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Abstract—Whilst real-time object detection has become an
increasingly important task within urban scene understanding
for autonomous driving, the majority of prior work concentrates
on the detection of obstacles, dynamic scene objects (pedestrians,
vehicles) and road sign-age within the scene. By contrast, for an
autonomous vehicle to be truly able to interact with occupants
and other road users using a common semantic understanding
of the environment it is traversing it requires a considerably
extended scene understanding capability. In this work, we con-
sider the performance of extended “long-list” object detection, via
an extended end-to-end Region-based Convolutional Neural Net-
work (R-CNN) architecture, over a large-scale 31 class detection
problem of urban scene objects with integrated object attribute
estimation for appropriate colour and primary orientation. We
examine the extended performance of this multiple class object
detection and attribute estimation task operating in real-time
with on-vehicle processing at 10 fps. Our work is evaluated
under a range of real-world automotive conditions across multiple
complex and cluttered urban environments.

Index Terms—object detection, region-based CNN, convolu-
tional neural networks, autonomous vehicles, Human-like Guid-
ance

I. INTRODUCTION

Recent advances in efficient object detection architectures
have played an important role within the rapid development
of autonomous driving technologies [1]-[4]. With the develop-
ment of deep convolutional neural networks (CNN), real-time
object detection has become both robust and real-time [S]—[8].

Following the taxonomy of [9], object detection methods
can be categorized into two types: region proposal based
methods and regression/classification based methods. Region
proposal based methods initially generate a set of candidate
region proposals and subsequently classify each of these region
proposals into either a number of discrete object classes or
as background (i.e. not an object of interest) [9]. The region
based CNN (R-CNN) work of [10] and its later versions
Fast(er)-RCNN [6], [7] marked initial attempts at applying

The authors thank the Renault-Nissan Group for funding and experimental
support.

Toby P. Breckon
Department of {Computer Science, Engineering }
Durham University
Durham, UK
toby.breckon @durham.ac.uk

Fig. 1. Exemplar extended real-time multiple class object detection with
attribute estimation within an urban environment.

deep learning approaches to the joint task of both object
detection and classification achieving significant performance
improvement on benchmarks comparing to the traditional
hand-crafted features based methods [11], [12]. Mask R-CNN
[8], extends Faster R-CNN, additionally predicting an object
segmentation mask in parallel with existing bounding box
prediction.

R-CNN employ a stage-wise strategy combining region
proposals with CNN based feature extraction and assigns a
class-specific score to each region proposal using a support
vector machine classifier. Fast R-CNN significantly accelerates
the training and inference by introducing a Region of Interest



(Rol) pooling layer so that feature extraction for multiple
region proposals from the same image can be performed within
one single forward pass through the CNN hence speeding up
both training and inference significantly. Faster R-CNN [7]
further reduces the running time of these detection networks
by merging the region proposal network (RPN) and Fast R-
CNN in a single network with shared convolutional features.
Unlike the aforementioned object detection methods which
predict a bounding box for each detected object, Mask R-CNN
[8], which is extended from Faster R-CNN, has an additional
branch predicting an object mask in parallel with the existing
branch for bounding box prediction.

By contrast, combined regression and classification based
object detection methods predict object detections directly
from feature maps extracted within a deep CNN architecture.
Within this paradigm, a detection is jointly characterized by
both its location and class which can be predicted by learning
a regression and classification models respectively. Typical ob-
ject detection methods falling in this category include YOLO
[13], YOLOv2 [14], YOLOV3 [15] and SSD [16].

Human-Like Guidance system for driving navigation should
considerably decrease the cognitive load of the driver and
minimize their navigational mistakes. Unlike the current turn-
by-turn in-vehicle navigation systems, which can lead to con-
fusion and distraction as drivers react to navigation instructions
[17]. To enable the Human-Like Guidance system understand
and perceive the surrounding environment, we could employ a
region proposal based approach for ’long-list” object detection
and attribute estimation. Recognizing a long list of objects and
its attributes will enable the Human-Like Guidance system to
give landmark based navigation instructions such as “Follow
the red Car”, ”Turn right after the shop”, ” Turn left after the
parked black Car”.

