, the
k-Precolouring Extension problem is to decide a given k-colouring defined on an induced
subgraph of a graph G can be extended to a k-colouring of G. Recently it was shown in [7, 8]
that 4-Precolouring Extension, and therefore 4-Colouring, is polynomial-time solvable
for P6-free graphs. In contrast, the more general problem List 4-Colouring is NP-complete
for P6-free graphs [15]. See Table 1 for a summary of all these results.

From Table 1 we see that only the cases k = 3, t ≥ 8 are still open, although some partial
results are known for k-Colouring for the case k = 3, t = 8 [9]. The situation when H

is a disconnected linear forest
⋃

Pi is less clear. It is known that for every s ≥ 1, List
3-Colouring is polynomial-time solvable for sP3-free graphs [4, 14]. For every graph H,
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Table 1 Summary for Pt-free graphs.

k-Colouring k-Precolouring Extension List k-Colouring
t k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

t ≤ 5 P P P P P P P P P P P P
t = 6 P P NP-c NP-c P P NP-c NP-c P NP-c NP-c NP-c
t = 7 P NP-c NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c NP-c
t ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

List 3-Colouring is polynomial-time solvable for (H + P1)-free graphs if it is polynomially
solvable for H-free graphs [4, 14]. If H = rP1 + P5 (r ≥ 0) a stronger result is known.

I Theorem 1 ([10]). For all k ≥ 1, r ≥ 0, List k-Colouring is polynomial-time solvable
on (rP1 + P5)-free graphs.

Theorem 1 cannot be extended to larger linear forests H, as List 4-Colouring is NP-
complete for P6-free graphs [15] and List 5-Colouring is NP-complete for (P2 + P4)-free
graphs [10]. As mentioned, 5-Colouring is known to be NP-complete for P6-free graphs [20],
but the existence of integers k ≥ 3 and 2 ≤ r ≤ 5 such that k-Colouring is NP-complete
for (Pr + P5)-free graphs has not been shown in the literature.

Another way of making progress is to complete a classification by bounding the size of H.
It follows from the above results and the ones in Table 1 that for a graph H with |V (H)| ≤ 6,
3-Colouring and List 3-Colouring (and consequently, 3-Precolouring Extension)
are polynomial-time solvable on H-free graphs if H is a linear forest, and NP-complete
otherwise; see also [14]. In [14] it was also shown that, to obtain the same statement for
graphs H with |V (H)| ≤ 7, only the two cases where H ∈ {P2 + P5, P3 + P4} must be solved.

Our Results. In Section 2 we solve the two missing cases listed above.

I Theorem 2. List 3-Colouring is polynomial-time solvable for (P2 + P5)-free graphs and
for (P3 + P4)-free graphs.

We prove Theorem 2 as follows. If the graph G of an instance (G, L) of List 3-Colouring
is P7-free, then we can use the aforementioned result of Bonomo et al. [2]. Hence we may
assume that G contains an induced P7. We consider every possibility of colouring the vertices
of this P7 and try to reduce each resulting instance to a polynomial number of smaller
instances of 2-Satisfiability. As the latter problem can be solved in polynomial time, the
total running time of the algorithm will be polynomial. The crucial proof ingredient is that
we partition the set of vertices of G that do not belong to the P7 into subsets of vertices
that are of the same distance to the P7. This leads to several “layers” of G. We analyse how
the vertices of each layer are connected to each other and to vertices of adjacent layers so as
to use this information in the design of our algorithm.

Combining Theorem 2 with the aforementioned known results yields the following com-
plexity classifications for graphs H up to seven vertices.

I Corollary 3. Let H be a graph with |V (H)| ≤ 7. If H is a linear forest, then List
3-Colouring is polynomial-time solvable for H-free graphs; otherwise already 3-Colouring
is NP-complete for H-free graphs.

In Section 3 we complement Theorem 2 by proving the following result.

I Theorem 4. 5-Colouring is NP-complete for (P3 + P5)-free graphs.

