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Abstract—Lamb wave is guided plate wave that has potential
in industrial inspection for non-destructive evaluation. However,
the multimodal nature of Lamb wave obstructs the extraction
and interpretation of information in signal. This work proposes
a Lamb wave mode identification method combining instanta-
neous frequency (IF) with empirical mode decomposition (EMD).
Firstly, EMD is implemented on multimodal signal and separates
it into individual mode functions. Then the individual functions
are analyzed by high-resolution time-frequency distribution.
Finally, IF curve is obtained in the time-frequency domain and
corresponding time information is used to calculate wave velocity.
Lamb wave mode is determined by comparing the wave velocity
with theoretical value. To verify the effectiveness of the proposed
method, simulation presents the situation of boundary reflection
and experiment presents the mode conversion by defect. Both
simulation and experiment demonstrate the good performance
of the mode identification method.

Index Terms—Lamb wave, instantaneous frequency, mode
identification, time of flight

I. INTRODUCTION

Metal components used in industry often face the long-
standing problem brought by defect. Guided wave inspec-
tion technology provides an efficient non-destructive testing
method [1]. Lamb wave propagating through the metallic plate
can give valuable information about the health status of the
structure [2].

Time of flight (TOF) of Lamb wave is the commonly
used information to determine the location, even the shape
of defect [3]. However, the multimodal nature of Lamb wave
influences the precise measurements of TOF. Several time-
frequency analysis methods have been developed to study
multiple mode Lamb wave signal. Hilbert transform and
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Hilbert-Huang transform had been used as a postprocessing
tool to evaluate the instantaneous characteristics of Lamb wave
[4]. The ridge tracking and Vold-Kalman filter were introduced
to separate interfered wave modes [5]. The empirical mode
decomposition (EMD) based short time Fourier transform to
extract TOF was proposed to recognize overlapped Lamb wave
[6]. The squeezed wavelet transform was applied to analyze
the simulated broadband Lamb wave signal and the advantage
of this transform was the ability of signal reconstruction [7].

Instantaneous frequency (IF) was originally defined for
frequency modulation in communications. Then the concept of
IF was expanded to non-stationary signal. Ville incorporated
early work and related IF to the derivative of signal phase [8].
A unified approach to time-frequency representations (TFR)
and IF was analyzed afterwards [9]. Wigner distribution (WD)
with adaptive window width was applied to estimate the IF
[10]. For signal with non-linear IF, L-Wigner distribution
was proposed [11]. B-distribution, a high-resolution quadratic
distribution was also designed to reduce cross-terms in TFR
for multicomponent signals [12]. An approach based on ant
colony optimization and TFR was developed to analyze IF of
non-stationary signals embedded in high noise [13].

In order to distinguish different Lamb wave modes, this
paper proposes a mode identification method combining IF
with EMD. Lamb wave signal is decomposed into individual
functions in time domain and then IF curve is extracted in
time-frequency domain to determine the wave mode. Both
simulation and experiment are performed to verify the effec-
tiveness of the proposed method.

The research is organized as follows. Section II presents
the theoretical analysis of Lamb wave and the multimodal
characteristic is discussed. In section III, mode identification
method combining IF with EMD is proposed and its process



is summarized in detail. The validation of mode identification
method is conducted in both simulation and experiment in
Section IV. Section V gives concluding remarks.

II. THEORETICAL ANALYSIS OF LAMB WAVE

Lamb wave is one type of elastic waves existing in thin
plate. When Lamb wave propagates along the plate structure,
the vibration covers the whole plate through the thickness. The
displacements of Lamb wave have two components which are
shown in Fig. 1.

Fig. 1. Displacement components of Lamb wave.

