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ABSTRACT 
More advanced interactive web browser based computer 
music applications are supported through a new javas-
cript library for musical machine listening, MMLL. The 
library includes such facilities as beat tracking, pitch 
tracking, onset detection, major/minor chord detection, 
IFFT resynthesis and a tracking phase vocoder imple-
mentation. The code’s efficiency, technical issues, and 
two example applications built upon the library are dis-
cussed.  

INTRODUCTION 
Web Audio API is a maturing technology for web brows-
er based audio digital signal processing through javascript 
coding. Due to the efficiency of javascript engines in re-
cent web browsers, it is an attractive option for new com-
puter music work, not least given the promise of inherent-
ly cross platform capability, with ease of release to musi-
cian end-users (just direct them to a URL!). There remain 
some question marks over performance in the case of 
simultaneous use of an intensive audio callback and visu-
al rendering or other heavy GUI.1 Nonetheless, perfor-
mance in non-graphics heavy settings is certainly reliable 
enough for computer music applications, and the tight 
potential coupling of GUI and low level audio DSP a 
powerful option.   
   
A few libraries for feature extraction have appeared, in-
cluding jsXtract, a native javascript port of libXtract [1], 
and Meyda [2]. These feature extractors provide standard 
audio descriptors such as MFCCs or the spectral centroid. 
However, they do not currently include the more mid to 
high level music analysis associated with such processes 
as chord detection or beat tracking. A few isolated exam-
ples of pitch detection algorithms have appeared online,2 
visualisations based on feature extraction have been ex-
plored [3],3 and Web Audio API has a built in Analyzer 

                                                             
1 The audio worklets system, which supports separate 
threads for audio from other processes, is not yet suffi-
ciently proven at the time of writing to constitute main-
stream Web Audio API practice, but does promise en-
hanced safety of audio code execution, at the expense of 
additional overhead in passing data between different 
areas of the program.  

2 See for instance: 
https://webaudiodemos.appspot.com/pitchdetect/index.ht
ml 

3 Further, see: https://developer.mozilla.org/en-
US/docs/Web/API/Web_Audio_API/Visualizations_with
_Web_Audio_API 
 

node for FFT analysis. Vamp plugins have been ported to 
javascript via transpilation [4]. These implementations 
are complementary to the current work, but there is much 
audio analysis code available that hasn’t yet been the 
subject of porting. We also work here from the ground up 
aiming for efficient real-time performance for live music 
use cases.    
  
The present paper proceeds by introducing a new javas-
cript library for musical machine listening with a basic 
tutorial in its use, considers efficiency and technical con-
cerns, and discusses an example beat tracker driven audio 
cutting application amongst other application and end-
user initiatives.   

THE CODE LIBRARY  
MMLL is a javascript library intended for use in Web 
Audio API contexts.4 It provides a variety of higher level 
musical listening facilities for computer music, such as 
onset detection, pitch tracking, (major-minor) chord de-
tection, beat tracking and auditory modeling. All listening 
objects can run live, or can be called in a simulated block 
by block way offline (potentially faster than realtime). 
The library was developed by the first author as part of 
the AHRC funded Musically Intelligent Machines Inter-
acting Creatively (MIMIC) project, and is released under 
an MIT license. 

MMLL can be deployed just for the machine listening 
objects within a user’s own audio callback (e.g., as part of 
a ScriptProcessorNode), or via a quick setup frontend that 
hides Web Audio API details and has a user write setup 
and audio callback functions analogous to Processing's 
setup and draw [5]. 

The latter method is the one explained here, but those 
more expert in Web Audio API should find it easy 
enough to just take the analyzers for their own work. 
Simply linking to the precompiled MMLL.js script file is 
enough to deploy the library, though from the home di-
rectory of the library you can compile it afresh via the 
shell script provided (The library is just a concatenation 
of the js source files, where emscripten transpilation of 
some further C source code has already been conducted). 

The typical expectation of a machine listening object is 
that we are working at 44.1KHz sampling rate and that a 
mono (single channel) input block of samples will be 
provided for analysis. The audio callback convenience 
function supplied by the library assumes stereo audio 
data, but provides both left and right input buffers, in case 
                                                             
4 https://github.com/sicklincoln/MMLL 



 

 

audio processing is required, and a mixed mono input 
buffer (left and right channel average). Output is to sepa-
rate left and right buffers. The machine listening objects 
deal themselves with accumulating samples ready for 
processing (often via an FFT) and the user normally 
doesn't have to worry about that part. However, objects 
should cope at other standard sampling rates such as 
48KHz, 88.2KHz and 96 KHz, even if performance is 
sub-optimal; for example, the onset detector was devel-
oped based on evaluation over a corpus of 44.1KHz sam-
ples, so works best at this home rate. 