ISAAC 2018



5:4 Colouring (Pr + Ps)-Free Graphs

Preliminaries
Let G = (V, E) be a graph. For a vertex v ∈ V , we denote its neighbourhood by N(v) =
{u | uv ∈ E}, its closed neighbourhood by N [v] = N(v)∪{v} and its degree by deg(v) = |N(v)|.
For a set S ⊆ V , we write N(S) =

⋃
v∈S N(v) \ S and N [S] = N(S) ∪ S, and we let

G[S] = (S, {uv | u, v ∈ S}) be the subgraph of G induced by S. The contraction of an edge
e = uv removes u and v from G and introduces a new vertex which is made adjacent to every
vertex in N(u) ∪N(v). The identification of a set S ⊆ V by a vertex w removes all vertices
of S from G, introduces w as a new vertex and makes w adjacent to every vertex in N(S).
The length of a path is its number of edges. The distance distG(u, v) between two vertices u

and v is the length of a shortest path between them in G. The distance distG(u, S) between
a vertex u ∈ V and a set S ⊆ V \ {v} is defined as min{dist(u, v) | v ∈ S}.

For two graphs G and H, we use G + H to denote the disjoint union of G and H, and we
write rG to denote the disjoint union of r copies of G. Let (G, L) be an instance of List
3-Colouring. For S ⊆ V (G), we write L(S) =

⋃
u∈S L(u). We let Pn and Kn denote the

path and complete graph on n vertices, respectively. The diamond is the graph obtained
from K4 after removing an edge. We say that an instance (G′, L′) is smaller than some
other instance (G, L) of List 3-Colouring if either G′ is an induced subgraph of G with
|V (G′)| < |V (G)|; or G′ = G and L′(u) ⊆ L(u) for each u ∈ V (G), such that there exists at
least one vertex u∗ with L′(u∗) ⊂ L(u∗).

2 The Two Polynomial-Time Results

In this section we show that List 3-Colouring problem is polynomial-time solvable for
(P2 + P5)-free graphs and for (P3 + P4)-free graphs. As arguments for these two graph classes
are overlapping, we prove both cases simultaneously. Our proof uses the following two results.

I Theorem 5 ([2]). List 3-Colouring is polynomial-time solvable for P7-free graphs.

I Theorem 6 ([12]). The 2-List Colouring problem is linear-time solvable.

Outline of the proof of Theorem 2. Our goal is to reduce, in polynomial time, an instance
(G, L) of List 3-Colouring, where G is (P2 + P5)-free or (P3 + P4)-free, to a polynomial
number of smaller instances of 2-List-Colouring in such a way that (G, L) is a yes-
instance if and only if at least one of the new instances is a yes-instance. As for each of the
smaller instances, we can apply Theorem 6, the total running time of our algorithm will be
polynomial.

If G is P7-free, then we do not have to do the above and may apply Theorem 5 instead.
Hence, we assume that G contains an induced P7. We put the vertices of the P7 in a set N0
and define sets Ni (i ≥ 1) of vertices of the same distance i from N0; we say that the sets Ni

are the layers of G. We then analyse the structure of these layers using the fact that G is
(P2 + P5)-free or (P3 + P4)-free. The first phase of our algorithm is about preprocessing
(G, L) after colouring the seven vertices of N0 and applying a number of propagation rules.
We consider every possible colouring of the vertices of N0. In each branch we may have to
deal with vertices u that still have a list L(u) of size 3. We call such vertices active and prove
that they all belong to N2. We then enter the second phase of our algorithm. In this phase
we show, via some further branching, that N1-neighbours of active vertices either all have
a list from {{h, i}, {h, j}}, where {h, i, j} = {1, 2, 3}, or they all have the same list {h, i}.
In the third phase we reduce, again via some branching, to the situation where only the
latter option applies: N1-neighbours of active vertices all have the same list. Then in the
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fourth and final phase of our algorithm we know so much structure of the instance that we
can reduce to a polynomial number of smaller instances of 2-List-Colouring via a new
propagation rule identifying common neighbourhoods of two vertices by a single vertex.

I Theorem 2 (restated). List 3-Colouring is polynomial-time solvable for (P2 + P5)-free
graphs and for (P3 + P4)-free graphs.