According to the different forms of vibration, Lamb wave is
decoupled into symmetric mode (S mode) and antisymmetric
mode (A mode). Based on linear elasticity theory, Lamb wave
can be solved and expressed by Rayleigh-Lamb equation as
follows:

S mode :
tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
(1)

A mode :
tan(qh)

tan(ph)
= − (q2 − k2)2

4k2pq
(2)

where, h = 1
2d, p2 = ω2

c2L
−k2, q2 = ω2

c2T
−k2, k = ω

cp
. d is the

plate thickness, cL is the longitudinal wave velocity. cT is the
transverse wave velocity, k is the wave number and cp is the
phase velocity. Therefore, the velocity of Lamb wave depends
on the parameters of plate and excitation frequency.

The group velocity cg , which is the velocity of Lamb wave
packet, can be derived from phase velocity as cg = dω

dk . The
Rayleigh-Lamb equation can only be solved numerically. And
then the group velocity can be obtained and shown in Fig.
2, which is also called the dispersion curve. The velocity is
considered as the function of frequency-thickness product.

From Fig. 2, it is clear that many possible Lamb wave modes
may exist in the same frequency-thickness product. And mode
interference is unavoidable when applying Lamb wave. In the
case discussed in following part, the two fundamental modes
A0 and S0 mode are generated and analyzed.

III. METHOD OF MODE IDENTIFICATION

A. Instantaneous Frequency

Lamb wave signal is typically non-stationary. The signal
spectrum varies as a function of time. To describe and analyze
the non-stationary signal, IF provides a potential tool.

Fig. 2. Multimodal characteristics of Lamb wave.

The IF of a signal x(t) can be defined as the derivative of
the phase of its analytic signal z(t) [8]:

fi(t) =
1

2π

d

dt
arg(z(t)) =

1

2π

dϕ(t)

dt
. (3)

If x(t) is complex-valued, it can be expressed as a(t)ejϕ(t).
a(t) is known as the instantaneous amplitude and ejϕ(t) is
known as the instantaneous phase. If x(t) is real-valued, it
can be converted to its corresponding analytic form by Hilbert
Transform. The Hilbert Transform of x(t) is

x̂ = x(t) ∗ 1

πt
=

1

π

∫ +∞

−∞

x(τ)

t− τ
dτ. (4)

Then the analytic signal is

z(t) = x(t) + jx̂(t) = a(t)ejϕ(t). (5)

According to (3), the IF of complex-valued and real-valued
signal can be obtained.

IF can also be defined using the first moment of time-
frequency distribution (TFD). IF is the weighted average of
the frequencies at time t:

fi(t) =

∫ +∞
−∞ fρ(t, f)df∫ +∞
−∞ ρ(t, f)df

(6)

where, ρ(t, f) is the TFD. For signal with linear frequency,
WD gives the best energy concentration in time-frequency
representation. However, when the signal contains multiple
components, WD brings serious cross-terms which decreases
the time-frequency resolution.

To reduce the interference of cross-terms, the general
quadratic TFD is considerd. The general form can be intro-
duced as

ρ(t, f ; g) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
z(u+

τ

2
)z∗(u− τ

2
)

g(θ, τ)e−j2π(θt+fτ−uθ)dudτdθ (7)

where z(t) is the analytic signal, u is variable of integration, τ
is the time-shift or lag, θ is the frequency-shift or Doppler and
g(θ, τ) is the kernel function or parameterization function. If
g(θ, τ) = 1, then the distribution becomes WD. g(θ, τ), which



performs as a 2-D filter, determines the properties of the dis-
tribution. Therefore, choosing suitable kernel is significant to
reduce the cross-terms. By designing the kernel, B-distribution
is proposed to enhance the time-frequency resolution [12]. Its
kernel in time-lag domain is given by

G(t, τ) =

[
|τ |

cosh2(t)

]α
. (8)

In the kernel, 1/cosh2(t) makes it has the narrowest main-
lobe and α is an adjustable real number. g(θ, τ) is the Fourier
transform of G(t, τ). α influences the sharpness of cutoff
of g(θ, τ). And α should be from 0 to 1. With the kernel,
B-distribution satifies (6). Therefore, the first moment of B-
distribution produces IF.