In this paper, following from recent comparative studies
[18], [19], we leverage the Faster R-CNN architecture of [7] as
a backbone for our extended detection and attribute estimation
task. Overall, we report performance on the 31 object classes
spanning vehicles, pedestrians, buildings and street furniture
(see list in Table I, Section III). Furthermore, we extend the
Faster R-CNN architecture to additional predict the colour (see
list Figure 4), whether a vehicle is parked or in motion (Figure
5) and its discrete orientation to the camera (Figure 6, Section
1D).

The key contributions of this work are:

« an extended Faster R-CNN architecture for joint object

detection and attribute estimation (Section II).

« performance evaluation of Faster R-CNN object detection
over a complex urban environment specifically addressing
the challenges of “long-list” object detection in the urban
environment (Section IV).

II. NETWORK ARCHITECTURE

We extend the architecture of Faster R-CNN [7] to jointly
perform object detection and attribute estimation.

Following the original Faster R-CNN architecture which
divides the framework of detection in two stages. The first
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Fig. 2. Extended R-CNN architecture performing joint object detection and
attribute estimation.

stage is the region proposal network (RPN) that generates
region proposals. The second stage is the fast R-CNN network
[6] which uses the proposed regions and performs classifica-
tion and bounding box regression which adopts an established
CNN classification architecture (e.g. VGG-16 [20], ResNet-
101 [21]). The entire system remains a single and unified
network for object detection and attribute estimation. The
RPN consists of convolutional layers that generate a set of
regions (anchors) with different scales and aspect ratios. The
RPN then predicts the bounding box coordinates and object
class probability scores for those anchors denoting whether
the region is an object or not. Anchors are generated by
spatially sliding a 3 x 3 window through the feature maps
of the last shared convolutional layer. These features are then
fed to objectness classification and bounding box regression
layers. Objectness classification layer classifies whether a
region proposal is an object or a background while bounding
box regression layer predicts the coordinates of the area.

In the Fast RCNN stage, the whole image is first processed
with convolutional layers to produce convolutional feature
maps. These maps are fed into the Region of Interest (Rol)
pooling layer which employs region proposals generated from
the RPN as shown in Figure 2. Subsequently, this pooling
layer extracts a fixed length feature vector associated with each
region proposal. Each feature vector is then fed into a sequence
of Fully Connected (FC) layers before finally branching into
five output layers. One output layer is responsible for produc-
ing softmax probabilities for all object classes and background
categories. The second output layer encodes refined bounding
box coordinates with four real-valued numbers. The other three
softmax layers are responsible for producing probabilities for
color, motion and vehicle face attributes.

This extended architecture is trained end-to-end using a
multi-task loss function as defined in Equation 1. The multi-
tasks loss function L used to jointly train bounding box
regression, object classification and attributes classification.
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Where where p; is the predicted probability of the i-th
anchor being an object. The ground truth label p, is 1 if the
anchor is positive, and is 0 if the anchor is negative. c; is
the predicted probability of the i-th anchor being a color. The
ground truth label ¢; is 1 if the anchor is positive, otherwise
0. m; is the predicted probability of the i-th anchor being
a motion (parked or moving). The ground truth label m, is
1 if the anchor is positive, otherwise 0. v; is the predicted
probability of the :-th anchor being an orientation (front, rear
or side). The ground truth label v, is 1 if the anchor is
positive, otherwise 0. ¢; is a vector stores the 4 parameterized
coordinates of the predicted bounding box while ¢ is that of
the ground-truth box associated with a positive anchor. The
classification losses L.js, Leir, Limot and Lyep are binary log
losses. The regression loss Ly, is @ smoothed L1 loss.

For the background Rol, there is no annotation of a ground-
truth bounding box so Ly, is ignored. Also, where there is
no notion of ground-truth attributes for any detected object,
Ly, is ignored.

Training is performed for the extended Faster RCNN archi-
tecture using a learning rate of 0.001 and a batch size of 1 is
being adopted. All networks are trained on NVIDIA 1080 Ti
GPU via PyTorch.

Fig. 3. The vehicle equipped with stereo camera and combined GPS/IMU
system

III. EVALUATION DATASET

In contrast to work primarily concentrating on pedestrian
and vehicle object detection [22], [23], for our long-list object
detection task we use a customized data set collected over two
urban locations during daylight driving conditions (Versailles,

TABLE I
DETECTION RESULTS OF EXTENDED FASTER RCNN (RESNET-100 AND
VGG-16) FOR MULTIPLE OBJECT CLASSES.