Proof Sketch. Due to space limitation we omit the proof for the (more involved) case where
H = P3 + P4. Hence, let (G, L) be an instance of List 3-Colouring, where G = (V, E) is
a (P2 + P5)-free graph. Whenever possible, we base our arguments on (P3 + P5)-freeness.
Since the problem can be solved component-wise, we may assume that G is connected. If G

contains a K4, then G is not 3-colourable, and thus (G, L) is a no-instance. As we can decide
if G contains a K4 in O(n4) time by brute force, we assume that from now on G is K4-free.
By brute force we either deduce in O(n7) time that G is P7-free or we find an induced P7 on
vertices v1, . . . , v7 in that order. In the first case we use Theorem 5. It remains to deal with
the second case.

I Definition 7 (Layers). Let N0 = {v1, . . . , v7}. For i ≥ 1, we define Ni = {u | dist(u, N0) =
i}. We call the sets Ni (i ≥ 0) the layers of G.

In the remainder, we consider N0 to be a fixed set of vertices. That is, we will update (G, L)
by applying a number of propagation rules and doing some (polynomial) branching, but we
will never delete the vertices of N0. This will enable us to exploit the H-freeness of G.

We show the following two claims about layers (proofs omitted).

I Claim 8. V = N0 ∪N1 ∪N2 ∪N3.

I Claim 9. G[N2 ∪ N3] is the disjoint union of complete graphs of size at most 3, each
containing at least one vertex of N2 (and thus at most two vertices of N3).

We will now introduce a number of propagation rules, which run in polynomial time. We are
going to apply these rules on G exhaustively, that is, until none of the rules can be applied
anymore. Note that during this process some vertices of G may be deleted (due to Rules 2
and 2), but as mentioned we will ensure that we keep the vertices of N0, while we may
update the other sets Ni (i ≥ 1). We say that a propagation rule is safe if the new instance
is a yes-instance of List 3-Colouring if and only if the original instance is so.

Rule 1. (no empty lists) If L(u) = ∅ for some u ∈ V , then return no.
Rule 2. (not only lists of size 2) If |L(u)| ≤ 2 for every u ∈ V , then apply Theorem 6.
Rule 3. (connected graph) If G is disconnected, then solve List 3-Colouring on each

instance (D, LD), where D is a connected component of G that does not contain N0 and
LD is the restriction of L to D. If D has no colouring respecting LD, then return no;
otherwise remove the vertices of D from G.

Rule 4. (no coloured vertices) If u /∈ N0, |L(u)| = 1 and L(u) ∩ L(v) = ∅ for all v ∈ N(u),
then remove u from G.

Rule 5. (single colour propagation) If u and v are adjacent, |L(u)| = 1, and L(u) ⊆ L(v),
then set L(v) := L(v) \ L(u).

Rule 6. (diamond colour propagation) If u and v are adjacent and share two common neigh-
bours x and y with L(x) 6= L(y), then set L(x) := L(x) ∩ L(y) and L(y) := L(x) ∩ L(y).

Rule 7. (twin colour propagation) If u and v are non-adjacent, N(u) ⊆ N(v), and L(v) ⊂
L(u), then set L(u) := L(v).

ISAAC 2018



5:6 Colouring (Pr + Ps)-Free Graphs

Rule 8. (triangle colour propagation) If u, v, w form a triangle, |L(u) ∪ L(v)| = 2 and
|L(w)| ≥ 2, then set L(w) : = L(w) \ (L(u) ∪ L(v)), so |L(w)| ≤ 1.

Rule 9. (no free colours) If |L(u) \ L(N(u))| ≥ 1 and |L(u)| ≥ 2 for some u ∈ V , then set
L(u) := {c} for some c ∈ L(u) \ L(N(u)).

Rule 10. (no small degrees) If |L(u)| > | deg(u)| for some u ∈ V \ N0, then remove u

from G.
As mentioned, our algorithm will branch at several stages to create a number of new but
smaller instances, such that the original instance is a yes-instance if and only if at least one of
the new instances is a yes-instance. Unless we explicitly state otherwise, we implicitly assume
that Rules 2–2 are applied exhaustively immediately after we branch (see also Claim 10). If
we apply Rule 2 or 2 on a new instance, then a no-answer means that we will discard the
branch. So our algorithm will only return a no-answer for the original instance (G, L) if we
discarded all branches. On the other hand, if we can apply Rule 2 on some new instance
and obtain a yes-answer, then we can extend the obtained colouring to a colouring of G that
respects L, simply by restoring all the already coloured vertices that were removed from the
graph due to the rules. We will now state (without proof) Claim 10.