B. Empirical Mode Decomposition

Lamb wave has the nature of multiple modes which can
be divided into A and S mode. When Lamb wave encoun-
ters with defect, the acoustic wave will scatter. Besides, the
phenomenon of mode conversion will occur.

Hilbert-Huang Transform is proposed to analyze non-
stationary and non-linear signal [14]. It contains two processes,
including the EMD and Hilbert spectral analysis.

EMD, also called sifting process, is essentially a process
to make signal approximately stationary. EMD decomposes
the signal into intrinsic mode function (IMF) components. For
signal x(t), firstly find all local maxima and minima. The
maxima and minima are connected using cubic spline line,
respectively, and then form the upper envelope u(t) and lower
envelope l(t). The mean of the two envelopes is:

m(t) =
u(t) + l(t)

2
. (9)

The first IMF can be estimated as:

h1(t) = x(t)−m1(t). (10)

To eliminate the riding waves, the sifting procedures should
be performed repeatedly. Assuming h1(t) as the signal, obtain
the upper envelope u11(t) and lower envelope l11(t). Then the
mean curve m11(t) can be calculted and the next estimation
of IMF is:

h11(t) = h1(t)−m11(t). (11)

The stopping critera for this iteration can be calculated from
two sifting results:

SDk =
∑ (h1(k−1)(t)− h1k(t))2

h1(k−1)(t) ∗ h1(k−1)(t)
. (12)

The reference value is typically 0.2-0.3. Once SDk is lower
than the reference value, the process can be terminated and the
first IMF is determined:

c1(t) = h1k(t). (13)

Then the residual signal is

r1(t) = x(t)− c1(t). (14)

To separate the residual IMF, r1(t) is considered as the
original signal and repeat the aforementioned procedures.
Finally, x(t) is decomposed into several IMFs and the last
residual signal:

x(t) =

m∑
k=1

ck(t) + rm(t). (15)

C. Combination of IF with EMD

Based on the analysis of frequency at specific moment
and mode decomposition, the method for multimodal Lamb
wave identification is proposed. For signal containing multiple
modes, it is firstly decomposed into several IMF components
by EMD. Then the individual components are processed
to obtain its mode. The B-distribution, one of the reduced
interference distribution, is implemented on the components.
By utilizing the relation of IF and TFD, the IF is calculated
and corresponding time information is adopted to identity the
mode.

The procedures of the mode identification method are
summarized in the following steps:

a) Choose suitable excitation toneburst to generate the Lamb
wave and receive the signal x(t) to be analyzed.

b) Implement EMD on x(t) into its IMFs using equations
from (9) to (15) and choose concerned IMFs with potential
Lamb wave modes.

c) Implement B-distribution on IMFs using equations from
(7) to (8) and obtain corresponding TFD ρ(t, f).

d) Calculate IF by (6). IF can be considered as a function of
time and presented as one curve in the time-frequency plane.

e) According to the center frequency of toneburst, extract
the corresponding time information in IF curve.

f) Calculate the velocity of IMF components and compare it
with the Lamb wave dispersion curve to determine the mode.

IV. RESULTS AND DISCUSSION

To validate the effectiveness of the proposed mode iden-
tification method, corresponding simulations and experiments
have been conducted.

A. Simulation Results

The simulation of Lamb wave is performed using finite
element method by Comsol Multiphysics software. In the finite
element model, the plate is made of steel and its height is
4 mm. The center frequency and cycle number of excitation
signal is 250 kHz and 10, respectively. From the dispersion
curve in Fig. 2, two fundamental Lamb wave modes of A0

and S0 will be generated. In the process of simulation, the
total displacement captured at 100 µs is displayed in Fig. 3.

From Fig. 3, two modes appear in the same moment with a
space distance. Considering the velocities of A0 and S0 mode
are 3167.21 m/s and 5143.86 m/s respectively, the generated
space distance brought by velocity difference is 197.7 mm. The
simulation result is in accord with the theoretical calculation.

The receiver of Lamb wave is set between the excitation
point and plate boundary. The receiver is 3050 mm away from
the excitation point and 950 mm away from the boundary. The



Fig. 3. The total displacement captured at 100 µs.

