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Abstract. We almost completely resolve the computational complexity
of Graph Isomorphism for classes of graphs characterized by two forbid-
den induced subgraphs H1 and H2. Schweitzer settled the complexity of
this problem restricted to (H1, H2)-free graphs for all but a finite number
of pairs (H1, H2), but without explicitly giving the number of open cases.
Grohe and Schweitzer proved that Graph Isomorphism is polynomial-
time solvable on graph classes of bounded clique-width. By combining
known results with a number of new results, we reduce the number of
open cases to seven. By exploiting the strong relationship between Graph
Isomorphism and clique-width, we simultaneously reduce the number of
open cases for boundedness of clique-width for (H1, H2)-free graphs to
five.
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1 Introduction

The Graph Isomorphism problem, which is that of deciding whether two given
graphs are isomorphic, is a central problem in Computer Science. It is not known
if this problem is polynomial-time solvable, but it is not NP-complete unless
the polynomial hierarchy collapses [24]. Analogous to the use of the notion of
NP-completeness, we can say that a problem is Graph Isomorphism-complete
(abbreviated to GI-complete). Babai [1] proved that Graph Isomorphism can
be solved in quasi-polynomial time.

In order to increase understanding of the computational complexity of Graph
Isomorphism, it is natural to place restrictions on the input. This approach has
yielded many graph classes on which Graph Isomorphism is polynomial-time
solvable, and many other graph classes on which the problem remains GI-complete.
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We refer to [23] for a survey, but some recent examples include a polynomial-
time algorithm for unit square graphs [20] and a complexity dichotomy for
H-induced-minor-free graphs [2] for every graph H.

In this paper we consider the Graph Isomorphism problem for hereditary
graph classes, which are the classes of graphs that are closed under vertex deletion.
It is readily seen that a graph class G is hereditary if and only if there exists a
family of graphs FG , such that the following holds: a graph G belongs to G if
and only if G does not contain any graph from FG as an induced subgraph. We
implicitly assume that FG is a family of minimal forbidden induced subgraphs,
in which case FG is unique. We note that FG may have infinite size. For instance,
if G is the class of bipartite graphs, then FG consists of all odd cycles.

A natural direction for a systematic study of the computational complexity
of Graph Isomorphism is to consider graph classes G, for which FG is small,
starting with the case where FG has size 1. A graph is H-free if it does not
contain H as induced subgraph; conversely, we write H ⊆i G to denote that H
is an induced subgraph of G. The classification for H-free graphs [4] is due to an
unpublished manuscript of Colbourn and Colbourn (see [16] for a proof).

Theorem 1 (see [4,16]). Let H be a graph. Then Graph Isomorphism on
H-free graphs is polynomial-time solvable if H ⊆i P4 and GI-complete otherwise.

Later, it was shown that Graph Isomorphism is polynomial-time solvable even
for the class of permutation graphs [7], which form a superclass of the class of
P4-free graphs. Classifying the case where FG has size 2 is much more difficult
than the size-1 case. Kratsch and Schweitzer [16] initiated this classification.
Schweitzer [25] extended the results of [16] and proved that only a finite number
of cases remain open. A graph is (H1, H2)-free if it has no induced subgraph
isomorphic to H1 or H2. This leads to our research question:

Is it possible to determine the computational complexity of Graph Iso-
morphism for (H1, H2)-free graphs for all pairs H1, H2?

We recall that the analogous research question for H-induced-minor-free
graphs was fully answered by Belmonte, Otachi and Schweitzer [2], who also
determined all graphs H for which the class of H-induced-minor-free graphs has
bounded clique-width. Similar classifications for Graph Isomorphism [22] and
boundedness of clique-width [12] are also known for H-free minor graphs.

Lokshtanov et al. [17] recently gave an FPT algorithm for Graph Isomor-
phism with parameter k on graph classes of treewidth at most k, and this has
since been improved by Grohe et al. [13]. Whether an FPT algorithm exists when
parameterized by clique-width is still open. Grohe and Schweitzer [14] proved
membership of XP.

Theorem 2 ([14]). For every c, Graph Isomorphism is polynomial-time solv-
able on graphs of clique-width at most c.
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Our Results. Combining known results [16,25] with Theorem 2, we narrow the
list of open cases for Graph Isomorphism on (H1, H2)-free graphs to 14. Of
these 14 cases, we prove that two are polynomial-time solvable (Section 3) and
five others are GI-complete (Section 4). Thus we reduce the number of open cases
to seven. In Section 5 we provide an explicit list of all known and open cases.