I Claim 10. Rules 2–2 are safe and their exhaustive application takes polynomial time.
Moreover, if we have not obtained a yes- or no-answer, then afterwards G is a connected
(H, K4)-free graph, such that V = N0∪N1∪N2∪N3 and 2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0.

Phase 1. Preprocessing (G, L)

In Phase 1 we will preprocess (G, L) using the above propagation rules. To start off the
preprocessing we will branch via colouring the vertices of N0 in every possible way. By
colouring a vertex u, we mean reducing the list of permissible colours to size exactly one.
(When L(u) = {c}, we consider vertex coloured by colour c.) Thus, when we colour some
vertex u, we always give u a colour from its list L(u), moreover, when we colour more than
one vertex we will always assign distinct colours to adjacent vertices.

Branching I. (O(1) branches)
We now consider all possible combinations of colours that can be assigned to the vertices
in N0. That is, we branch into at most 37 cases, in which v1, . . . , v7 each received a colour
from their list. We note that each branch leads to a smaller instance and that (G, L) is
a yes-instance if and only if at least one of the new instances is a yes-instance. Hence, if
we applied Rule 2 in some branch, then we discard the branch. If we applied Rule 2 and
obtained a no-answer, then we discard the branch as well. If we obtained a yes-answer, then
we are done. Otherwise we continue by considering each remaining branch separately. For
each remaining branch, we denote the resulting smaller instance by (G, L) again.

We will now introduce a new rule, namely Rule 2. We apply Rule 2 together with the
other rules. That is, we now apply Rules 2–2 exhaustively. However, each time we apply
Rule 2 we first ensure that Rules 2–2 have been applied exhaustively.

Rule 11. (N3-reduction) If u and v are in N3 and are adjacent, then remove u and v from G.
We state (without proofs) the following claims.

I Claim 11. Rule 2, applied after exhaustive application of Rules 2–2, is safe and takes
polynomial time. Moreover, afterwards G is a connected (H, K4)-free graph, such that
V = N0 ∪N1 ∪N2 ∪N3 and 2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0.



T. Klimošová, J. Malík, T. Masařík, J. Novotná, D. Paulusma, and V. Slívová 5:7

I Claim 12. The set N3 is independent, and moreover, each vertex u ∈ N3 has |L(u)| = 2
and exactly two neighbours in N2 which are adjacent.

The following claim follows immediately from Claims 9 and 12.

I Claim 13. Every connected component D of G[N2 ∪N3] is a complete graph with either
|D| ≤ 2 and D ⊆ N2, or |D| = 3 and |D ∩N3| ≤ 1.

The following claim (proof omitted) describes the location of the vertices with a list of size 3.

I Claim 14. For every u ∈ V , if |L(u)| = 3, then u ∈ N2.

We will now show how to branch in order to reduce the lists of the vertices u ∈ N2 with
|L(u)| = 3 by at least one colour. We formalize this approach in the following definition.

I Definition 15 (Active vertices). A vertex u ∈ N2 and its neighbours in N1 are called active
if |L(u)| = 3. Let A be the set of all active vertices. Let A1 = A ∩N1 and A2 = A ∩N2. We
deactivate a vertex u ∈ A2 if we reduce the list L(u) by at least one colour. We deactivate a
vertex w ∈ A1 by deactivating all its neighbours in A2.

Note that every vertex w ∈ A1 has |L(w)| = 2 by Rule 2 applied on the vertices of N0. Hence,
if we reduce L(w) by one colour, all neighbours of w in A2 become deactivated by Rule 2,
and w is removed by Rule 2. For 1 ≤ i ≤ j ≤ 7, we let A(i, j) ⊆ A1 be the set of active
neighbours of vi that are not adjacent to vj and similarly, we let A(j, i) ⊆ A1 be the set of
active neighbours of vj that are not adjacent to vi.