(a) Original waveform

(b) The first IMF and second IMF

Fig. 4. IMF of simulated waveform by EMD.

received waveform is shown in Fig. 4(a). Implement EMD on
the wavepackets and obtain IMFs, which are presented in Fig.
4(b).

From Fig. 4(a), two distinct wavepackets exist in the original
waveform. By mode decomposition on each wavepackets, the
first IMF and second IMF are shown in Fig. 4(b). The third
IMF is ignored because its amplitude is too small. It is clear
that the second wavepacket W2 is separated into two parts: P2

and P3. One part is the direct wave and the other is the re-
flected wave. To identify the wave mode, the TOF is extracted
by applying the proposed method. Firstly, B-distribution is
conducted and the obtained TFR is shown in Fig. 5. It indicates
that the cross-terms are removed in B-distribution for IMF1.
Secondly, the first moment of B-distribution is calculated to
obtain IF. IF forms curves in the time-frequency domain,
shown in Fig. 6. Lastly, the corresponding time of center
frequency 250 kHz is read from the IF curve. By subtracting
the excitation time of 20 µs, TOF is obtained.

The TOFs of the three wavepackets (P1, P2 and P3) are
593.5, 966.3 and 963.4 µs, respectively. In view of the the
propagation distance, the corresponding velocity is 5139.0,
3156.4 and 5138.1 m/s. Therefore, by comparing the ve-

(a) TFR of the first IMF

(b) TFR of the second IMF

Fig. 5. TFR of the separated IMFs.

Fig. 6. IF curves extracted from TFD.

locities with those in the dispersion curve in Fig. 2, the
wavepackets of P1, P3 are S0 mode and P2 is A0 mode.

B. Experiment Results

The Lamb wave experiment system is established on steel
plate and corresponding experiments have been conducted.
The plate contains an artificial defect of 20 mm × 10 mm
× 3mm. In the experiment system, electromagnetic acoustic
transducers (EMATs) are used as acoustic transmitter and
receiver. The received Lamb wave signal is amplified and
filtered by the signal conditioning circuit. Then the signal is
sampled and sent to the computer for further analysis.

The receiver of Lamb wave is placed between the transmitter
and defect. The receiver is 2280 mm away from the transmitter
and 720 mm away from the defect. The received waveform and
its EMD are shown in Fig. 7(a). The second wavepacket W2

in the original signal is decomposed into two wavepackets: P2

and P3. Compare the IMF1 with that in simulation result in
IV-A, P4 following P2 is additional wavepacket which might



(a) Original waveform

(b) The first IMF and second IMF

Fig. 7. IMF of experimental waveform by EMD.

be introduced by mode conversion because of the interaction
of Lamb wave with defect. To determine the modes of the
four wavepackets, B-distribution is implemented and IF curve
is calculated.

TABLE I
TOF AND MODE OF THE FOUR WAVEPACKETS.

Wavepackets TOF (µs) Distance(mm) Velocity(m/s) Mode
P1 445.1 2280 5122.4 S0

P2 723.6 2280 3150.9 A0

P3 726.8 3720 5118.3 S0

P4 224.4 720 3209.0 A0

The propagation time in terms of the center frequency in
different wavepackets can be obtained easily from the IF curve.
Comparing the time with the excitation time of 20 µs, TOFs
and velocities are calculted and shown in Table. I. According
to the dispersion curve, the wave modes are determined. P1
and P3 are S0 mode. The other two wavepackets P2 and P4
are A0 mode.

V. CONCLUSION

In the work described here, the method using combination
of IF with EMD is proposed for multimodal Lamb wave identi-
fication. The non-stationary Lamb wave signal is decomposed
into individual functions by EMD. Then a high-solution time-
frequency representation is applied to analyze the functions
and IF curves are obtained. Through the extraction of TOFs
and the calculation of velocities, the modes are determined

according to the dispersion curve. The simulation and exper-
iment demonstrate the effectiveness of the proposed method.
Compared with other mode identification methods, the combi-
nation of IF with EMD not only distinguishes different Lamb
wave modes, but also provides precise measurement of TOF
for further defect locating and imaging.

