
Algebraic Approach to Promise Constraint Satisfaction∗

Jakub Bulín

Department of Algebra, Fac. Math. &

Phys., Charles University

Prague, Czechia

jakub.bulin@mff.cuni.cz

Andrei Krokhin

Department of Computer Science,

Durham University

Durham, UK

andrei.krokhin@durham.ac.uk

Jakub Opršal

Department of Computer Science,

Durham University

Durham, UK

jakub.oprsal@durham.ac.uk

ABSTRACT
The complexity and approximability of the constraint satisfaction

problem (CSP) has been actively studied over the last 20 years.

A new version of the CSP, the promise CSP (PCSP) has recently

been proposed, motivated by open questions about the approxim-

ability of variants of satisfiability and graph colouring. The PCSP

significantly extends the standard decision CSP. The complexity

of CSPs with a fixed constraint language on a finite domain has

recently been fully classified, greatly guided by the algebraic ap-

proach, which uses polymorphisms — high-dimensional symme-

tries of solution spaces — to analyse the complexity of problems.

The corresponding classification for PCSPs is wide open and in-

cludes some long-standing open questions, such as the complexity

of approximate graph colouring, as special cases.

The basic algebraic approach to PCSP was initiated by Brak-

ensiek and Guruswami, and in this paper we significantly extend

it and lift it from concrete properties of polymorphisms to their

abstract properties. We introduce a new class of problems that can

be viewed as algebraic versions of the (Gap) Label Cover prob-

lem, and show that every PCSP with a fixed constraint language

is equivalent to a problem of this form. This allows us to identify

a “measure of symmetry” that is well suited for comparing and re-

lating the complexity of different PCSPs via the algebraic approach.

We demonstrate how our theory can be applied by improving the

state-of-the-art in approximate graph colouring: we show that, for

any k ≥ 3, it is NP-hard to find a (2k − 1)-colouring of a given

k-colourable graph.

CCS CONCEPTS
• Theory of computation → Problems, reductions and com-
pleteness.

KEYWORDS
constraint satisfaction, promise problem, approximation, graph

colouring, polymorphism

∗
The first author was supported by the Austrian Science Fund project P29931, the

Czech Science Foundation project 18-20123S, Charles University Research Centre

program UNCE/SCI/022 and PRIMUS/SCI/12. The second and the last authors were

supported by the UK EPSRC grant EP/R034516/1. The last author was also supported

by the European Research Council (Grant Agreement no. 681988, CSP-Infinity).

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6705-9/19/06.

https://doi.org/10.1145/3313276.3316300

ACM Reference Format:
Jakub Bulín, Andrei Krokhin, and Jakub Opršal. 2019. Algebraic Approach

to Promise Constraint Satisfaction. In Proceedings of the 51st Annual ACM

SIGACT Symposium on the Theory of Computing (STOC ’19), June 23–26,

2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https://doi.

org/10.1145/3313276.3316300

1 INTRODUCTION
What kind of inherent mathematical structure makes a computa-

tional problem tractable, i.e., polynomial time solvable (assuming

P , NP)? Finding a general answer to this question is one of the

fundamental goals of theoretical computer science. The constraint

satisfaction problem (CSP) and its variants are extensively used to-

wards this ambitious goal for two reasons: on the one hand, the

CSP framework is very general and includes a wide variety of com-

putational problems, and on the other hand, this framework has

very rich mathematical structure providing an excellent labora-

tory both for complexity classification methods and for algorithmic

techniques.

The basic aim in a CSP is to decide whether there is an assign-

ment of values from some domain A to a given set of variables,

subject to constraints on the combinations of values which can be

assigned simultaneously to certain specified subsets of variables.

There are many variants of this framework (see surveys in [42]).

Since the basic CSP is NP-complete (and, for other variants, as

hard as it can be) in full generality, a major line of research in the

CSP focuses on identifying tractable cases and understanding the

mathematical structure enabling tractability (see [42]).

One particular family of CSPs that receives a great amount of at-

tention consists of the CSPs with a fixed constraint language [29, 42],

i.e., with a restricted set of types of constraints. Since constraints are

usually given by relations, a constraint language is simply a set Γ
of relations on a domainA. The restricted CSP where only relations

from Γ can specify constraints is denoted by CSP(Γ). Many compu-

tational problems, including various versions of logical satisfiability,

graph colouring, and systems of equations can be represented in

this form [29, 42]. It is well-known [29] that the basic CSP can be

cast as a homomorphism problem from one relational structure

to another (the latter is often called a template), and we will use

this view. Problems CSP(Γ) correspond to the case when the tem-

plate structure is fixed. There is an active line of research into CSPs

with infinite A (see, e.g. survey [11]), but throughout this paper we

assume that A is finite (unless specified otherwise).

In [29], Feder and Vardi conjectured that, for each finite con-

straint language Γ, the (decision) problem CSP(Γ) is either in P
or NP-complete. This conjecture inspired a very active research

programme in the last 20 years, which recently culminated in two

independent proofs of the conjecture, one by Bulatov [21] and the

https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1145/3313276.3316300

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jakub Bulín, Andrei Krokhin, and Jakub Opršal

other by Zhuk [48] (along with similar classification results for

other CSP variants, e.g. [6, 20, 41, 47]). All of these proofs heavily

use the so-called algebraic approach to the CSP. On a very high

level, this approach uses multivariate functions that preserve rela-

tions in a constraint language (and hence solution sets of problem

instances), called polymorphisms. Thus polymorphisms can be seen

as high-dimensional “symmetries” of solution sets. Roughly, lack of

such symmetries implies hardness of the corresponding problem,

while presence of symmetries implies tractability. This approach

was started in a series of papers by Jeavons et al., e.g. [37], where

the key role of polymorphisms was established. It was then taken to

a more abstract level in [18, 19], where an abstract view on polymor-

phisms was used, through universal algebras and varieties formed

by algebras — this allowed a powerful machinery of structural uni-

versal algebra to be applied to the CSP. Another important general

methodological improvement was [8], where it was shown that spe-

cial equations of simple form satisfied by polymorphisms govern

the complexity of CSPs. Even though [8] did not impact specifi-

cally on the resolution of the Feder-Vardi conjecture, it strongly

influenced the present paper.

A new extended version of the CSP, the so-called promise con-

straint satisfaction problem (PCSP), has recently been introduced

[3, 15], motivated by open problems about (in)approximability for

variants of SAT and graph colouring. Roughly, this line of research

in approximability concerns finding an approximately good so-

lution to an instance of a (typically hard) problem when a good

solution is guaranteed to exist (see discussion and references in

[14]). Approximation can be understood in terms of relaxing con-

straints, or in terms of counting satisfied/violated constraints —

in this paper, we use the former. Specifically, in the PCSP, each

constraint in an instance has two relations: a ‘strict’ one, and a ‘re-

laxed’ one, and one needs to distinguish between the case when an

instance has a solution subject to the strict constraints and the case

when it has no solution even subject to the relaxed constraints. One

example of such a problem (beyond CSPs) is the case when the only

available strict relation is the disequality on a k-element set and

the corresponding relaxed relation is the disequality on a c-element

set (with c ≥ k) — the problem is then to distinguish k-colourable
graphs from those that are not even c-colourable. This problem (and

hence the problem of colouring a given k-colourable graph with

c colours) has been conjectured NP-hard, but the question in full

generality is still open after more than 40 years of research. We give

more examples later. Note that if the strict form and the relaxed

form for each constraint coincide, then one gets the standard CSP,

so the PCSP framework greatly generalises the CSP.

The problem of systematically investigating the complexity of

PCSPs (with a fixed constraint language) was suggested in [3, 15].

We remark that, beyond CSPs, the current knowledge of the com-

plexity landscape of PCSPs is quite limited, and we do not even have

analogues of full classification results for graph homomorphisms

[34] and Boolean CSPs [46] — which were the most important basic

special cases of CSP complexity classifications that inspired the

Feder-Vardi conjecture. The quest of complexity classification of

PCSPs is of great interest for a number of reasons. It brings to-

gether two very advanced methodologies: analysing the complexity

of CSPs via algebra and the approximability of CSPs via PCP-based

methodology, hence the possibility of fruitful cross-fertilisation and

influence beyond the broad CSP framework. It is perfect for further

exploring the thesis that (high-dimensional) symmetries of solu-

tion spaces are relevant for complexity — which is certainly true

for most CSP-related problems, but may be applicable in a wider

context. Finally, this quest includes long-standing open problems

as special cases.

Related Work. An accessible exposition of the algebraic approach to

the CSP can be found in [7], where many ideas and results leading

to (but not including) the resolution [21, 48] of the Feder-Vardi

conjecture are presented. The volume [42] contains surveys about

many aspects of the complexity and approximability of CSPs.

The first link between the algebraic approach and PCSPs was

found by Austrin, Håstad, and Guruswami [3], and it was further

developed by Brakensiek and Guruswami [13, 15, 16]. They use

a notion of polymorphism suitable for PCSPs to prove several hard-

ness and tractability results. Roughly, the polymorphisms of a PCSP

(template) are multivariate functions from the domain of its ‘strict’

relations to that of its ‘relaxed’ relations that map each strict re-

lation into the corresponding relaxed relation. For example, the

n-ary polymorphisms of the PCSP template corresponding to k
vs. c graph colouring (we say polymorphisms from Kk to Kc) are
the homomorphisms from the n-th direct power of Kk to Kc , i.e.,
the c-colourings of Knk . It is shown in [16] that the complexity of

a PCSP is fully determined by its polymorphisms — in the sense

that two PCSPs with the same set of polymorphisms have the same

complexity.