1.1 A minimal code example 

A minimal code example is reproduced below. Note how 
the machine listener object is prefixed with MMLL, and 
the SetUp function is passed the sampling rate, needed 
for initializing the listener. The CallBack is where the 
main action happens, as each new block of input samples 
is passed in. The input and output arguments hold 
MMLLInput and MMLLOutput objects, which make the 
channels of input and output audio accessible, as well as a 
special input.monoinput which is a single channel ready 
for the listener. If a stereo sound file is loaded or two 
channel live input requested, the monoinput will be the 
average of the left and right channels. The output object 
assumes a stereo output for now, exposing the left and 
right channel data arrays. The final GUISetup takes care 
of the detail of Web Audio API setup, including calling 
the Setup function at an appropriate time once the sample 
rate is confirmed, and establishing the callback. Buttons 
at the bottom of the webpage provide the option to work 
with live microphone input, or by loading a sound file; 
once audio input is underway, the buttons change to a 
single stop button which finishes a session (the two start 
options for microphone or audio file are then restored).   

var audioblocksize = 256;  

//lowest latency possible in Web Audio API 

 

var setup = function SetUp(sampleRate) {  

sensorydissonance = new  

MMLLSensoryDissonance(sampleRate);  

}; 

 

var callback =  

function CallBack(input,output,n) { 

var dissonance =  

sensorydissonance.next(input.monoinput); 

console.log(dissonance); 

for (i = 0; i < n; ++i) { 

output.outputL[i] = input.inputL[i]; 

output.outputR[i] = input.inputR[i]; 

} 

}; 

var gui = new  

MMLLBasicGUISetup( callback,setup,audioblo
cksize,true,true ); 

1.2 The main machine listening facilities and their 
CPU cost 

Table 1 lists some of the main machine listening objects 
available in MMLL at the time of writing, with some 
indicative CPU costs, benchmarked on a five year old 
2013 MacBook Pro (2.3GH i7 running Chrome 
67.0.3396.87). Measurement in the final column gives 
CPU hit on one core; since processing is spread between 
the coreaudiod daemon and Chrome itself (labelled 
Google Chrome Helper in ActivityMonitor) two numbers 
are given. It is clear that the CPU cost is not prohibitive 
of running multiple machine listening processes with 
further audio synthesis on an older laptop, thus demon-
strating the feasibility of established computer music al-
gorithms for web browsers.  

Performance in Firefox is comparable. The library has 
shortcut functions to work with either audio file input, or 
live microphone. The latter is a little more expensive in 
CPU load, due to denormal safety checks.5  

Most objects have their origin in the machine listening 
facilities available in SuperCollider [6]. Manual ports 
from C code to javascript, or transpilation from C to ja-
vascript have both been explored. In fact, the perfor-
mance of MMLL, whilst not as strong as SuperCollider’s 
native C compiled scsynth, is reasonable, working at 
around double the CPU cost, and in some cases for longer 
block sizes, near equivalent.  

1.3 Emscripten ports 

Much legacy machine listening code exists in C, and it is 
possible to convert C code to Javascript via transpilation, 
for instance, with emscripten.6 The BeatTrack UGen is an 
emscripten port of a SuperCollider UGen written with C 
(itself converted from research MATLAB code); the al-
gorithm is due to Matthew Davies [7].  

The drawback of transpilation is that the transpiler intro-
duces an overhead in terms of code complexity in javas-
cript, and requirements for careful calls to the transpiled 
functions and associated memory access for passing data.  

The FFT library chosen was KissFFT,7 offering a permis-
sive license compatible with the MIT licensing of 
MMLL, alongside competitive performance (the code 
                                                             
5 This is often an issue on Mac for unregulated audio in-
put; without the checks, audio can abruptly cut out for an 
out of range signal, or increase processing cost for very 
small floating point values 
6 http://kripken.github.io/emscripten-site/ 
7 https://github.com/j-funk/kissfft-js 



 

 

uses emscripten to port from a C original). Whilst the 
rival javascript emscripten port of FFTW has been shown 
to be superior in testing,8 the GNU GPL license restricts 
usage, for only a small relative gain in performance.   