Phase 2. Reduce the number of distinct sets A(i, j)

We will now branch into O(n45) smaller instances such that (G, L) is a yes-instance of List
3-Colouring if and only if at least one of these new instances is a yes-instance. Each new
instance will have the following property:
(P) for 1 ≤ i ≤ j ≤ 7 with j − i ≥ 2, either A(i, j) = ∅ or A(j, i) = ∅.

Branching II. (O
(
n

(
3·((7

2)−6)
))

= O(n45) branches)
Consider two vertices vi and vj with 1 ≤ i ≤ j ≤ 7 and j − i ≥ 2. Assume without loss of
generality that vi is coloured 3 and that vj is coloured either 1 or 3. Hence, every w ∈ A(i, j)
has L(w) = {1, 2}, whereas every w ∈ A(j, i) has L(w) = {2, q} for q ∈ {1, 3}. We branch as
follows. We consider all possibilities where at most one vertex of A(i, j) receives colour 2
(and all other vertices of A(i, j) receive colour 1) and all possibilities where we choose two
vertices from A(i, j) to receive colour 2. This leads to O(n) + O(n2) = O(n2) branches. In
the branches where at most one vertex of A(i, j) receives colour 2, every vertex of A(i, j)
will be deactivated. So Property (P) is satisfied for i and j.

Now consider the branches where two vertices x1, x2 of A(i, j) both received colour 2.
We update A(j, i) accordingly. In particular, afterwards no vertex in A(j, i) is adjacent
to x1 or x2, as 2 is a colour in the list of each vertex of A(j, i). We now do some further
branching for those branches where A(j, i) 6= ∅. We consider the possibility where each vertex
of N(A(j, i))∩A2 is given the colour of vj and all possibilities where we choose one vertex in
N(A(j, i)) ∩A2 to receive a colour different from the colour of vj (we consider both options
to colour such a vertex). This leads to O(n) branches. In the first branch, every vertex of
A(j, i) will be deactivated. So Property (P) is satisfied for i and j.

Now consider a branch where a vertex u ∈ N(A(j, i))∩A2 receives a colour different from
the colour of vj . We will show that also in this case every vertex of A(j, i) will be deactivated.

ISAAC 2018
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For contradiction, assume that A(j, i) contains a vertex w that is not deactivated after
colouring u. As u was in N(A(j, i)) ∩A2, we find that u had a neighbour w′ ∈ A(j, i). As u

is coloured with a colour different from the colour of vj , the size of L(w′) is reduced by one
(due to Rule 2). Hence w′ got deactivated after colouring u, and thus w′ 6= w. As w is still
active, w has a neighbour u′ ∈ A2. As u′ and w are still active, u′ and w are not adjacent to
w′ or u. Hence, u, w′, vj , w, u′ induce a P5 in G. As x1 and x2 both received colour 2, we find
that x1 and x2 are not adjacent to each other. Hence, x1, vi, x2 induce a P3 in G. Recall that
all vertices of A(j, i), so also w and w′, are not adjacent to x1 or x2. As u and u′ were still
active after colouring x1 and x2, we find that u and u′ are not adjacent to x1 or x2 either.
By definition of A(j, i), w and w′ are not adjacent to vi. By definition of A(i, j), x1 and x2
are not adjacent to vj . Moreover, vi and vj are non-adjacent, as j − i ≥ 2. We conclude
that G contains an induced P3 + P5, namely with vertex set {x1, vi, x2} ∪ {u, w′, vj , w, u′}, a
contradiction. Hence, every vertex of A(j, i) is deactivated. So Property (P) is satisfied for i

and j also for these branches.
Finally by recursive application of the above procedure for all pairs vi, vj such that

1 ≤ i ≤ j ≤ 7 and j − i ≥ 2 we get a graph satisfying Property (P).

We now consider each resulting instance from Branching II. We denote such an instance
by (G, L) again. Note that vertices from N2 may now belong to N3, as their neighbours in
N1 may have been removed due to the branching. The exhaustive application of Rules 2– 2
preserves (P) (where we apply Rule 2 only after applying Rules 2–2 exhaustively). Hence
(G, L) satisfies (P).