Much of the previous work on the complexity of PCSPs was

focused on specific problems, especially on approximate graph and

hypergraph colouring and their variants. We describe this in more

detail in Examples 2.7–2.12 in the next section. Let us note here that,

despite much effort, there is a huge gap between known algorithmic

and NP-hardness results for colouring 3-colourable graphs with

c colours: the best known NP-hardness result (without additional
assumptions) goes only as far as c = 4 [31, 39], while the best

(in terms of c) known efficient algorithm uses roughly O(n0.199)
colours to colour an n-vertex 3-colourable graph [38].

We remark that appropriate versions of polymorphisms have

been used extensively in many CSP complexity/approximability

classifications: standard polymorphisms for decision and counting

CSPs, for approximating Min CSPs and testing solutions (in the

sense of property testing) [6, 7, 20, 21, 24–26, 48], fractional poly-

morphisms for exact optimisation problems [41, 47], α-approximate

polymorphisms for approximating Max CSPs [17]. In all cases, the

presence of nice enough polymorphisms (of appropriate kind) leads

directly to efficient algorithms, while their absence leads to hard-

ness. Interestingly, it was shown in [17] that the Unique Games

Conjecture is equivalent to the NP-hardness of approximating Max

CSPs beyond a specific numerical parameter of their (nice enough)

approximate polymorphisms.

Our Contribution. The main contribution of the present paper is

a new abstract algebraic theory for the PCSP. A crucial property of

polymorphisms for PCSPs is that, unlike in CSPs, they cannot be

composed (as functions). The ability to compose polymorphisms to

produce new polymorphisms was used extensively in the algebraic

theory of CSPs. This could be viewed as a serious limitation on the

applicability of the algebraic approach to PCSPs. Alternatively, it is

Algebraic Approach to Promise Constraint Satisfaction STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

possible that the ability to compose is not that essential, and that

a composition-free abstract algebraic theory for PCSPs (and hence

for CSPs) can be developed. Our results suggest that the latter is in

fact the case.

We show that certain abstract properties of polymorphisms,

namely systems of minor identities (i.e., function equations of

a simple form) satisfied by polymorphisms, fully determine the

complexity of a PCSP. This shifts the focus from concrete proper-

ties of polymorphisms to their abstract properties. Systems of minor

identities satisfied by polymorphisms provide a useful measure of

how much symmetry a problem has. This measure gives a new

tool to compare/relate the complexity of PCSPs, far beyond what

was available before. We envisage that our paper will bring a step

change in the study of PCSPs, similar to what [18, 19] did for the

CSP. Let us explain this in some more detail.

To be slightly more technical, aminor identity is a formal expres-

sion of the form

f (x1, . . . ,xn) ≈ д(xπ (1), . . . ,xπ (m))

where f ,д are function symbols (of arity n and m, respectively),

x1, . . . , xn are variables, and π : [m] → [n] (we use notation [n] =
{1, . . . ,n} throughout). A minor identity can be seen as an equation

where the function symbols are the unknowns, and if some specific

functions f and д satisfy such an identity then f is called aminor of

д. We use the symbol ≈ instead of = to stress the difference between

a formal identity (i.e. equation involving function symbols) and

equality of two specific functions. A minor condition is a finite

system of minor identities (where the same function symbol can

appear in several identities). A bipartite minor condition is one

where sets of function symbols appearing on the left- and right-

hand sides of the identities are disjoint. Such condition is said to be

satisfied in a set F of functions if it is possible to assign a function

from F of the corresponding arity to each of the function symbols

in such a way that all the identities are simultaneously satisfied (as

equalities of functions, i.e., for all possible values of the xi ’s).
Informally, the main results of our new general theory state that

(A) If every bipartite minor condition satisfied in the polymor-

phisms of (the template of) one PCSP Π1 is also satisfied in

the polymorphisms of another PCSP Π2, then Π2 is log-space

reducible to Π1 (see Theorem 3.1 for a formal statement).

(B) Every PCSP Π is log-space equivalent to the problem decid-

ing whether a given bipartite minor condition is satisfiable

by projections/dictators or not satisfiable even by polymor-

phisms of Π (see Theorem 3.9).

The first of the above results establishes the key role of bipartite

minor conditions satisfied in polymorphisms — in particular, the

hardness or tractability of a PCSP can always be explained on this

abstract level, since any two PCSPs have the same complexity if

their polymorphisms satisfy the same bipartite minor conditions.

Moreover, this abstract level allows one to compare any two PCSPs,

even when it does not makes sense to compare their sets of poly-

morphisms inclusion-wise (say, because the functions involved are

defined on different sets). The second result establishes that every

PCSP is equivalent to what can be viewed as an algebraic version

of the Gap Label Cover problem, which is the most common start-

ing point of PCP-based hardness proofs in the inapproximability

context. Our result uses the fact the Label Cover can be naturally

interpreted as the problem, which we call MC, of checking triviality

of a system of minor identities. The gap version of MC has an alge-

braic component in place of the quantitative gap of Gap Label Cover.

In particular, result (B) can provide a general approach to proving

NP-hardness of PCSPs — via analysis of bipartite minor conditions

satisfied by polymorphisms. The full version of our general theory

that extends beyond the above results can be found in [22].

As a first application of our general theory, we prove the follow-

ing result.

(C) For any k ≥ 3, it is NP-hard to distinguish k-colourable
graphs from those that are not (2k − 1)-colourable. (See

Theorem 4.1).

In particular, it follows that it is NP-hard to 5-colour a 3-col-

ourable graph. This might seem a small step towards closing the

big gap in our understanding of approximate graph colouring, but

we believe that it is important methodologically and that further

development of our general theory and further analysis of poly-

morphisms for graph colouring will eventually lead to a proof of

NP-hardness for any constant number of colours.

For better accessibility, we will give here a direct (polymorphism-

based) proof of result (C), but in the full version [22] we show that

this case of approximate graph colouring has less symmetry (in the

sense of bipartite minor conditions) than approximate hypergraph

colouring, which is known to be NP-hard [28]. Then our theory

implies the required reduction. Our theory also allows one to rule

out the existence of certain reductions — for example, we can ex-

plain exactly how k vs. c = 2k − 1 colouring differs from the cases

c = 2k − 2 and c = 2k , and hence why we are able to improve the

result from c = 2k − 2 [13] to c = 2k − 1 and why moving to larger

c requires further analysis of polymorphisms and bipartite minor

conditions. For this and a number of further applications, see [22].

Overview of Key Technical Ideas. At the heart of our theory is a new
class of problems, the problems of deciding triviality of minor con-

ditions, and their promise versions that can be viewed as algebraic

counterparts of the Gap Label Cover problem. Recall that an in-

stance of the Label Cover problem (LC) is given by a bipartite

graph G = (U ,V ;E) whose nodes are viewed as variables, domains

[m] and [n] for the variables in U and V , respectively, and a map

πe : [m] → [n] for each e ∈ E. The Label Cover problem is a CSP

where the constraints are given by the maps πe , and such a con-

straint π(u,v) is satisfied by u = i and v = j if π (j) = i . We interpret

such a constraint as the minor identity

fu (x1, . . . ,xn) ≈ дv (xπ (1), . . . ,xπ (m)).

This identity is satisfied by assigning the projection (dictator) on

the i-th coordinate to fu and the projection on the j-th coordinate

to дv if and only if (i, j) satisfies the corresponding Label Cover

constraint on (u,v). Therefore, the problem (which we call MC) of

deciding whether a given bipartite minor condition is trivial, i.e.,

can be satisfied in projections, is just a different interpretation of

Label Cover.

The key advantage of MC over LC is that it allows us to define

a promise version of the problem, that we call PMC (for ‘promise

MC’), that is more suitable for our setting than the Gap Label Cover.

Whereas the Gap Label Cover problem (with perfect completeness

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jakub Bulín, Andrei Krokhin, and Jakub Opršal

and soundness ε) asks to distinguish fully satisfiable LC instances

from those where at most ε-fraction of constraints can be satisfied,

the PMC problem asks to distinguish trivial systems of bipartite

minor conditions from those that cannot be satisfied even in some

fixed family F of multivariate functions (from one fixed set to

another). We denote the latter problem by PMCF . This problem is

well-defined for any family F that is a minion, i.e., closed under

takingminors, since satisfiability in projections implies satisfiability

in any minion.

We prove that every PCSP is log-space equivalent to the problem

PMCM where M is the minion of all polymorphisms of this PCSP

(this is our result (B)). For this, we adapt reductions from CSP to LC

and back to our setting. We build on [1, 10] to provide a reduction

from a PCSP to PMC, and on [9, 37] for a reduction from PMC to

a PCSP. Our result (A) is proved by using the above reductions, i.e.,

by first reducing PCSP Π2 to the corresponding PMC problem, then

reducing that to the PMC corresponding to PCSP Π1 and finally by

reducing this PMC to PCSP Π1. For the middle reduction to work,

we use the assumption that every (bipartite) minor condition sat-

isfied by polymorphisms of Π1 is also satisfied by polymorphisms

of Π2 (to align the no-instances of the two PMCs). This assump-

tion is formally captured by the existence of a minor-preserving

mapping from the polymorphisms of Π1 to the polymorphisms of

Π2, which is called a minion homomorphism (extending a similar

notion from [8]). We remark that proving the existence of a minion

homomorphism for specific cases can be a very non-trivial problem.

Organisation of This Paper. The following section contains formal

definitions of the concepts mentioned in the introduction as well as

several concrete examples of PCSPs. Section 3 introduces reductions

via algebraic conditions and proves the main results of our general

theory. Section 4 contains the proof of new NP-hardness results
for approximate graph colouring. Finally, Section 5 summarises

the results of the paper and discusses possible directions of further

research.

2 PRELIMINARIES
This section contains formal definitions of the notions introduced

above. For comparison, the algebraic theory behind fixed-template

CSPs can be found in a recent survey [7].

2.1 CSPs and PCSPs
We use the notation [n] = {1, . . . ,n} and En = {0, 1, . . . ,n − 1}

throughout the paper.