Besides Theorem 2, there is another reason why results for clique-width are
of importance for Graph Isomorphism. Namely, Schweitzer [25] pointed out
great similarities between proving unboundedness of clique-width of some graph
class G and proving that Graph Isomorphism stays GI-complete for G. We will
illustrate these similarities by noting that our construction demonstrating that
Graph Isomorphism is GI-complete for (gem, P1 + 2P2)-free graphs can also be
used to show that this class has unbounded clique-width. This reduces the number
of pairs (H1, H2) for which we do not know if the class of (H1, H2)-free graphs
has bounded clique-width from six [11] to five. As such, our paper also continues
a project [3,6,8,9,11,12] aiming to classify the boundedness of clique-width of
(H1, H2)-free graphs for all pairs (H1, H2) (see [10] for a summary).

2 Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops.
The disjoint union (V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint graphs G
and H is denoted by G+H and the disjoint union of r copies of a graph G is
denoted by rG. For a subset S ⊆ V (G), we let G[S] denote the subgraph of G
induced by S, which has vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}.
If S = {s1, . . . , sr}, then we may write G[s1, . . . , sr] instead of G[{s1, . . . , sr}].
Recall that for two graphs G and G′ we write G′ ⊆i G to denote that G′

is an induced subgraph of G. For a set of graphs {H1, . . . ,Hp}, a graph G
is (H1, . . . ,Hp)-free if it has no induced subgraph isomorphic to a graph in
{H1, . . . ,Hp}; recall that if p = 1, we may write H1-free instead of (H1)-free. For
a graph G, the set N(u) = {v ∈ V | uv ∈ E} denotes the (open) neighbourhood
of u ∈ V (G) and N [u] = N(u) ∪ {u} denotes the closed neighbourhood of u. The
degree dG(v) of a vertex v in a graph G is the number of vertices in G that are
adjacent to v.

A (connected) component of a graph G is a maximal subset of vertices that
induces a connected subgraph of G; it is non-trivial if it has at least two vertices,
otherwise it is trivial. The complement G of a graph G has vertex set V (G) = V (G)
such that two vertices are adjacent in G if and only if they are not adjacent in G.

The graphs Cr, Kr, K1,r−1 and Pr denote the cycle, complete graph, star
and path on r vertices, respectively. Let K+

1,n and K++
1,n be the graphs obtained

from K1,n by subdividing one edge once or twice, respectively. The graphs K1,3,
2P1 + P2, P1 + P3, P1 + P4 and 2P1 + P3 are also called the claw, diamond, paw,
gem and crossed house, respectively. We need the following result.

Lemma 1 ([25]). For every fixed t, Graph Isomorphism is polynomial-time
solvable on (2K1,t,Kt)-free graphs.
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The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is, the tree
that has only one vertex x of degree 3 and exactly three leaves, which are at
distance h, i and j from x, respectively. Observe that S1,1,1 = K1,3. A subdivided
star is a graph obtained from a star by subdividing its edges an arbitrary number
of times. A graph is a path star forest if all of its connected components are
subdivided stars.

Let G be a graph and let X,Y ⊆ V (G) be disjoint sets. The edges between X
and Y form a perfect matching if every vertex in X is adjacent to exactly one
vertex in Y and vice versa. A vertex x ∈ V (G)\Y is complete (resp. anti-complete)
to Y if it is adjacent (resp. non-adjacent) to every vertex in Y . Similarly, X
is complete (resp. anti-complete) to Y if every vertex in X is complete (resp.
anti-complete) to Y . A graph is split if its vertex set can be partitioned into
a clique and an independent set. A graph is complete multipartite if its vertex
set can be partitioned into independent sets V1, . . . , Vk such that Vi is complete
to Vj whenever i 6= j.

Lemma 2 ([21]). Every connected (P1 + P3)-free graph is either complete mul-
tipartite or K3-free.

Given two graphs G and H, an isomorphism from G to H is a bijection
f : V (G)→ V (H) such that vw ∈ E(G) if and only if f(v)f(w) ∈ E(H). For a
function f : X → Y , if X ′ ⊆ X, we define f(X ′) := {f(x) ∈ Y | x ∈ X ′}. The
Graph Isomorphism problem is defined as follows.