We observe that if two vertices in A1 have a different list, then they must be adjacent to
different vertices of N0. Hence, by Property (P), at most two lists of {{1, 2}, {1, 3}, {2, 3}}
can occur as lists of vertices of A1. Without loss of generality this leads to two cases: either
every vertex of A1 has list {1, 2} or {1, 3} and both lists occur on A1; or every vertex of A1
has list {1, 2} only. In the next phase of our algorithm we reduce, via some further branching,
every instance of the first case to a polynomial number of smaller instances of the second
case.

Phase 3. Reduce to the case where vertices of A1 have the same list

Recall that we assume that every vertex of A1 has list {1, 2} or {1, 3}. In this phase we
deal with the case when both types of lists occur in A1. We first show, without proof, the
following two claims.

I Claim 16. Let i ∈ {1, 3, 5, 7}. Then every vertex from A1 ∩ N(vi) is adjacent to some
vertex vj with j 6∈ {i− 1, i, i + 1}.

I Claim 17. It holds that N(A1) ∩N0 = {vi−1, vi, vi+1} for some 2 ≤ i ≤ 6. Moreover, we
may assume without loss of generality that vi−1 and vi+1 have colour 3 and both are adjacent
to all vertices of A1 with list {1, 2}, whereas vi has colour 2 and is adjacent to all vertices of
A1 with list {1, 3}.

By Claim 17, we can partition the set A1 into two (non-empty) sets X1,2 and X1,3, where
X1,2 is the set of vertices in A1 with list {1, 2} whose only neighbours in N0 are vi−1 and
vi+1 (which both have colour 3) and X1,3 is the set of vertices in A1 with list {1, 3} whose
only neighbour in N0 is vi (which has colour 2).

Our goal is to show that we can branch into at most O(n2) smaller instances, in which
either X1,2 = ∅ or X1,3 = ∅, such that (G, L) is a yes-instance of List 3-Colouring if and
only if at least one of these smaller instances is a yes-instance. Then afterwards it suffices to
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show how to deal with the case where all vertices in A1 have the same list in polynomial time;
this will be done in Phase 4 of the algorithm. We start with the following O(n) branching
procedure (in each of the branches we may do some further O(n) branching later on).

Branching III. (O(n) branches)
We branch by considering the possibility of giving each vertex in X1,2 colour 2 and all
possibilities of choosing a vertex in X1,2 and giving it colour 1. This leads to O(n) branches.
In the first branch we obtain X1,2 = ∅. Hence we can start Phase 4 for this branch. We now
consider every branch in which X1,2 and X1,3 are both nonempty. For each such branch we
will create O(n) smaller instances of List 3-Colouring, where X1,3 = ∅, such that (G, L)
is a yes-instance of List 3-Colouring if and only if at least one of the new instances is a
yes-instance.

Let w ∈ X1,2 be the vertex that was given colour 1 in such a branch. Although by Rule 2
vertex w will need to be removed from G, we make an exception by temporarily keeping w

after we coloured it. The reason is that the presence of w will be helpful for analysing the
structure of (G, L) after Rules 2–2 have been applied exhaustively (where we apply Rule 2
only after applying Rules 2–2 exhaustively). In order to do this, we first show the following
three claims (proofs omitted).

I Claim 18. Vertex w is not adjacent to any vertex in A2 ∪X1,2 ∪X1,3.

I Claim 19. The graph G[X1,3 ∪ (N(X1,3) ∩A2) ∪N3] is the disjoint union of one or more
complete graphs, each of which consists of either one vertex of X1,3 and at most two vertices
of A2, or one vertex of N3.

I Claim 20. For every pair of adjacent vertices s, t with s ∈ A2 and t ∈ N2, either t is
adjacent to w, or N(s) ∩X1,3 ⊆ N(t).

We now continue as follows. Recall that X1,3 6= ∅. Hence there exists a vertex s ∈ A2 that
has a neighbour r ∈ X1,3. As s ∈ A2, we have that |L(s)| = 3. Then, by Rule 2, we find that
s has at least two neighbours t and t′ not equal to r. By Claim 19, we find that neither t nor
t′ belongs to X1,3 ∪N3. We are going to fix an induced 3-vertex path P s of G, over which
we will branch, in the following way.