Definition 2.1. A constraint language Γ on a set A is finite set

of relations on A, possibly of different arity. Then A is called the

domain of Γ.

To work with several constraint languages (possibly on different

domains), it is often convenient to fix an indexing of the relations

in Γ. This is formalised as follows.

Definition 2.2. A (relational) structure with domain A is a tuple

A = (A;RA
1
, . . . ,RAn) where each RAi ⊆ Aar(Ri)

is a relation on A of

arity ar(Ri) ≥ 1. We say that A is finite ifA is finite. We will assume

that all structures in this paper are finite unless specified otherwise.

Two structures A = (A;RA
1
, . . . ,RAn) and B = (B;RB

1
, . . . ,RBn)

are called similar if they have the same number of relations and

ar(RAi) = ar(RBi) for each i ∈ [n].

For example, a (directed) graph is relational structure with one

binary relation. Any two graphs are similar structures.

We often use a single letter instead of Ri to denote a relation of

a structure, e.g. SA would denote a relation of A, the corresponding
relation in a similar structure B, would be denoted by SB. Also,
throughout the paper we denote the domains of structures A, B,
Kn and so on by A, B, Kn etc., respectively.

Definition 2.3. For two similar relational structuresA and B, a ho-
momorphism from A to B is a map h : A → B such that, for each i ,

if (a1, . . . ,aar(Ri)) ∈ RAi then (h(a1), . . . ,h(aar(Ri))) ∈ RBi .

We write h : A → B to denote this, and simply A → B to denote

that a homomorphism from A to B exists. In the latter case, we also

say that A maps homomorphically to B.

Definition 2.4. For a fixed structure B, CSP(B) is the problem of

deciding whether a given input structure I, similar to B, admits

a homomorphism to B. In this case B is called the template for

CSP(B).

For example, when I and B are graphs and B = Kk is a k-clique,
a homomorphism from I to B is simply a k-colouring of I. Then
CSP(B) is the standard k-colouring problem for graphs.

To see how the above definition corresponds to the definition

of CSP with variables and constraints, view the domain of the

structure I as consisting of variables, relations in I specifying which
tuples of variables the constraints should be applied to, and (the

corresponding) relations in B as sets of allowed tuples of values.

Definition 2.5. A PCSP template is a pair of similar structures A
and B such that A → B. The problem PCSP(A,B) is, given an input

structure I similar to A and B, output yes if I → A, and no if I↛ B.

Note that PCSP(A,A) is simply CSP(A). The promise in the PCSP

is that it is never the case that I↛ A and I → B. Note also that the

assumption A → B is necessary for the problem to make sense —

otherwise, the yes- and no-cases would not be disjoint. We define

PCSP(A,B) as a decision problem, but it can also be defined as

a search problem:

Definition 2.6. Given two relational structures A, B as above, the

search version of PCSP(A,B) is, given an input structure I that
maps homomorphically to A, find a homomorphism h : I → B.

There is an obvious reduction from the decision variant of every

PCSP to its search variant. Nevertheless, it is open whether these

two problems are equivalent for all PCSP templates. Note that, for

problems CSP(A), these two versions are always equivalent [19].

We would also like to note that all of our results are formulated and

proved for the decision version. Nevertheless, all of them can be

generalised to the corresponding search versions of the problems.

Let us give some examples of the problems of the formPCSP(A,B)
which are proper promise problems, i.e., not of the form CSP(A).
More examples (of both tractable and intractable PCSPs) can be

found in [13, 15, 16].

Algebraic Approach to Promise Constraint Satisfaction STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Example 2.7 ((2 + ε)-Sat). For a tuple t ∈ {0, 1}n , let Ham(t)
be the Hamming weight of t. Fix an integer k ≥ 1. Let ,2 be the
relation {(0, 1), (1, 0)}. Let

A = ({0, 1}; {t ∈ {0, 1}2k+1 | Ham(t) ≥ k},,2),

B = ({0, 1}; {t ∈ {0, 1}2k+1 | Ham(t) ≥ 1},,2).

The problem PCSP(A,B) is then (equivalent to) the following vari-

ant of (2k+1)-Sat: given an instance of (2k+1)-Sat such that some

assignment satisfies at least k literals in each clause, find a normal

satisfying assignment. This problem, called (2+ ε)-Sat, was proved
to be NP-hard in [3].

Example 2.8 (1-in-3- vs. Not-All-Equal-Sat). Let

T = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}),

H2 = ({0, 1}; {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}).

Even though CSP(T) and CSP(H2) are (well-known) NP-hard prob-

lems, the problem PCSP(T,H2) was shown to be in P in [15, 16],

along with a range of similar problems.

Example 2.9 (Approximate Graph Colouring). For k ≥ 2, let ,k
denote the relation {(a,b) ∈ E2k | a , b}. For k ≤ c , let

Kk = (Ek ;,k),

Kc = (Ec ;,c).

Then PCSP(Kk ,Kc) is the well-known approximate graph colour-

ing problem: given a k-colourable graph, find a c-colouring. The
decision version of this asks to distinguish between k-colourable
graphs and those that are not even c-colourable. The complexity of

this problem has been studied since 1976 [30] — the problem has

been conjectured to be NP-hard for any fixed 3 ≤ k ≤ c , but this is
still open in many cases (see [13, 31, 35, 39, 40]) if we assume only

P , NP. For k = 3, the case c = 4was shown to beNP-hard [31, 39],
but even the case c = 5 was still open, and we settle it in this paper.

It was shown (using polymorphisms) in [13] that, for any k ≥ 3, it

is NP-hard to distinguish k-colourable graphs from those that are

not (2k − 2)-colourable. This gives the best known NP-hardness
results for small enough k , but we further improve this result in

this paper. For large enough k , the best known NP-hardness re-
sult is for k vs. 2

Ω(k1/3)
colouring [35]. By additionally assuming

somewhat non-standard variants of the Unique Games Conjecture

(with perfect completeness), NP-hardness of all approximate graph

colouring problems (with k ≥ 3) was proved in [27]. We note that

an extension of this problem to graph homomorphisms (in the spirit

of [34]) was proposed in [16].

Example 2.10 (Approximate Hypergraph Colouring). This problem

is similar to the previous one, but uses the “not-all-equal” relation

NAEk = E3k \ {(a,a,a) | a ∈ Ek } instead of ,k , and similarly for c ,

i.e., we are talking about PCSP(Hk ,Hc) where

Hk = (Ek ;NAEk),

Hc = (Ec ;NAEc).

A colouring of a hypergraph is an assignment of colours to its

vertices that leaves no hyperedge monochromatic. Thus, in (the

search variant of) this problem one needs to find a c-colouring for

a given k-colourable 3-uniform hypergraph. This problem has been

proved to be NP-hard for any fixed 2 ≤ k ≤ c [28].

Example 2.11 (Strong vs. Normal Hypergraph Colouring). Let

k, c ≥ 2, and let

A = (Ek+1; {(a1, . . . ,ak) ∈ Ekk+1 | ai , aj for all i, j}),

B = (Ec ; {(a1, . . . ,ak) ∈ Ekc | ai , aj for some i, j}).

Then PCSP(A,B) is the problem of distinguishing k-uniform hy-

pergraphs that admit a strong (k + 1)-colouring (i.e., one without
repetition of colours in any hyperedge) from those that do not admit

a normal c-colouring. It was conjectured in [13] that this problem

is NP-hard for all (k, c) , (2, 2), and some special cases (k = 3, 4

and c = 2) were settled in that paper, but this conjecture remains

wide open.

Example 2.12 (Rainbow vs. Normal Hypergraph Colouring). Let

k,q, c be positive integers with k ≥ q ≥ 2 and c ≥ 2, and let

Rk,q = (Eq ; {(a1, . . . ,ak) ∈ Ekq | {a1, . . . ,ak } = Eq }),

Hk,c = (Ec ; {(a1, . . . ,ak) ∈ Ekc | ai , aj for some i, j}).

In PCSP(Rk,q ,Hk,c), one is given a k-uniform hypergraph which

has a q-colouring such that all colours appear in each hyperedge,

and one needs to find a normal c-colouring. This problem is known

to be in P for k = q and c = 2; a randomised algorithm for it

can be found in [43], and a deterministic algorithm due to Alon

(unpublished) is mentioned in [15]. PCSP(Rk,q ,Hk,c) is NP-hard if

2 ≤ q ≤ ⌊k/2⌋ [32] or if 2 ≤ q ≤ k − 2⌊
√
k⌋ and c = 2 [2]. Further

variations of such PCSPs were considered in [2, 32].

2.2 Polymorphisms
We now proceed to define polymorphisms, which are the main

algebraic technical tools used in the analysis of CSPs.

Definition 2.13. The (direct) n-th power of A is the structure

An = (An ;RA
n

1
, . . . ,RA

n
n) whose relations are defined as follows:

for every ar(Ri) ×n matrixM such that all columns ofM are in RAi ,

consider the rows ofM as elements of An and put this tuple in RA
n

i .

Definition 2.14. Given two similar relational structures A and B,
an n-ary polymorphism

1
from A to B is a homomorphism from An

to B. To spell this out, a polymorphism is a mapping f from An

to B such that, for each i ≤ n and all tuples (a11, . . . ,aar(Ri)1), . . . ,

(a1n , . . . ,aar(Ri)n) ∈ RAi , we have

(f (a11, . . . ,a1n), . . . , f (aar(Ri)1, . . . ,aar(Ri)n)) ∈ RBi .

We denote the set of all polymorphisms from A to B by Pol(A,B),
and we write simply Pol(A) for Pol(A,A).

For the case A = B, this definition coincides with the standard

definition of a polymorphism of a relational structure A (see, e.g.,

[7, Section 4]).

Definition 2.15. A projection (also known as dictator
2
) on a set A

is an operation p
(n)
i : An → A of the form p

(n)
i (x1, . . . ,xn) = xi .