 

Table 1 List of relative performance of some machine 
listening algorithms within MMLL

                                                             
8 https://github.com/j-funk/js-dsp-test/ 

Algorithm Explanation CPU cost 
(one instance) 

% coreaudio/ 

chrome 

Control case: random 
noise + sample 

https://webaudioapi.com/samples/script-processor/ (Random noise added to 
sample) 

6/2 

Control case: Pitch  

detector 

https://webaudiodemos.appspot.com/pitchdetect/index.html 5/15 

Control case: tuner https://developer.microsoft.com/en-us/microsoft-
edge/testdrive/demos/webaudiotuner/ 

6/6 

FFT  Basic short time Fourier transform 5/4  

IFFT resynthesis Overlap add resynthesis via IFFT after FFT and frequency band filter 6/4   

Onset detector Algorithm by the first author, MIREX 2005 [8] 5/6  

Beat tracker  Longer time window decision, stable but slower reacting to change [7] 5/7  

Fast reacting beat tracker Less stable, fast reacting, based on a variation of Scheirer’s algorithm [9] 
where the comb filters are leaky integrators 

5/6  

Chord detection/key 
detection 

Discriminates major and minor chord forms, by proximity to template chro-
ma profiles [10]. Will also attempt to discriminate key if given longer decay 
times. 

5/7  

Sensory dissonance After Sethares [11] 5/8 

Gammatone auditory 
filterbank 

88 filters spaced according to the frequencies of the 88 piano keys (in stand-
ard 12TET) 

5/24 

Gammatone filter Single filter at 1000Hz, 200Hz bandwidth 5/2  

Haircell model Basic compressive nonlinear haircell model based on accumulation of 
transmitter (integrate and fire).  

5/3  

Tracking phase vocoder After [12], sinusoidal oscillator bank resynthesis allowing f0 change without 
affecting duration 

10/10 

Constant Q pitch  

detector 

After Brown and Puckette [13] 12/13 

YIN autocorrelation 
pitch detector 

After [14]. Block by block caching of difference function calculations is 
used to improve efficiency (otherwise runs at around 10/75 CPU cost) 

10/20 



 

 

EXAMPLE APPLICATIONS 
BBCut is an example application created using MMLL 
which rests upon beat tracking, allowing the triggering of 
rhythmic stutters locked to the beat, as well as a comb 
filter delay effect.9 It uses code converted from a C lan-
guage original (originally available as an iPhone app), 
manually ported to javascript. The screenshot reveals the 
main interface; the ‘Open Microphone’ and ‘Open Audio 
File’ buttons are automatically added programmatically 
by the javascript library’s helper shortcut functions.  The 
sliders and buttons control the available cuts, via auto-
matic or manual triggering, and an additional comb filter 
delay.  

 
Figure 1 Excerpt screenshot of BBCut showing the 
main controls 

 
Figure 2 Screenshot of Rhythm Remixer 

Rhythm Remixer is another example application which 
uses MMLL’s onset detector. The interface shows a step 
sequencer, and provides controls allowing the user to set 
a tempo and threshold for detecting onsets. The user can 

                                                             
9 https://dev.codecircle.gold.ac.uk/code/5ed346fe-f7d5-
b7ce-87a4-df6e352dbb4a 

choose a part to record, and a remixing algorithm. When 
recording is activated the user can tap a rhythm into the 
step sequencer using the computer microphone. Accom-
panying parts are generated using the selected remixing 
algorithm.  

USER REPORTS 
Though the library has just been released on github, and 
this conference paper will form part of a strategy to more 
widely disseminate the software, early live performance 
experiments have taken place within a research project 
team.  

Live premieres for many of the machine listeners are at 
the time of writing planned for an algorave [15] at the 
Sheffield AlgoMech festival in May 2019. The second 
author will play supported by the library where hypnotic 
noisy loops are transformed via musical machine listen-
ing data. The first author will deploy variations on the 
BBCut application in section 3 alongside gammatone 
filterbank vocoding, and further web audio API apps, 
across many browser tabs. 

 

CONCLUSIONS 
A machine listening library has been released for javas-
cript that makes available some musical audio analysis 
processes ready for web browser computer music. There 
still remain many machine listening facilities in Super-
Collider which can be ported from UGen C source code, 
as well as plenty of algorithms across the computer music 
and music information retrieval literature to implement 
directly in javascript or transpile via emscripten. Future 
planned additions to the library include the following 
SuperCollider UGens: 

• PolyPitch: multiple f0 tracking UGen 

• SMS: spectral modeling synthesis implementa-
tions 

• Median Separation: percussive/tonal source sep-
aration algorithm 

Further work would explore automatic drum detection, 
matching pursuit and concatenative synthesis,  alongside 
integration with machine learning code.  

Having completed the javascript porting of many estab-
lished computer music algorithms, we are confident that 
web audio API provides a reasonably efficient, powerful-
ly cross-platform and easily deployable project base for 
future computer music.  
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