If t and t′ are not adjacent, then we let P s be the induced path in G with vertices t, s, t′

in that order. Suppose that t and t′ are adjacent. As G is K4-free and s is adjacent to r, t, t′,
at least one of t, t′ is not adjacent to r. We may assume without loss of generality that t is
not adjacent to r.

First assume that t ∈ N2. Recall that s has a neighbour in X1,3, namely r, and that r is
not adjacent to t. We then find that t must be adjacent to w by Claim 20. As s ∈ A2, we
find that s is not adjacent to w by Claim 18. In this case we let P s be the induced path in
G with vertices s, t, w in that order.

Now assume that t /∈ N2. Recall that t /∈ N3. Hence, t must be in N1. Then, as t /∈ X1,3
but t is adjacent to a vertex in A2, namely s, we find that t ∈ X1,2. Recall that t′ /∈ X1,3. If
t′ ∈ N1 then the fact that t′ /∈ X1,3, combined with the fact that t′ is adjacent to s ∈ A2,
implies that t′ ∈ X1,2. However, by Rule 2 applied on s, t, t′, vertex s would have a list of
size 1 instead of size 3, a contradiction. Hence, t′ /∈ N1. As t′ /∈ N3, this means that t′ ∈ N2.
If t′ is adjacent to r, then t ∈ X1,2 with L(t) = {1, 2} and r ∈ X1,3 with L(r) = {1, 3} would
have the same lists by Rule 2 applied on r, s, t, t′, a contradiction. Hence t′ is not adjacent
to r. Then, by Claim 20, we find that t′ must be adjacent to w. Note that s is not adjacent
to w due to Claim 18. In this case we let P s be the induced path in G with vertices s, t′, w
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in that order. We conclude that either P s = tst′ or P s = stw or P s = st′w. We are now
ready to apply two more rounds of branching.

Branching IV. (O(n) branches)
We branch by considering the possibility of removing colour 2 from the list of each vertex in
N(X1,3)∩A2 and all possibilities of choosing a vertex in N(X1,3)∩A2 and giving it colour 2.
In the branch where we removed colour 2 from the list of every vertex in N(X1,3) ∩ A2,
we obtain that X1,3 = ∅. Hence for that branch we can enter Phase 4. Now consider a
branch where we gave some vertex s ∈ N(X1,3) ∩A2 colour 2. Let P s = tst′ or P s = stw or
P s = st′w. We do some further branching by considering all possibilities of colouring the
vertices of P s that are not equal to the already coloured vertices s and w (should w be a
vertex of P s) and all possibilities of giving a colour to the vertex from N(s) ∩X1,3 (recall
that by Claim 19, |N(s) ∩X1,3| = 1). This leads to a total of O(n) branches. We claim that
in both branches, |X1,3| has reduced to at most 1 (proof omitted).

Branching V. (O(1) branches)
We branch by considering both possibilities of colouring the unique vertex of X1,3. This leads
to two new but smaller instances of List 3-Colouring, in each of which the set X1,3 = ∅.
Hence, our algorithm can enter Phase 4.

Phase 4. Reduce to a set of instances of 2-List Colouring

Recall that in this stage of our algorithm we have an instance (G, L) in which every vertex
of A1 has the same list, say {1, 2}. As G is (P2 + P5)-free, G[N2 ∪N3] is an independent
set; otherwise two adjacent vertices of N2 ∪N3 form, together with v1, . . . , v5, an induced
P2 + P5. Hence, we can safely colour each vertex in A2 with colour 3, and afterwards we
may apply Theorem 6.
The correctness of our algorithm follows from the description. The branching in the five stages
(Branching I-V), yields a total number of O(n47) branches and each branch we created takes
polynomial time to process. Hence, the running time of our algorithm is polynomial. J

I Remark. Except for Phase 4 of our algorithm, all arguments in our proof hold for (P3 +P5)-
free graphs. The difficulty in Phase 4 is that in contrary to the previous phases we cannot
use the vertices from N0 to find an induced P3 + P5 and therefore obtain the contradiction.