Graph Isomorphism
Instance: Graphs G and H.
Question: Is there an isomorphism from G to H?

The clique-width of a graph G, denoted by cw(G), is the minimum number of
labels needed to construct G using the following four operations:

(i) create a new graph consisting of a single vertex v with label i;
(ii) take the disjoint union of two labelled graphs G1 and G2;

(iii) join each vertex with label i to each vertex with label j (i 6= j);
(iv) rename label i to j.

A class of graphs G has bounded clique-width if there is a constant c such that
the clique-width of every graph in G is at most c; otherwise the clique-width of G
is unbounded.

Let G be a graph. For an induced subgraph G′ ⊆i G, the subgraph complemen-
tation operation (acting on G with respect to G′) replaces every edge present in G′

by a non-edge, and vice versa, that is, the resulting graph has vertex set V (G)
and edge set (E(G) \E(G′)) ∪ {xy | x, y ∈ V (G′), x 6= y, xy /∈ E(G′)}. Similarly,
for two disjoint vertex subsets S and T in G, the bipartite complementation
operation with respect to S and T acts on G by replacing every edge with one
end-vertex in S and the other in T by a non-edge and vice versa.

Let k ≥ 0 be a constant and let γ be some graph operation. We say that
a graph class G′ is (k, γ)-obtained from a graph class G if the following two
conditions hold:
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(i) every graph in G′ is obtained from a graph in G by performing γ at most k
times, and

(ii) for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant k
and any graph class G, any graph class G′ that is (k, γ)-obtained from G has
bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [19].
Fact 2. Subgraph complementation preserves boundedness of clique-width [15].
Fact 3. Bipartite complementation preserves boundedness of clique-width [15].

We need the following lemmas on clique-width.

Lemma 3 ([5]). The class of 2P1 + P3-free split graphs has bounded clique-
width.

Lemma 4 ([18]). The class of (P2 + P3)-free bipartite graphs has bounded
clique-width.

We also need the special case of [12, Theorem 3] when V0,i = Vi,0 = ∅ for
i ∈ {1, . . . , n}.

Lemma 5 ([12]). For m ≥ 1 and n > m+ 1 the clique-width of a graph G is at
least b n−1m+1c+ 1 if V (G) has a partition into sets Vi,j (i, j ∈ {1, . . . , n}) with the
following properties:

1. |Vi,j | ≥ 1 for all i, j ≥ 1.
2. G[∪nj=1Vi,j ] is connected for all i ≥ 1.
3. G[∪ni=1Vi,j ] is connected for all j ≥ 1.
4. For i, j, k, ` ≥ 1, if a vertex of Vi,j is adjacent to a vertex of Vk,`, then
|k − i| ≤ m and |`− j| ≤ m.

3 New Polynomial-Time Results

In this section we prove Theorem 3, which states that Graph Isomorphism is
polynomial-time solvable on (2P1 + P3, P2 +P3)-free graphs (see also Fig. 1). The
complexity of Graph Isomorphism on (2P1 + P3, 2P2)-free graphs was previ-
ously unknown, but since this class is contained in the class of (2P1 + P3, P2+P3)-
free graphs, Theorem 3 implies that Graph Isomorphism is also polynomial-time
solvable on this class. Before proving Theorem 3, we first prove a useful lemma.

Lemma 6. Let G be a 2P1 + P3-free graph containing an induced K5 with vertex
set KG. Then V (G) can be partitioned into sets AG

1 , . . . , A
G
p , N

G
1 , . . . , N

G
p , B

G

for some p ≥ 5 such that:

(i) KG ⊆
⋃
AG

i ;
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(ii) G[
⋃
AG

i ] is a complete multipartite graph, with partition AG
1 , . . . , A

G
p ;

(iii) For every i ∈ {1, . . . , p}, every vertex of NG
i has a neighbour in AG

i , but is
anti-complete to AG

j for every j ∈ {1, . . . , p} \ {i}; and

(iv) BG is anti-complete to
⋃
AG

i .

Furthermore, given KG, this partition is unique (up to permuting the indices on
the AG

i s and corresponding NG
i s) and can be found in polynomial time.