1
Called weak polymorphism in [3, 13].

2
Projection is the standard name for these objects in universal algebra, while dictator

is the standard name in approximability literature.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jakub Bulín, Andrei Krokhin, and Jakub Opršal

It is well-known and easy to see that every projection on A is

a polymorphism of every relational structure on A. We will some-

times write simply pi when the arity n of a projection is clear from

the context.

Example 2.16. Consider the structures T and H2 from Exam-

ple 2.8. It is well-known and not hard to verify that

• Pol(T) consists of all projections on {0, 1}, and

• Pol(H2) consists of all operations of the form π (p
(n)
i) where

π is a permutation on {0, 1} and p
(n)
i is a projection.

However, Pol(T,H2) contains many operations that are not like

projections. For example, for any k ≥ 1, let fk : {0, 1}
3k−1 → {0, 1}

be such that fk (t) = 1 if Ham(t) ≥ k and fk (t) = 0 otherwise. It is

easy to see that fk ∈ Pol(T,H2). Indeed, ifM is a 3×(3k − 1)matrix

whose columns come from the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} then

some row ofM contains strictly fewer than k 1’s and some other

row contains at least k 1’s. Therefore, by applying fk to the rows

ofM , one obtains a tuple in {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}, as required.

Example 2.17. Recall Example 2.9. It is easy to check that, for

any n ≥ 1, the n-ary functions from Pol(Kk ,Kc) are simply the

c-colourings of Knk , the n-th power of Kk (in the sense of Defini-

tion 2.13).

Brakensiek and Guruswami showed that, when the pair of do-

mains for PCSP templates is fixed, the polymorphisms determine

the complexity of a PCSP.

Theorem 2.18 ([13]). Let (A,B) and (A′,B′) be a pair of PCSP

templates over the same pair of domains. If Pol(A′,B′) ⊆ Pol(A,B),
then PCSP(A,B) is polynomial-time reducible to PCSP(A′,B′).

Unlike polymorphisms of a single relational structure A, the
set Pol(A,B) is not closed under composition — for example, if

f (x ,y, z) and д(x ,y) are in Pol(A,B), then f (д(x ,w),y, z) is not
necessarily there. In general, the composition is not always well-

defined, and even when it is (e.g. when A and B have the same

domain), f (д(x ,w),y, z) may not be in Pol(A,B). However, it is
always closed under taking minors.

Definition 2.19. An n-ary function f : An → B is called a minor

of anm-ary function д : Am → B given by a map π : [m] → [n] if

f (x1, . . . ,xn) = д(xπ (1), . . . ,xπ (m))

for all x1, . . . ,xn ∈ A.

Alternatively, one can say that f is a minor of д if it is obtained

from д by identifying variables, permuting variables, and introduc-

ing dummy variables.

Definition 2.20. LetO(A,B) = { f : An → B | n ≥ 1}. A (function)

minion M on a pair of sets (A,B) is a non-empty subset of O(A,B)

that is closed under taking minors. For fixed n ≥ 1, let M (n)
denote

the set of n-ary functions from M .

We remark that clones have been used extensively in the alge-

braic theory of CSP — a clone is simply a minion on (A,A) that
is closed under composition and contains all projections. For any

structure A, Pol(A) is a clone. For more detail, see [7].

We now introduce one of the central notions of this paper; it

generalises the notion of h1 clone homomorphisms from [8].

Definition 2.21. Let M and N be two minions (not necessarily

on the same pairs of sets). Amapping ξ : M → N is called aminion

homomorphism if

(1) it preserves arities, i.e., ar(д) = ar(ξ (д)) for all д ∈ M , and

(2) it preserves taking minors, i.e., for each π : [m] → [n] and

each д ∈ M (m)
we have

ξ (д)(xπ (1), . . . ,xπ (m)) = ξ (д(xπ (1), . . . ,xπ (m))).

Item (2) above can also be interpreted as ‘preserving satisfaction

of minor identities’, i.e., if f (x1, . . . ,xn) = д(xπ (1), . . . ,xπ (m)) for

some f ∈ M (n)
, д ∈ M (m)

, and π : [m] → [n], then

ξ (f)(x1, . . . ,xn) = ξ (д)(xπ (1), . . . ,xπ (m)).

Example 2.22. We will construct a minion homomorphism from

Pol(K3,K4) to the minion P2 of all projections on a two-element

set.

Our minion homomorphism is built on the following combinato-

rial statement proved in [13, Lemma 3.4]: for each f ∈ Pol
(n)(K3,K4),

there exist t ∈ K4 (we will call any such t a trash colour), a coordi-

nate i ∈ [n], and a map α : K3 → K4 such that

f (a1, . . . ,an) ∈ {t ,α(ai)}

for all a1, . . . ,an ∈ K3. In other words, if we erase the value t from
the table of f then f (x1, . . . ,xn), which is now a partial function,

depends only on xi . Moreover, it is shown in [13, Lemma 3.9], that

while the trash colour t is not necessarily unique, the coordinate i
is.

We define ξ : Pol(K3,K4) → P2 by mapping each f to pi (pre-
serving the arity) for the i that satisfies the above. To prove that

such ξ is a minion homomorphism, consider f ,д such that f is a

minor of д, i.e.,

f (x1, . . . ,xn) = д(xπ (1), . . . ,xπ (m))

for some π : [m] → [n]. We claim that if t is a trash colour forд, then
it is also a trash colour for f . Indeed, if д(a1, . . . ,am) ∈ {t ,α(ai)}
for all a1, . . . ,an ∈ K3, we get

f (a1, . . . ,an) = д(aπ (1), . . . ,aπ (m)) ∈ {t ,α(aπ (i))}.

This also shows that the coordinate j assigned to f is π (i), therefore
ξ (f) = pπ (i). We conclude that ξ preserves taking minors. That is

true since

pπ (i)(x1, . . . ,xn) = xπ (i) = pi (xπ (1), . . . ,xπ (m)).

3 ALGEBRAIC REDUCTIONS
In this section, we prove the two main results of our general theory.

The first one can be formulated right away.

Theorem 3.1. Let (A1,B1) and (A2,B2) be two finite PCSP tem-

plates, and let Mi = Pol(Ai ,Bi) for i = 1, 2. If there is a minion

homomorphism ξ : M1 → M2 then PCSP(A2,B2) is log-space re-
ducible to PCSP(A1,B1).

The proof of this theorem is provided by the second of our results,

but to formulate it, we need to first address a few formalities about

the problem of deciding minor conditions. We remark that, in the

full version [22], we characterise the existence of such a minion

homomorphism in many equivalent ways.

Algebraic Approach to Promise Constraint Satisfaction STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

3.1 Deciding Satisfiability of Bipartite Minor
Conditions

Definition 3.2. A bipartite minor condition is a finite set Σ of minor

identities where the sets of function symbols used on the right- and

left-hand sides are disjoint. More precisely, we say that a minor

condition Σ is bipartite over two disjoint sets of function symbols

U andV , if it contains only identities of the form

f (x1, . . . ,xn) ≈ д(xπ (1), . . . ,xπ (m))

where f ∈ U and д ∈ V are symbols of arity n andm, respectively,

x1, . . . , xn are variables, and π : [m] → [n].
Such a condition is said to be satisfied in a minion M on (A,B)

if there is an assignment ζ : U ∪ V → M that assigns to each

function symbol a function from M of the corresponding arity so

that

ζ (f)(a1, . . . ,an) = ζ (д)(aπ (1), . . . ,aπ (m))

for each identity f (x1, . . . ,xn) ≈ д(xπ (1), . . . ,xπ (m)) in Σ and all

a1, . . . ,an ∈ A. We say that a minor condition is trivial if it is

satisfied in every minion, in particular, in the minionPA consisting

of all projections (dictators) on a set A that contains at least two

elements.

We note that as long as a bipartite minor condition is satisfied

in some PA with |A| ≥ 2, it is satisfied in every minion: Recall,

that by definition every minion M is non-empty, and therefore it

contains a unary function f (obtained by identifying all variables in

a function from M). Consequently, M contains functions defined

by (x1, . . . ,xn) 7→ f (xi) for each i . These functions then behave

similarly to projections in PA.

The symbols f , д, etc. in a minor condition are abstract function

symbols. Nevertheless, we sometimes (in particular, when working

with specific simple minor conditions) use the same symbols to

denote concrete functions that satisfy this condition.Whenwewant

to stress the assignment of concrete functions to symbols, we use

ζ (f) for the concrete function assigned to the abstract symbol f .

Example 3.3. Consider the following bipartite minor condition.

We set U to contain a single binary symbol f , and V a single

quaternary symbol д. The set Σ then consists of identities:

f (x ,y) ≈ д(y,x ,x ,x)

f (x ,y) ≈ д(x ,y,x ,x)

f (x ,y) ≈ д(x ,x ,y,x)

f (x ,y) ≈ д(x ,x ,x ,y).

This condition is not trivial, since if f = p1 and д = pi for some

i then the i-th identity is not satisfied, and if f = p2 then the

first identity forces that д = p1 which contradicts any of the other

identities.

The above bipartite minor condition is satisfied in the minion

Pol(H2,Hk) (recall Example 2.10) for each k ≥ 4. We define a func-

tion ζ (д) by the following:

ζ (д)(x ,y, z,u) =

{
a if at least 3 arguments are equal to a;

x + 2 otherwise.

The function ζ (f) is defined by ζ (f)(x ,y) = x . Clearly ζ (f) and
ζ (д) satisfy the required identities, also ζ (f) is in Pol(H2,Hk). We

now show that also ζ (д) is. Consider a 3 × 4 matrix M = (ai j)

such that each column ofM is a triple in NAE2. We need to show

that applying ζ (д) to the rows of M gives a triple in NAEk . For

contradiction, assume that we get a triple of the form (a,a,a). If a is
0 or 1, then in each row ofM at least three entries are equal to a. In
this case, one of columns ofM is (a,a,a) < NAE2, a contradiction.
Otherwise, a is 2 or 3, which implies that the first column ofM is

(a − 2,a − 2,a − 2), a contradiction again.