3 The Hardness Result

We show that 5-Colouring is NP-complete for (P3 + P5)-free graphs by reducing from
the NP-complete problem [32] Not-All-Equal 3-Satisfiability with positive literals
only, defined as follows: given a set X = {x1, x2, ..., xn} of logical variables and a set
C = {C1, C2, ..., Cm} of 3-literal clauses over X in which all literals are positive, is there a
truth assignment for X such that each clause contains at least one true literal and at least
one false literal? We call such a truth assignment satisfying.

I Theorem 4 (restated). 5-Colouring is NP-complete for (P3 + P5)-free graphs.

Proof. Proof Sketch. From a given instance (C, X) of Not-All-Equal 3-Satisfiability
with positive literals only, we first construct a graph G with a list assignment L. For each
xi ∈ X we introduce two vertices xi and xi, which we make adjacent to each other. We say
that xi and xi are of x-type. We set L(xi) = L(xi) = {4, 5}. For each Cj ∈ C we introduce
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a vertex Cj and a vertex C ′j called the copy of Cj . We say that Cj and C ′j are of C-type.
We set L(Cj) = L(C ′j) = {1, 2, 3}. We add an edge between each x-type vertex and each
C-type vertex. For each Cj ∈ C we do as follows. We fix an arbitrary order of the literals in
Cj . Say Cj = {xg, xh, xi} in that order. Then we add six vertices ag,j , ah,j , ai,j , a′g,j , a′h,j ,
a′i,j and edges xgag,j , ag,jCj , xhah,j , ah,jCj , xiai,j , ai,jCj and also edges xga′g,j , a′g,jC ′j ,
xha′h,j , a′h,jC ′j , xia

′
i,j , a′i,jC ′j . We say that ag,j , ah,j , ai,j , a′g,j , a′h,j , a′i,j are of a-type. We

set L(ag,j) = L(a′g,j) = {1, 4}, L(ah,j) = L(a′h,j) = {2, 4} and L(ai,j) = L(a′i,j) = {3, 4}.
We now extend G into a graph G′ by adding a clique consisting of five new vertices

k1, . . . , k5, which we say are of k-type, and by adding an edge between a vertex k` and a
vertex u ∈ V (G) if and only if ` /∈ L(u). We can show that (C, X) has a satisfying truth
assignment if and only if G′ has a 5-colouring, and moreover that G′ is (P3 + P5)-free (proof
omitted). As 5-Colouring belongs to NP, this proves the theorem. J

4 Conclusions

By solving two new cases we completed the complexity classifications of 3-Colouring
and List 3-Colouring on H-free graphs for graphs H up to seven vertices. We showed
that both problems become polynomial-time solvable if H is a linear forest, while they stay
NP-complete in all other cases. Recall that k-Colouring (k ≥ 3) is NP-complete on H-free
graphs whenever H is not a linear forest. For the case where H is a linear forest, our new
NP-hardness result for 5-Colouring for (P3 + P5)-free graphs bounds, together with the
known NP-hardness results of [20] for 4-Colouring for P7-free graphs and 5-Colouring
for P6-free graphs, the number of open cases of k-Colouring from above.

For future research we aim to our extend our results. In fact we still do not know if
there exists a linear forest H such that 3-Colouring is NP-complete for H-free graphs.
This is, however, a notorious open problem studied in many papers; for a recent discussion
see [16]. It is also open for List 3-Colouring, where an affirmative answer to one
of the two problems yields an affirmative answer to the other one [15]. For k ≥ 4, we
emphasize that all open cases involve linear forests H whose connected components are
small. For instance, if H has at most six vertices, then the polynomial-time algorithm for
4-Precolouring Extension on P6-free graphs [7, 8] implies that there are only three
graphs H with |V (H)| ≤ 6 for which we do not know the complexity of 4 Colouring on
H-free graphs, namely H ∈ {P1 + P2 + P3, P2 + P4, 2P3} (see [14]).

The main difficulty to extend the known complexity results is that hereditary graph classes
characterized by a forbidden induced linear forest are still not sufficiently well understood due
to their rich structure. We need a better understanding of these graph classes to make further
progress on a wide range of problems. For example, Independent Set is polynomial-time
solvable for P6-free graphs [17], but it is not known if there exists a linear forest H such that
it is NP-complete for H-free graphs. A similar situation holds for Odd Cycle Transversal
and Feedback Vertex Set and many other problems; see [1] for a survey.
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