Proof. Let G be a 2P1 + P3-free graph containing an induced K5 with vertex
set KG. If a vertex v ∈ V (G) \ KG has two neighbours x, x′ ∈ KG and two
non-neighbours y, y′ ∈ KG, then G[x, x′, y, v, y′] is a 2P1 + P3, a contradiction.
Therefore every vertex in V (G)\KG has either at most one non-neighbour in KG

or at most one neighbour in KG. Let LG denote the set of vertices that are either
in KG or have at most one non-neighbour in KG and note that LG is uniquely
defined by the choice of KG.

We claim that G[LG] is a complete multipartite graph. Suppose, for contradic-
tion, that G[LG] is not complete multipartite. Then G[LG] contains an induced
P1 + P2 = P3, say on vertices v, v′, v′′ (note that some of these vertices may be
in KG). Now each of v, v′, v′′ has at most one non-neighbour in KG and if a
vertex w ∈ {v, v′, v′′} is in KG, then it is adjacent to every vertex in KG \ {w}.
Therefore, since |KG| = 5, there must be vertices u, u′ ∈ KG \ {v, v′, v′′} that are
complete to {v, v′, v′′}. Now G[u, u′, v′, v, v′′] is a 2P1 + P3. This contradiction
completes the proof that G[LG] is complete multipartite.

We let AG
1 , . . . , A

G
p be the partition classes of the complete multipartite

graph G[LG]. Note that p ≥ 5, since each AG
i contains at most one vertex of KG.

We claim that each vertex not in LG has neighbours in at most one set AG
i .

Suppose, for contradiction, that there is a vertex v ∈ V (G) \LG with neighbours
in two distinct sets AG

i , say v is adjacent to u ∈ AG
1 and u′ ∈ AG

2 . Since v /∈ LG,
the vertex v has at most one neighbour in KG. Since |KG| = 5, there must be two
vertices y, y′ ∈ KG \(AG

1 ∪AG
2 ) that are non-adjacent to v. Now G[u, u′, y, v, y′] is

a 2P1 + P3, a contradiction. Therefore every vertex not in LG has neighbours in at
most one set AG

i . Let NG
i be the set of vertices in V (G)\LG that have neighbours

in AG
i and let BG be the set of vertices in V (G)\LG that are anti-complete to LG.

Finally, note that the partition of V (G) into sets AG
1 , . . . , A

G
p , N

G
1 , . . . , N

G
p , B

G

can be found in polynomial time and is unique (up to permuting the indices on
the AG

i s and corresponding NG
i s). ut

Theorem 3. Graph Isomorphism is polynomial-time solvable on (2P1 + P3,
P2 + P3)-free graphs.

Proof. As Graph Isomorphism can be solved component-wise, we need only
consider connected graphs. Therefore, as Graph Isomorphism is polynomial-
time solvable on (K5, P2 +P3)-free graphs by Lemma 1, and we can test whether
a graph is K5-free in polynomial time, it only remains to consider the class of
connected (2P1 + P3, P2 +P3)-free graphs G that contain an induced K5. Let KG
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2P1 + P3 P2 + P3

Fig. 1. Forbidden induced subgraphs from Theorem 3.

be the vertices of such a K5 in G (note that such a set KG can be found in poly-
nomial time, but it is not necessarily unique). Let AG

1 , . . . , A
G
p , N

G
1 , . . . , N

G
p , B

G

be defined as in Lemma 6 and let LG =
⋃
AG

i and DG = V (G) \ LG.
Suppose G and H are connected (2P1 + P3, P2 + P3)-free graphs that each

contain an induced K5. If G and H have bounded clique-width (which happens
in Case 1 below), then by Theorem 2 we are done. Otherwise, note that if KG

and KH are vertex sets that induce a K5 in G and H, respectively, then Lemma 6
implies that LG, DG, LH and DH are uniquely defined. Therefore, we fix one
choice of KG and, for each choice of KH , test whether there is an isomorphism
f : G→ H such that f(LG) = LH (we use this approach in Cases 2 and 3 below).
Clearly, we may assume that the vertex partitions given by Lemma 6 for G
and H have the same value of p and that |AG

i | = |AH
i | and |NG

i | = |NH
i | for all

i ∈ {1, . . . , p} and |BG| = |BH |. Furthermore, for any claims we prove about G
and its vertex sets, we may assume that the same claims hold for H (otherwise
such an isomorphism f does not exist). We start by proving the following four
claims.