It is easy to show (see [22]) that the above minor condition is

also satisfied in Pol(K3,K5).

Example 3.4. We now give a simple minor condition that is not

satisfied in Pol(H2,Hk) for any k ≥ 2:

f (x ,y) ≈ д(x ,x ,y,y,y,x),

f (x ,y) ≈ д(x ,y,x ,y,x ,y),

f (x ,y) ≈ д(y,x ,x ,x ,y,y).

Note that the columns of x ’s and y’s on the right above correspond

to the triples in NAE2. Now assume that this condition is satisfied

by some ζ (f), ζ (д) ∈ Pol(H2,Hk), so the identities above become

equalities. Then substitute 0 for x and 1 fory in these equalities. The

triple (column) on the right-hand side of the system is obtained by

applying ζ (д) to the six triples in NAE2, so it must be in NAEk . On

the other hand, this triple is equal to (b,b,b) where b = ζ (f)(0, 1),
which is not in NAEk .

In Section 4 we prove that, for any k ≥ 3, this minor condition is

not satisfied in Pol(Kk ,K2k−1) either — this is the key part in our

proof that PCSP(Kk ,K2k−1) is NP-hard.

Definition 3.5. We define the problemMC(N) (triviality of a bi-

partite minor condition) as the problem where the input is a triple

(Σ,U,V), with Σ a bipartite minor condition overU andV that

involves function symbols of maximal arity N , and the goal is to

decide whether the condition Σ is trivial.

Deciding triviality of bipartite minor conditions is essentially

just a different interpretation of the Label Cover problem that was

introduced in [1]. To compare these two problems, we use a for-

mulation of Label Cover that is closer to the one that appeared in

e.g. [3] and [13]. In addition, we bound the size of the label sets by

a constant N . Some bounded version often appears in the literature

as it is well-known that if N ≥ 3 then it is an NP-complete problem

(see, e.g., [13, Lemma 4.4]).

Definition 3.6 (Label cover). Fix a positive integer N . We de-

fine LC(N) as the following decision problem: The input is a tuple

(U ,V ,E, l , r ,Π) where

• G = (U ,V ;E) is a bipartite graph
• l , r ≤ N are positive integers, and

• Π is a family of maps πe : [r] → [l], one for each e ∈ E.

The goal is to decide whether there is a labelling of vertices from

U and V with labels from [r] and [l], respectively, such that if

(u,v) ∈ E then the label of v is mapped by π(u,v) to the label of u.

We interpret a label cover instance (U ,V ,E, l , r ,Π) with l , r ≤ N
as a bipartite minor condition Σ, an input to MC(N), as follows.

• Each vertex u ∈ U is interpreted as an l-ary function symbol

fu , and each vertex v ∈ V as an r -ary function symbol дv .
• For each edge e = (u,v) we add to Σ the identity

fu (x1, . . . ,xl) ≈ дv (xπe (1), . . . ,xπe (r)). (r)

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jakub Bulín, Andrei Krokhin, and Jakub Opršal

Observe that Σ is indeed a bipartite minor condition over U =

{ fu | u ∈ U } and V = {дv | v ∈ V }. We claim that the minor

condition obtained in this way is trivial if and only if the original

Label Cover instance has a solution. The main difference is that

a solution to Label Cover is a labelling while a solution (a witness) to

triviality of minor conditions is an assignment of projections to the

function symbols. Nevertheless, there is a clear bijection between

the labels and the projections: label i corresponds to projection pi .
Clearly, a constraint ((u,v),π) of the Label Cover is satisfied by a

pair of labels (i, j) if and only if assigning pi and pj to fu and дv ,
respectively, satisfies (r).

The long code is an error-correcting code that can be defined as

the longest code over the Boolean alphabet that does not repeat bits.

Precisely, it encodes a value i ∈ [n] as the string of bits of length

2
n
corresponding to the table of the function pi ∈ P2.

Therefore, it is possible to see the problem MC as just a con-

junction of Label Cover with the Long code. This conjunction has

often been used before, e.g. [9, 33]. Our insight is that satisfaction

of a constraint can be extended to functions that are not projections

(words that are not code words of the Long code), we can simply say

that the constraint corresponding to the edge (u,v) is satisfied if fu
and дv satisfy (r). This approach circumvents some combinatorial

difficulties of using Label Cover and the Long code, and is essential

for our reduction to work.

The second (and main) advantage of using identities instead of

Label Cover is that it allows us to define the following promise

version.

Definition 3.7. Fix a minion M and a positive integer N . We de-

fine PMCM (N) (promise satisfaction of a bipartite minor condition)

as the promise problem in which, given a bipartite minor condition

Σ that involves symbols of arity at most N , one needs to output yes

if Σ is trivial and no if Σ is not satisfiable in M .

The promise in the above problem is that it is never the case that

Σ is non-trivial, but satisfied in M .

Remark 3.8. LetM1,M2 be twominions such that there is a minion

homomorphism ξ : M1 → M2. Then, for any N , PMCM2
(N) is

obtained from PMCM1
(N) simply by strengthening the promise. To

see this, observe that if some Σ is not satisfied in M2 then it cannot

be satisfied in M1. Indeed, suppose the contrary, say that some fi ’s
and дj ’s from M1 satisfy Σ. Since ξ is a minion homomorphism

from M1 to M2, it follows that ξ (fi)’s and ξ (дj)’s satisfy Σ in M2.

We can finally formulate our second main result.

Theorem 3.9. Let (A,B) be a template and let M denote its poly-

morphism minion.

(1) If N is an upper bound on the size of any relation RA of A as

well as on |A|, then PCSP(A,B) can be reduced to PMCM (N)

in log-space.

(2) For each N > 0, PMCM (N) can be reduced to PCSP(A,B) in
log-space.

Before we get to the proof, let us comment on how Theorem 3.1

follows from this result.

Proof of Theorem 3.1 given Theorem 3.9. Recall that we have

two PCSP templates (A1,B1) and (A2,B2), and the corresponding

polymorphism minions Mi = Pol(Ai ,Bi), i = 1, 2. Our goal is

to find a log-space reduction from PCSP(A2,B2) to PCSP(A1,B1)
given that there is a minion homomorphism ξ : M1 → M2.

By Remark 3.8, we have that, for any N , PMCM2
(N) is obtained

from PMCM1
(N) by strengthening the promise. Clearly, this gives

a (trivial) log-space reduction from PMCM2
(N) to PMCM1

(N).

To conclude the proof, we connect this reduction with the two re-

ductions from Theorem 3.9. Starting with PCSP(A2,B2), we reduce
it to PMCM2

(N) where N is given by the first item of Theorem 3.9.

The above paragraph then gives us a reduction to PMCM1
(N).

Finally, the second item of Theorem 3.9 provides a reduction to

PCSP(A1,B1). □

The proof of Theorem 3.9 is given in the following two subsec-

tions.

3.2 From PCSP to Minor Conditions
We now prove Theorem 3.9(1). For that we need to provide a reduc-

tion from PCSP to PMC for a given PCSP template and its polymor-

phism minion. This reduction follows a standard way of proving

hardness of Label Cover [1]. It is built on a two-prover protocol

introduced by [10]. Our presentation of this reduction is a generali-

sation of [15, Lemma 4.2].

Even though we start with a PCSP with template (A,B), we
only use the structure A for the construction of a bipartite minor

condition from a given instance I of PCSP(A,B). The structure

B will influence soundness of the reduction. Fix an enumeration

A = {a1, . . . ,an } of the domain ofA, and consider an instance I, i.e.,
a structure similar to A. We construct a bipartite minor condition

Σ = Σ(A, I) overU andV in the following way.

(1) Define U to be the set of symbols fv for v ∈ I , each of arity

n = |A|.
(2) For each relation R do the following: let k = ar(R), m =

|RA |, and let {(aπ1(1), . . . ,aπk (1)), . . . , (aπ1(m), . . . ,aπk (m))}

be the list of all tuples from RA; for each constraint C =
((v1, . . . ,vk),R), i.e., each tuple (v1, . . . ,vk) ∈ RI, introduce
intoV a new symbolдC of aritym and add to Σ the following

identities:

fv1
(x1, . . . ,xn) ≈ дC (xπ1(1), . . . ,xπ1(m))

...

fvk (x1, . . . ,xn) ≈ дC (xπk (1), . . . ,xπk (m)).

This assigns, to each I and A, an instance (Σ,U,V) of MC(N).

The bound N is the larger of |A| and the maximum of |RA |, for all
relations of A. Clearly, if A is fixed, the condition Σ is computable

from I in log-space.

Example 3.10. We show a reduction from NAE-Sat to MC(6).

NAE-Sat is the same as CSP(H2) (see Example 2.8). Starting with

an instance I of NAE-Sat, for each variable v ∈ I we add a bi-

nary function symbol fv , and for each constraint C involving (not

necessarily different) v1,v2,v3 we add a 6-ary symbol дC and the

Algebraic Approach to Promise Constraint Satisfaction STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

following identities:

fv1
(x ,y) ≈ дC (x ,x ,y,y,y,x),

fv2
(x ,y) ≈ дC (x ,y,x ,y,x ,y),

fv3
(x ,y) ≈ дC (y,x ,x ,x ,y,y).

The arity of fv was chosen to be two so that the assignment of

a projection would correspond to an assignment of a value to v . In
particular, each variable in the above identities corresponds to one

of the elements from the domain. The function дC has arity 6, since

each constraint in NAE-Sat has exactly 6 satisfying assignments;

the columns of variables on the right hand side of these identities

correspond to these satisfying assignments (three x ’s or three y’s
never align).