Faster-RCNN

Class ResNet-101  VGG-16
(AP) (AP)
car 0.964 0.937
bus 0.81 0.760
van 0.873 0.803
truck 0.86 0.759
bicycle 0.649 0.535
bike 0.689 0.550
roundabout 0.473 0.435
traffic light 0.544 0.532
direction sign 0.514 0.415
stop sign 0.36 0.275
one way sign 0.348 0.247
other sign 0.571 0.498
road light pole 0.796 0.763
safety wall 0.814 0.768
safety fence guard 0.683 0.646
safety pole 0.475 0.390
zebra crossing 0.838 0.770
cone 0.486 0.470
blocked road sign 0.457 0.415
bus stop shelter 0.587 0.579
billboard 0.63 0.542
garbage container 0.571 0.394
garbage bin 0.339 0.209
pedestrian 0.457 0.560
group of people 0.539 0.435
rider (on bike) 0.512 0.373
house 0.659 0.531
church 0.454 0.261
office building 0.744 0.671
monument 0.421 0.242
shop 0.508 0.365
mAP [ 0.60 0.52

France and Durham, UK) on differing vehicles. All imagery
data is recorded using a Carnegie Robotics MultiSense S21
stereo camera mounted on top of the host vehicle (Figure 3).

A total number of 50,000 images were extracted from 6
hours of driving video footage, for which annotation for the 31
object classes (Table I) in addition to vehicle colour (Figure 4),
motion (Figure 5) and orientation attribute sub-labels (Figure
6) was generated.

IV. EVALUATION

We evaluate using the image dataset outlined in Section III
using a 9:1 train to test split (training: 45k, testing: 5k).

A. Object Detection

Detection performance is measured via average precision
(AP) for each object class and as the mean average precision
(mAP) over all classes following PASCAL VOC [24].

Table I shows our detection results for our ResNet-101
and VGG-16 classification network Faster R-CNN variants,
trained for a fixed number of RPN proposals (300). Both
classification networks have been pre-trained using ImageNet
[25] for transfer into our Faster R-CNN architecture. We
observe Faster R-CNN has a mAP of 0.60 with a deeper
ResNet-101 architecture for the classification network whilst
VGG-16 in the same role has a mAP of 0.52 (Table I).
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Fig. 4. Confusion matrix: colour - cars (left) and vans (right).
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Fig. 5. Confusion matrix: motion - car (left) and van (right)
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Fig. 6. Confusion matrix: orientation - car (left) and van (right)

Furthermore, we notice high AP performance for commonly
occurring vehicle classes (car, bus, van, truck) due to imbal-
ance, and hence strong presence of these classes, within the
training dataset. In addition, classes comprising large-scale
objects within the frame (e.g. office buildings, zebra crossing)
also exhibit high AP performance. By contrast, smaller objects
that occur less frequently (e.g. stop sign, one way sign,
traffic light) exhibit lower AP performance attributable to
both limited discriminating detail within the scene and limited
training samples.

B. Attribute Estimation

In addition to primary object detection, object attributes for
colour, motion and discrete vehicle orientation are been for all
four wheel vehicles objects via the extended Faster R-CNN
approach proposed (Section II).

The confusion matrices reported true positive (TP) and
false positive (FP) performance for vehicle colour, motion
and orientation are shown in Figures 4, 5 and 6 respectively.
Overall we observe strong TP performance (confusion matrix,
diagonal) and low FP occurrence (confusion matrix, off-
diagonal) across all three attributes with the exception of
common colour confusers for cars (e.g. grey to silver, white
to silver) and additional outliers due to livery colours for vans
(Figure 4, left/right).

Qualitative results are shown within Figures I and 7 (for
Faster R-CNN + ResNetl01) where we can see both object
detection and attribute estimation from on vehicle processing
achieved at 10 fps using a Nvidia 1080 GPU.

V. CONCLUSION

Our extended Faster R-CNN architecture is observed to
provide performance over a “long-list” urban object detection
task consistent with that of earlier work [7] with the addition
of attribute estimation for a subset of objects within the same
common architecture (maximal mAP: 0.6). Future work will
consider the additional extension of attributes across additional
object types and the integration of stereo depth. We will also
consider using our extended Faster R-CNN architecture to
support Human Like Guidance system in future.

Acknowledgment: The authors thank the Renault-Nissan
Group for funding and experimental support.
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Fig. 7. Exemplar extended real-time multiple class object detection and attribute estimation.
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