Claim 1. G[DG] is P3-free
Indeed, suppose, for contradiction, that G[DG] contains an induced P3, say
on vertices u, u′, u′′. Since |KG| = 5 and each vertex in DG has at most one
neighbour in KG, there must be vertices v, v′ ∈ KG that are anti-complete to
{u, u′, u′′}. Then G[v, v′, u, u′, u′′] is a P2 + P3, a contradiction. �

Claim 2. If v ∈ NG
j for some j ∈ {1, . . . , p} and there are two adjacent vertices

u, u′ ∈ DG \NG
j , then v is complete to {u, u′}.

Since G[DG] is P3-free by Claim 1, the vertex v must be either complete or anti-
complete to {u, u′}. Suppose, for contradiction, that v is anti-complete to {u, u′}.
Since v ∈ NG

j , v has a neighbour v′ ∈ AG
j . Since |KG \AG

j | ≥ 4 and each vertex

in DG has at most one neighbour in KG, there is a vertex v′′ ∈ KG \AG
j that is

non-adjacent to both u and u′. Since v′′ /∈ AG
j , v′′ is also non-adjacent to v, but

is adjacent to v′. Now G[u, u′, v, v′, v′′] is a P2 + P3, a contradiction. �

Claim 3. If G[DG] has at least two components and one of these components C
has at least three vertices, then there is an i ∈ {1, . . . , p} such that DG \ C ⊂
NG

i ∪BG and all but at most one vertex of C belongs to NG
i .

By Claim 1, G[DG] is a disjoint union of cliques. As G is connected, DG \ C
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cannot be a subset of BG. Hence, for some i ∈ {1, . . . , p}, there must be a vertex
x ∈ NG

i \C. Therefore, by Claim 2, at most one vertex of C can lie outside of NG
i .

As |C| ≥ 3, it follows that C ∩NG
i contains at least two vertices. As the vertices

in C are pairwise adjacent, by Claim 2 it follows that DG \ C ⊂ NG
i ∪BG. �

Claim 4. Let i ∈ {1, . . . , p}. If G[DG] contains at least two non-trivial com-
ponents and there is a vertex v in AG

i with two non-neighbours in the same
component of G[DG], then v is anti-complete to DG. Furthermore, there is at
most one vertex in AG

i with this property.
Suppose v ∈ AG

i has two non-neighbours x, x′ in some component C of G[DG].
By Claim 1, G[DG] is a disjoint union of cliques, so x must be adjacent to x′. We
claim that v is anti-complete to DG \ C. Suppose, for contradiction, that v has
a neighbour y ∈ DG \ C. Since every vertex of DG has at most one neighbour
in KG, there must be a vertex z ∈ KG \AG

i that is non-adjacent to x, x′ and y
and so G[x, x′, y, v, z] is a P2 + P3. This contradiction implies that v is indeed
anti-complete to DG \ C. Now G[DG \ C] contains another non-trivial compo-
nent C ′ and we have shown that v is anti-complete to C ′. Repeating the same
argument with C ′ taking the place of C, we find that v is anti-complete to DG\C ′,
and therefore v is anti-complete to DG. Finally, suppose, for contradiction, that
there are two vertices v, v′ ∈ AG

i that are both anti-complete to DG. Let x, x′

be adjacent vertices in DG and let z ∈ KG \AG
i be a vertex non-adjacent to x

and x′. Then G[x, x′, v, z, v′] is a P2 + P3, a contradiction. �

We now start a case distinction and first consider the following case.

Case 1. G[DG] contains at most one non-trivial component.
In this case we will show that G has bounded clique-width, and so we will be done
by Theorem 2. By Claim 1, every component of G[DG] is a clique. Since G[DG]
contains at most one non-trivial component, we may partition DG into a clique C
and an independent set I (note that C or I may be empty). If |C| ≥ 3 and
|I| ≥ 1, then by Claim 3 there is an i ∈ {1, . . . , p} such that at most one vertex
of C ∪ I is outside NG

i ; if such a vertex exists, then by Fact 1 we may delete it.
Now if |C| ≤ 3, then by Fact 1 we may delete the vertices of C. Thus we may
assume that either C = ∅ or |C| ≥ 4 and furthermore, if |C| ≥ 4 and |I| ≥ 1, then
C ∪ I ⊆ NG

i for some i ∈ {1, . . . , p}. Note that I ∩BG = ∅ since G is connected,
so BG ⊂ C. Hence G[BG] is a complete graph, so it has clique-width at most 2.
Applying a bipartite complementation between BG and C \BG removes all edges
between BG and V (G) \BG. By Fact 3, we may thus assume that BG = ∅.