To finish the proof of Theorem 3.9(1), it is enough to prove the

following lemma.

Lemma 3.11. Let A, B, and I be similar relational structures, and

let Σ = Σ(A, I) be constructed as above. Then
(1) if there is a homomorphism h : I → A, then Σ is trivial; and

(2) if Pol(A,B) satisfies Σ, then there is a homomorphism from I
to B.

Proof. To prove item (1), assume that h : I → A is a homomor-

phism, and define ζ : U → PA by ζ (fv) = pi where i is chosen so

that h(v) = ai . We extend this assignment to symbols from V: Let

C = ((v1, . . . ,vk),R) be a constraint of I. Since (h(v1), . . . ,h(vk)) ∈
RA, we can find a unique j such that (aπ1(j), . . . ,aπk (j)) is equal to
(h(v1), . . . ,h(vk)). We set ζ (дC) = pj . Clearly, this assignment sat-

isfies all identities of Σ involving дC . Thus we found an assignment

fromU ∪V to projections that satisfies Σ, proving that Σ is trivial.

For item (2), let us first suppose that Σ is satisfiable in projections

and fix a satisfying assignment (of projections to symbols inU∪V).

In that case we can define a map from I , equivalently U, into A
by assigning to v the ai corresponding to the projection assigned

to fv . One easy way to identify the projection is to interpret it as

a projection on the set A, i.e., suppose that ζ : U → PA is the

assignment to projections, and define

h(v) = ζ (fv)(a1, . . . ,an). (♣)

This would give a homomorphism to A by reversing the above

argument. We only need a homomorphism to B, but we also only

have ζ : U ∪ V → Pol(A,B). Still, we define h : I → B by the

rule (♣). Clearly, this is a well-defined assignment; we only need

to prove that h is a homomorphism, i.e., that for each constraint

C = ((v1, . . . ,vk),R), we have (h(v1), . . . ,h(vk)) ∈ RB. Consider
the symbol дC and its image under ζ . We know that ζ (дC) is a poly-
morphism from A to B that satisfies the corresponding identities in

Σ. Let us therefore substitute ai for xi , for i ∈ [n], in those identities.
We obtain the following:

ζ (fv1
)(a1, . . . ,an) = ζ (дC)(aπ1(1), . . . ,aπ1(m))

...

ζ (fvk)(a1, . . . ,an) = ζ (дC)(aπk (1), . . . ,aπk (m)).

But since all the tuples (aπ1(j), . . . ,aπk (j)), for j ∈ [m], are in RA

and ζ (дC) is a polymorphism from A to B, we get that the resulting
tuple (h(v1), . . . ,h(vk)) is in RB. □

Remark 3.12. Note that if we take A = B in the previous lemma,

we obtain that Σ(A, I) is trivial if and only if Σ(A, I) is satisfied in

Pol(A) if and only if I maps homomorphically to A.

3.3 From Minor Conditions to PCSP
Our proof of Theorem 3.9(2) follows another standard reduction in

approximation: a conjunction of Long code testing and Label Cover

[9]. If both A and B are Boolean (A = B = {0, 1}), the construction

can be viewed as a certain Long code test. Such analogy fails when

A and B have different sizes. Nevertheless, projections on the set A
(as opposed to {0, 1} for long codes) still play a crucial role in the

completeness of this reduction. The reduction has also appeared

many times in the presented algebraic form and seems to be folklore

(see e.g. [23, Lemma 3.8]).

The key idea of the construction is that the question ‘Is this

bipartite minor condition satisfied by polymorphisms of A?’ can be

interpreted as an instance of CSP(A). The main ingredient is that

a polymorphism is a homomorphism fromAn
; this gives an instance

whose solutions are exactly n-ary polymorphisms. Such instances

are sometimes called “indicator instances” [37]. By considering

the union of several such instances (one for each function symbol

appearing in Σ) and then introducing equality constraints that

reflect the identities, we get that a solution to the obtained instance

corresponds to polymorphisms satisfying the identities. In detail,

let us fix a template (A,B) and a bound on arity N . We start with

a bipartite minor condition (Σ,U,V) with arity bounded by N ,

and construct an instance I = IΣ(A) of PCSP(A,B) in three steps:

(1) for each n-ary symbol f inU ∪V , introduce into I a fresh
copy ofAn

where each element (a1, . . . ,an) ∈ An is replaced

by a new element denoted by vf (a1, ...,an);
(2) for each identity f (x1, . . . ,xl) ≈ д(xπ (1), . . . ,xπ (r)) in Σ,

and a1, . . . ,al ∈ A, add an equality constraint ensuring

vf (a1, ...,al) = vд(aπ (1), ...,aπ (r));

(3) identify all pairs of variables connected by (a path of) equality

constraints and then remove the equality constraints.

Clearly, the first and the second step can be done in log-space

(note that the arity n is bounded by the constant N). The third step

can be done in log-space by [45].

Lemma 3.13. Let (A,B) be a template, N > 0, and let M =

Pol(A,B). The above construction gives a log-space reduction from

PMCM (N) to PCSP(A,B).

Proof. To prove completeness, suppose that Σ is trivial, i.e.,

there is a mapping ζ : U ∪V → PA which satisfies Σ. We define

a homomorphism from I to A by setting

h(vf (a1, ...,an)) = ζ (f)(a1, . . . ,an).

Note that h is well-defined since ζ satisfies Σ. Further, since every
projection is a polymorphism of A, h is a homomorphism.

To prove soundness, assume that there is a homomorphism

h : I → B. We reverse the above argument and define ζ by the

rule ζ (f)(a1, . . . ,an) = h(vf (a1, ...,an)) for all a1, . . . ,an ∈ A. Now,
ζ (f) ∈ M follows from the first step of the construction of I, and
satisfaction of the identities from Σ follows from the second and

the third steps of the construction. □

This concludes the proof of Theorem 3.9.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jakub Bulín, Andrei Krokhin, and Jakub Opršal

4 NP-HARDNESS OF (2k − 1)-COLOURING
k-COLOURABLE GRAPHS

In this section we prove the following theorem, called result (C) in

the introduction.

Theorem 4.1. For any k ≥ 3, it is NP-hard to distinguish k-
colourable graphs from those that are not (2k − 1)-colourable.

For better accessibility, we give a direct proof which mimics the

proofs from the previous section for this special case. At the end of

this section we mention a more general result (presented in the full

version [22]) whose proof uses more of our general theory.

As a starting point for our reduction, we will use the following

result on the hardness of approximate hypergraph colouring.

Theorem 4.2 ([28]). For any c ≥ 2, it is NP-hard to distinguish

between 3-uniform hypergraphs that are 2-colourable and those that

are not even c-colourable.

As we noted in Example 2.10, this theorem translates directly

into NP-hardness of PCSP(H2,Hc) where Hc = (Ec ;NAEc).

Proof. Fix k ≥ 3 and let c be the number of binary polymor-

phisms from Kk to K
2k−1 (i.e., of (2k − 1)-colourings of K2

k). Let

H = (VH ,EH) be a 3-uniform hypergraph.Wewill show how to con-

struct, in polynomial time, a graph I such that if H is 2-colourable

then I is k-colourable and if I is (2k − 1)-colourable then H is c-
colourable. This will prove the theorem.

Consider the following system Σ of identities (essentially the

same as introduced in Example 3.10). For eachv ∈ VH , we introduce

a binary function symbol fv , and for each e = (v1,v2,v3) ∈ EH ,

we introduce a 6-ary symbol дe . Let Σe be the following system of

identities:

fv1
(x ,y) ≈ дe (x ,x ,y,y,y,x),

fv2
(x ,y) ≈ дe (x ,y,x ,y,x ,y),

fv3
(x ,y) ≈ дe (y,x ,x ,x ,y,y).

Note that the vertices in a hyperedge can be ordered arbitrarily

to produce the above identities. Finally, let Σ =
⋃
e Σe . Note that

Σ = Σ(H2,H), following the construction in Section 3.2.

We now turn Σ into a graph I = IΣ(Kk), following the 3-step

construction in Section 3.3. Specifically, let I = (VI ,EI) where VI
initially consists of all vertices of the form ufv (a1,a2) and of the

form uдe (a1, ...,a6) where v ∈ VH , e ∈ EH , and ai ∈ Ek for all i .

For eachv ∈ VH , and each edge ((a1,a2), (b1,b2)) ofK2

k (i.e., ai ,

bi for i = 1, 2), add an edge between ufv (a1,a2) and ufv (b1,b2) to EI .
Similarly, for each e ∈ VH , and each edge ((a1, . . . ,a6), (a1, . . . ,a6))
of K6

k , add an edge between uдe (a1, ...,a6) and uдe (b1, ...,b6) to EG .

Finally, we identify (glue together) a number of vertices. Namely,

for each identity in Σ of the form fv (x ,y) ≈ дe (x ,x ,y,y,y,x), and
each a,b ∈ Ek , identify vertices ufv (a,b) and uдe (a,a,b,b,b,a), and
perform a similar procedure for the other two types of identities in

Σ. This finishes the construction of I, and it is clear that it can be

done in polynomial time in the size of H. In the rest of the proof,

we show that I has the two required properties.