ACKNOWLEDGMENT

This research was financially supported by the National
Natural Science Foundation of China (grant No. 51677093
and No. 51777100).

REFERENCES

[1] J. L. Rose, “Guided wave nuances for ultrasonic nondestructive evalua-
tion,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency
Control, vol. 47, no. 3, pp. 575–583, 2000.

[2] S. Legendre, D. Massicotte, J. Goyette, and T. K. Bose, “Neural
classification of lamb wave ultrasonic weld testing signals using wavelet
coefficients,” IEEE Transactions on Instrumentation and Measurement,
vol. 50, no. 3, pp. 672–678, 2001.

[3] S. Legendre, D. Massicotte, J. Goyette, and T. K. Bose, “Wavelet-
transform-based method of analysis for lamb-wave ultrasonic NDE sig-
nals,” IEEE Transactions on Instrumentation and Measurement, vol. 49,
no. 3, pp. 524–530, 2000.

[4] S. Pavlopoulou, W. J. Staszewski, and C. Soutis, “Evaluation of instan-
taneous characteristics of guided ultrasonic waves for structural quality
and health monitoring,” Structural Control and Health Monitoring,
vol. 20, no. 6, pp. 937–955, 2013.

[5] M. Zhao, L. Zeng, J. Lin, and W. Wu, “Mode identification and
extraction of broadband ultrasonic guided waves,” Measurement Science
and Technology, vol. 25, no. 11, p. 115005, 2014.

[6] Y. Zhang, S. Huang, S. Wang, Z. Wei, and W. Zhao, “Recognition of
overlapped lamb wave detecting signals in aluminum plate by EMD-
based STFT flight time extraction method,” International Journal of
Applied Electromagnetics and Mechanics, vol. 52, no. 3-4, pp. 991 –
998, 2016.

[7] S. Wang, S. Huang, Q. Wang, Y. Zhang, and W. Zhao, “Mode identifica-
tion of broadband lamb wave signal with squeezed wavelet transform,”
Applied Acoustics, vol. 125, no. Supplement C, pp. 91–101, 2017.

[8] J. Ville, “Theorie et application dela notion de signal analytique,” Cables
et transmissions, vol. 2, no. 1, pp. 61–74, 1948.

[9] P. J. Kootsookos, B. C. Lovell, and B. Boashash, “A unified approach
to the STFT, TFD’s, and instantaneous frequency,” IEEE Transactions
on Signal Processing, vol. 40, no. 8, pp. 1971–1982, 1992.

[10] L. J. Stankovic and V. Katkovnik, “Algorithm for the instantaneous
frequency estimation using time-frequency distributions with adaptive
window width,” IEEE Signal Processing Letters, vol. 5, no. 9, pp. 224–
227, 1998.

[11] L. Stankovic, “A method for improved distribution concentration in the
time-frequency analysis of multicomponent signals using the l-wigner
distribution,” IEEE Transactions on Signal Processing, vol. 43, no. 5,
pp. 1262–1268, 1995.

[12] B. Barkat and B. Boashash, “A high-resolution quadratic time-frequency
distribution for multicomponent signals analysis,” IEEE Transactions on
Signal Processing, vol. 49, no. 10, pp. 2232–2239, 2001.

[13] M. Brajovic, V. Popovic-Bugarin, I. Djurovic, and S. Djukanovic, “Post-
processing of time-frequency representations in instantaneous frequency
estimation based on ant colony optimization,” Signal Processing, vol.
138, pp. 195–210, 2017.

[14] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N. C. Yen, C. T. Chi, and H. H. Liu, “The empirical mode decomposition
and the hilbert spectrum for nonlinear and non-stationary time series
analysis,” Proceedings Mathematical Physical & Engineering Sciences,
vol. 454, no. 1971, pp. 903–995, 1998.