Assume first that H is 2-colourable. Call the 2 colours x and y,
and let β : VH → {x ,y} be a 2-colouring. Define iv = 1 if β(v) = x
and iv = 2 if β(v) = y. Next, for every e = (v1,v2,v3) ∈ EH , let

100 011 = 010 101 = 001 110

121 212 = 112 221 = 211 122

220 002 = 022 200 = 202 020

012 120

120 201

201 012

Figure 1: A 6-clique in the graph G for k = 3. The vertices on
the left were involved in the gluing that produced G.

ie ∈ [1, 6] be the number of the column on the right-hand side

of Σe such that (β(v1), β(v2), β(v3)) is that column. It is easy to

see that this number is well-defined. We then define the following

mapping β ′ from I to Kk . For each v ∈ VH and each (a1,a2) ∈

E2k , let β
′(ufv (a1,a2)) = aiv . Similarly, for each e ∈ EH and each

(a1, . . . ,a6) ∈ E6k , let β
′(uдe (a1, ...,a6)) = aie . It is straightforward

to check that β ′ is well-defined (i.e., if two vertices were glued in the
construction of I then they get the same colour) and it is a proper

k-colouring of I.
Now let us assume that I is (2k−1)-colourable andγ : VI → E

2k−1
is such a colouring. One important (and well-known) observation

about the construction of I is that, for any t ≥ k and any fixed

vertex v ∈ VH , any t-colouring α of the subgraph of I induced by

all vertices of the formufv (a,b) gives rise to a binary polymorphism

f from Kk to Kt defined by f (a,b) = α(ufv (a,b)). Similarly, any

t-colouring α of the subgraph of I induced by all vertices of the

form uдe (a), for a fixed e , gives rise to a 6-ary polymorphism from

Kk to Kt . These facts easily follow directly from definitions.

By the observation above, the colouring γ gives rise to binary

polymorphisms fv ,v ∈ VH , and 6-ary polymorphisms дe , e ∈ EH ,
from Kk to K

2k−1. Moreover, these polymorphisms satisfy all iden-

tities in Σ due to the gluings made when constructing I. Now con-

sider the c possible binary polymorphisms from Kk to K
2k−1 as

colours and define a c-colouring γ ′ of H by γ ′(v) = fv . It remains

to prove that γ ′ is a proper colouring of H. Assume, for contradic-

tion, that it is not, so there is a hyperedge e = (v1,v2,v3) ∈ EH
such that fv1

= fv2
= fv3

. This means that the 6-ary polymor-

phism д = дe ∈ Pol(Kk ,K2k−1) satisfies the following identities:

д(x ,x ,y,y,y,x) ≈ д(x ,y,x ,y,x ,y) ≈ д(y,x ,x ,x ,y,y). To finish the

proof, we now show that such a д does not exist.

The polymorphism д can viewed as (2k − 1)-colouring of K6

k .

By assumption, for each (a,b) ∈ K2

k , this colouring gives the same

colour (which may depend on (a,b)) to every triple of vertices of

the form (a,a,b,b,b,a), (a,b,a,b,a,b), and (b,a,a,a,b,b). Thus, д
can be viewed as a (2k − 1)-colouring of the graph G obtained

from K6

k by gluing together, for each (a,b), the three vertices of the

above form. We claim that then G contains a (2k)-clique, which
would contradict the assumption that G is (2k − 1)-colourable. For

all i ∈ Kk , we consider:

ai = (i, i + 1, i + 2, i + 1, i + 2, i) and bi = (i + 1, i, i, i, i + 1, i + 1)

Algebraic Approach to Promise Constraint Satisfaction STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

where addition is modulo k . Note that, when producing the graph

G, each vertex bi was identified with both (i, i + 1, i, i + 1, i, i + 1)
and (i, i, i + 1, i + 1, i + 1, i). We claim that the set {ai , bi | i ∈ Kk }
induces a (2k)-clique in G. Fig. 1 depicts this clique in G for k = 3.

Clearly for any i , j , there is an edge between ai and aj , as well as
between bi and bj (in K6

k , and hence in G).
For edges between ai and bj , we consider the following cases:

• j < {i, i + 1}. Then also j + 1 < {i + 1, i + 2}, so there

is an edge between bj and ai since bj was identified with

(j, j, j + 1, j + 1, j + 1, j).
• j = i . There is an edge between ai and bj since bj was
identified with (j + 1, j, j, j, j + 1, j + 1).

• j = i + 1. There is an edge between ai and bj since bj was
identified with (j, j + 1, j, j + 1, j, j + 1).

This concludes the proof. □

A 6-ary function д satisfying the identities д(x ,x ,y,y,y,x) ≈

д(x ,y,x ,y,x ,y) ≈ д(y,x ,x ,x ,y,y) is called an Olšák function. The

key in the above proof is that Pol(Kk ,K2k−1) does not contain an

Olšák function. In [22], we show that, for any PCSP template (A,B),
the absence of an Olšák function in Pol(A,B) is equivalent to the
existence of a minion homomorphism from Pol(A,B) to Pol(H2,Hc)

for some c ≥ 2. By Theorem 3.1 and Theorem 4.2, this implies that

any PCSP without an Olšák polymorphism is NP-hard. Finally,
we remark that, when c ≥ 2k , Pol(Kk ,Kc) does have an Olšák

polymorphism. This and further properties of Pol(Kk ,Kc) can be

found in [22].

5 CONCLUSION
This paper deals with the Promise CSP framework, which is a sig-

nificant generalisation of the (finite-domain) CSP. The PCSP pro-

vides a nice interplay between the study of approximability and

universal-algebraic methods in computational complexity. We pre-

sented a general abstract algebraic theory that captures the com-

plexity of PCSPs with a fixed template (A,B). The key element in

our approach is the bipartite minor conditions satisfied in the poly-

morphism minion Pol(A,B). We have shown that such conditions

determine the complexity PCSP(A,B). We gave some applications

of our general theory, in particular, in approximate graph colouring.

The complexity landscape of PCSP (beyond CSP) is largely un-

known, even in the Boolean case (despite some progress in [16]),

and includes many specific problems of interest. We hope that our

theory will provide the basis for a fruitful research programme

of charting this landscape. Below we discuss some of the possible

directions within this programme.

Let us first discuss how the complexity classification quest for

PCSPs compares with that for CSPs. As we said above, the gist of the

algebraic approach is that lack or presence of (high-dimensional)

symmetries determines the complexity. For CSPs, there is a sharp

algebraic dichotomy: having only trivial symmetries (i.e., satisfying

only those systems of minor identities that are satisfied in polymor-

phisms of every CSP) leads to NP-hardness, while any non-trivial

symmetry implies rather strong symmetry and thus leads to trac-

tability. Moreover, the algorithms for tractable cases are (rather

involved) combinations of only two basic algorithms — one is based

on local propagation [5] and the other can be seen as a very gen-

eral form of Gaussian elimination [36]. It is already clear that the

situation is more complicated for PCSPs: there are hard PCSPs with

non-trivial (but limited in some sense) symmetries, and tractable

cases are more varied [3, 15, 16, 28]. This calls for more advanced

methods, and we hope that our paper will provide the basis for

such methods. There is an obvious question whether PCSPs exhibit

a dichotomy as CSPs do, but there is not enough evidence yet to

conjecture an answer. More specifically, it is not clear whether there

is any PCSP whose polymorphisms are not limited enough (in terms

of satisfying systems of minor identities) to give NP-hardness, but
also not strong enough to ensure tractability. Classifications for

special cases such as Boolean PCSPs and graph homomorphisms

would help to obtain more intuition about the general complexity

landscape of PCSPs, but these special cases are currently open.

The sources of hardness in PCSP appear to be much more varied

than in CSP (that has a unique such source), and much remains

to be understood there. What limitations on the bipartite minor

conditions satisfied in polymorphisms lead to NP-hardness? Some

general and some specific results in this direction can be found in

the full version [22], but it is clear that our general theory needs to

be further developed. Currently, variants of the Gap Label Cover

provide the source of hardness, but it is possible that new versions

of GLC may need to be used. It is not clear in advance what these

versions would be — their form would be dictated by the analysis

of polymorphisms and minor conditions. However, it would inter-

esting to eventually go even further and avoid dependency on deep

approximation results such as the PCP theorem and parallel repeti-

tion. Instead, one would aim to provide a self-contained theory that

includes a new type of reduction between PCSPs so that one could

bypass the PCP theorem and parallel repetition altogether. In par-

ticular, can one come up with purely algebraic reductions (e.g. by

extending pp-constructions) that create and amplify the algebraic

gap in problems PMCM (N), which is what the PCP theorem and

parallel repetition do for the quantitative gap in Gap Label Cover?

The analysis of polymorphisms of approximate graph colouring

problems (and their relatives) may provide further intuition as to

what limitations on minor conditions can be used for hardness

proofs.

What algorithmic techniques are needed to solve tractable PC-

SPs? One general approach to proving tractability of PCSP(A,B) is
presented in [16]. The main idea is to find a structure D such that

A → D → B and CSP(D) is tractable. Such structures are called

“homomorphic sandwiches” in [16]. It is clear that an algorithm for

CSP(D) solves PCSP(A,B). In general, D may have infinite domain

(but instances of CSP(D) are still finite) — indeed, for PCSP(T,H2)

from Example 2.8 no such finite D exists [4], but one infinite exam-

ple is D = (Z,x + y + z = 1) [15, 16]. A range of examples when

this works, particularly with D relating to linear programming and

affine relaxations, is given in [16]. It would be very interesting to

develop a general theory of how such a structure D can be con-

structed from bipartite minor conditions satisfied in Pol(A,B) and
what properties of such conditions guarantee tractability of CSP(D).
In general, infinite-domain CSPs have a considerably more com-

plicated structure than their finite counterparts; in particular, they

exhibit no dichotomy [12]. We remark that the algebraic theory of

infinite-domain CSPs is being developed [11, 44] and it often has an

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jakub Bulín, Andrei Krokhin, and Jakub Opršal

additional model-theoretic flavour. It is another interesting feature

of the (finite-domain) PCSP framework that it seems to require

research into infinite-domain CSP.

Acknowledgements
We would like to thank Libor Barto, Mirek Olšák, Alex Kazda, Josh

Brakensiek, Venkat Guruswami, Erkko Lehtonen, and Marcello

Mamino for valuable discussions. We also thank anonymous refer-

ees for useful suggestions.

REFERENCES
[1] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. 1997. The Hardness

of Approximate Optima in Lattices, Codes, and Systems of Linear Equations. J.

Comput. Syst. Sci. 54, 2 (April 1997), 317–331.

[2] Per Austrin, Amey Bhangale, and Aditya Potukuchi. 2018. Improved Inapprox-

imability of Rainbow Coloring. ArXiv e-prints (Oct. 2018). arXiv:1810.02784

[3] Per Austrin, Venkatesan Guruswami, and Johan Håstad. 2017. (2+ε)-Sat Is NP-
hard. SIAM J. Comput. 46, 5 (2017), 1554–1573.

[4] Libor Barto. 2019. Promises make finite (constraint satisfaction) problems infini-

tary. (2019). to appear in LICS 2019.

[5] Libor Barto and Marcin Kozik. 2014. Constraint Satisfaction Problems Solvable

by Local Consistency Methods. J. ACM 61, 1 (Jan. 2014), 3:1–3:19.

[6] Libor Barto and Marcin Kozik. 2016. Robustly Solvable Constraint Satisfaction

Problems. SIAM J. Comput. 45, 4 (2016), 1646–1669.

[7] Libor Barto, Andrei Krokhin, and RossWillard. 2017. Polymorphisms, and How to

Use Them. In The Constraint Satisfaction Problem: Complexity andApproximability,

Andrei Krokhin and Stanislav Živný (Eds.). Dagstuhl Follow-Ups, Vol. 7. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 1–44.

[8] Libor Barto, Jakub Opršal, and Michael Pinsker. 2018. The wonderland of reflec-

tions. Israel Journal of Mathematics 223, 1 (Feb 2018), 363–398.

[9] Mihir Bellare, Oded Goldreich, and Madhu Sudan. 1998. Free Bits, PCPs, and

Nonapproximability—Towards Tight Results. SIAM J. Comput. 27, 3 (1998), 804–

915.

[10] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. 1988. Multi-

prover Interactive Proofs: How to Remove Intractability Assumptions. In Pro-

ceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC

’88). ACM, New York, NY, USA, 113–131.

[11] Manuel Bodirsky. 2008. Constraint Satisfaction Problems with Infinite Templates.

In Complexity of Constraints (2009-05-05) (Lecture Notes in Computer Science),

Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer (Eds.), Vol. 5250.

Springer, 196–228.

[12] Manuel Bodirsky and Martin Grohe. 2008. Non-dichotomies in Constraint Satis-

faction Complexity. In Automata, Languages and Programming, 35th International

Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II.

184–196.

[13] Joshua Brakensiek and Venkatesan Guruswami. 2016. New Hardness Results

for Graph and Hypergraph Colorings. In 31st Conference on Computational Com-

plexity (CCC 2016) (Leibniz International Proceedings in Informatics (LIPIcs)), Ran

Raz (Ed.), Vol. 50. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 14:1–14:27.

[14] Joshua Brakensiek and Venkatesan Guruswami. 2017. The Quest for Strong

Inapproximability Results with Perfect Completeness. In Approximation, Ran-

domization, and Combinatorial Optimization. Algorithms and Techniques, AP-

PROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA. 4:1–4:20.

[15] Joshua Brakensiek and Venkatesan Guruswami. 2018. Promise Constraint Sat-

isfaction: Structure Theory and a Symmetric Boolean Dichotomy. In Proceed-

ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA’18). Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 1782–1801.

[16] Joshua Brakensiek and Venkatesan Guruswami. 2019. An Algorithmic Blend of

LPs and Ring Equations for Promise CSPs. In Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,

USA, January 6-9, 2019. 436–455.

[17] Jonah Brown-Cohen and Prasad Raghavendra. 2015. Combinatorial Optimization

Algorithms via Polymorphisms. CoRR abs/1501.01598 (2015).

[18] Andrei Bulatov and Peter Jeavons. 2001. Algebraic structures in combinatorial

problems. Technical Report.

[19] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. 2005. Classifying the Com-

plexity of Constraints Using Finite Algebras. SIAM J. Comput. 34, 3 (March 2005),

720–742.

[20] Andrei A. Bulatov. 2013. The Complexity of the Counting Constraint Satisfaction

Problem. J. ACM 60, 5, Article 34 (Oct. 2013), 41 pages.

[21] Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In 2017

IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). 319–

330.

[22] Jakub Bulín, Andrei Krokhin, and Jakub Opršal. 2018. Algebraic approach to

promise constraint satisfaction. ArXiv e-prints (2018). arXiv:1811.00970

[23] Hubie Chen and Benoit Larose. 2017. Asking the Metaquestions in Constraint

Tractability. ACM Trans. Comput. Theory 9, 3 (Oct. 2017), 11:1–11:27.

[24] Hubie Chen, MatthewValeriote, and Yuichi Yoshida. 2016. Testing Assignments to

Constraint Satisfaction Problems. In IEEE 57th Annual Symposium on Foundations

of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,

New Jersey, USA. 525–534.

[25] Víctor Dalmau, Marcin Kozik, Andrei A. Krokhin, Konstantin Makarychev, Yury

Makarychev, and Jakub Opršal. 2017. Robust algorithms with polynomial loss

for near-unanimity CSPs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,

January 16-19. 340–357.

[26] Victor Dalmau, Andrei Krokhin, and Rajsekar Manokaran. 2018. Towards a

characterization of constant-factor approximable finite-valued CSPs. J. Comput.

System Sci. 97, 14–27.

[27] Irit Dinur, Elchanan Mossel, and Oded Regev. 2009. Conditional Hardness for

Approximate Coloring. SIAM J. Comput. 39, 3 (2009), 843–873.

[28] Irit Dinur, Oded Regev, and Clifford Smyth. 2005. The Hardness of 3-Uniform

Hypergraph Coloring. Combinatorica 25, 5 (Sep 2005), 519–535.

[29] Tomás Feder andMoshe Y. Vardi. 1998. The Computational Structure ofMonotone

Monadic SNP and Constraint Satisfaction: A Study Through Datalog and Group

Theory. SIAM J. Comput. 28, 1 (Feb. 1998), 57–104.

[30] M. R. Garey and David S. Johnson. 1976. The Complexity of Near-Optimal Graph

Coloring. J. ACM 23, 1 (1976), 43–49.

[31] Venkatesan Guruswami and Sanjeev Khanna. 2004. On the Hardness of 4-

Coloring a 3-Colorable Graph. SIAM Journal on Discrete Mathematics 18, 1

(2004), 30–40.

[32] Venkatesan Guruswami and Euiwoong Lee. 2017. Strong inapproximability

results on balanced rainbow-colorable hypergraphs. Combinatorica (14 Dec

2017).

[33] Johan Håstad. 2001. Some Optimal Inapproximability Results. J. ACM 48, 4 (July

2001), 798–859.

[34] Pavol Hell and Jaroslav Nešetřil. 1990. On the complexity of H -coloring. J.

Combin. Theory Ser. B 48, 1 (1990), 92–110.

[35] Sangxia Huang. 2013. Improved Hardness of Approximating Chromatic Number.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques: 16th International Workshop, APPROX 2013, and 17th International

Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings,

Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and José D. P. Rolim

(Eds.). Springer, Berlin, Heidelberg, 233–243.

[36] Paweł M. Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and Ross

Willard. 2010. Tractability and Learnability Arising from Algebras with Few

Subpowers. SIAM J. Comput. 39, 7 (2010), 3023–3037.

[37] Peter Jeavons, David Cohen, and Marc Gyssens. 1997. Closure Properties of

Constraints. J. ACM 44, 4 (July 1997), 527–548.

[38] Ken-ichi Kawarabayashi and Mikkel Thorup. 2017. Coloring 3-Colorable Graphs

with Less than n
1/5

Colors. J. ACM 64, 1 (2017), 4:1–4:23.

[39] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. 2000. On the Hardness of

Approximating the Chromatic Number. Combinatorica 20, 3 (01 Mar 2000), 393–

415.

[40] Subhash Khot. 2001. Improved inapproximability results for MaxClique, chro-

matic number and approximate graph coloring. In Foundations of Computer

Science, 2001. Proceedings. 42nd IEEE Symposium on. IEEE, 600–609.

[41] Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolínek. 2017. The complexity

of general-valued CSPs. SIAM J. Comput. 46, 3 (2017), 1087–1110.

[42] Andrei Krokhin and Stanislav Živný (Eds.). 2017. The Constraint Satisfaction

Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Vol. 7. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik.

[43] Colin McDiarmid. 1993. A Random Recolouring Method for Graphs and Hyper-

grams. Combinatorics, Probability & Computing 2 (1993), 363–365.

[44] Michael Pinsker. 2015. Algebraic and model theoretic methods in constraint

satisfaction. ArXiv e-prints (2015). arXiv:1507.00931

[45] Omer Reingold. 2008. Undirected Connectivity in Log-space. J. ACM 55, 4 (Sept.

2008), 17:1–17:24.

[46] Thomas J. Schaefer. 1978. The Complexity of Satisfiability Problems. In Proceed-

ings of the Tenth Annual ACM Symposium on Theory of Computing (STOC ’78).

ACM, New York, NY, USA, 216–226.

[47] Johan Thapper and Stanislav Živný. 2016. The Complexity of Finite-Valued CSPs.

J. ACM 63, 4 (2016), 37:1–37:33.

[48] Dmitriy Zhuk. 2017. A Proof of CSP Dichotomy Conjecture. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer Science (FOCS). 331–342.

http://arxiv.org/abs/1810.02784
http://arxiv.org/abs/1811.00970
http://arxiv.org/abs/1507.00931

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 CSPs and PCSPs
	2.2 Polymorphisms

	3 Algebraic Reductions
	3.1 Deciding Satisfiability of Bipartite Minor Conditions
	3.2 From PCSP to Minor Conditions
	3.3 From Minor Conditions to PCSP

	4 NP-Hardness of (2k-1)-colouring k-colourable graphs
	5 Conclusion
	References