Let M be the set of vertices in LG that have neighbours in I. We claim that M
is complete to all but at most one vertex of C. We may assume that |C| ≥ 4
and |I| ≥ 1, otherwise the claim follows trivially. Therefore, as noted above,
C ∪ I ⊆ NG

i for some i ∈ {1, . . . , p}. Suppose u ∈ M has a neighbour u′ ∈ I
and note that this implies u ∈ AG

i , u′ ∈ NG
i . Suppose, for contradiction, that u

has two non-neighbours v, v′ ∈ C and let w ∈ KG \ AG
i . Then G[v, v′, u′, u, w]

is a P2 + P3, a contradiction. Therefore if u ∈M , then u has at most one non-
neighbour in C. Now suppose that there are two vertices u, u′ ∈ M . It follows
that u, u′ ∈ AG

i , so these vertices must be non-adjacent. Furthermore, each of
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these vertices has at most one non-neighbour in C. If u and u′ have different
neighbourhoods in C, then without loss of generality we may assume that there
are vertices x, y, y′ ∈ C such that u is adjacent to x, y and y′ and u′ is adjacent
to y and y′, but not to x. Now G[y, y′, u, u′, x] is a 2P1 + P3, a contradiction.
Hence every vertex in M has the same neighbourhood in C, which consists of all
but at most one vertex of C and the claim holds. If the vertices of M are not
complete to C, then we delete one vertex of C (we may do so by Fact 1), after
which M will be complete to C. Hence we may assume that M is complete to C.

Now note that for all i ∈ {1, . . . , p}, the graph Gi = G[(AG
i \M)∪ (NG

i ∩C)]
is a 2P1 + P3-free split graph, so it has bounded clique-width by Lemma 3.
Furthermore G′i = G[(AG

i ∩M) ∪ (NG
i ∩ I)] is a (P2 + P3)-free bipartite graph,

so it has bounded clique-width by Lemma 4. Let G′′i be the graph obtained from
the disjoint union Gi +G′i by complementing AG

i and (NG
i ∩ C). By Fact 2, G′′i

also has bounded clique-width. Therefore the disjoint union G∗ of all the G′′i s has
bounded clique-width. Now G can be constructed from G∗ by complementing LG,
complementing C and applying a bipartite complementation between C and M .
Hence, by Facts 2 and 3, G has bounded clique-width. This completes Case 1.

We may now assume that Case 1 does not apply, that is, G[DG] has at least two
non-trivial components. This leads us to our second and third cases.

Case 2. G[DG] contains at least two non-trivial components, but is K4-free.
Recall that G[DG] is P3-free by Claim 1, so every component of G[DG] is a clique.
Let C be a non-trivial component of G[DG] and let x, y ∈ C. Then x is adjacent
to y and x, y ∈ NG

i ∪NG
j ∪BG for some (not necessarily distinct) i, j ∈ {1, . . . , p}.

By Claim 2, every vertex z in a component of G[DG] other than C must also
be in NG

i ∪NG
j ∪BG. As G[DG] contains at least two non-trivial components,

repeating this argument with another non-trivial component implies that every
vertex of DG lies in NG

i ∪NG
j ∪BG. Without loss of generality, we may therefore

assume that NG
k = ∅ for k ≥ 3.

Since G[DG] is K4-free, for each i ∈ {1, . . . , p} the graph G[DG ∪ AG
i ] is

K5-free. This means that every K5 in G is entirely contained in LG. By Claim 4,
for i ≥ 3, |AG

i | = 1 and so LG \ (AG
1 ∪ AG

2 ) must be a clique. The vertices
of LG \ (AG

1 ∪ AG
2 ) have no neighbours outside LG and are adjacent to every

other vertex of LG, so these vertices are in some sense interchangeable. Indeed,
N [v] = LG for every v ∈ LG \ (AG

1 ∪AG
2 ), and so every bijection that permutes

the vertices of LG \ (AG
1 ∪ AG

2 ) and leaves the other vertices of G unchanged
is an isomorphism from G to itself. Let G′ be the graph obtained from G by
deleting all vertices in AG

i for i ≥ 6 (if any such vertices are present). Now G′ is
K6-free and thus (K6, P2 + P3)-free. We can test isomorphism of such graphs G′

in polynomial time by Lemma 1. If there is an isomorphism between two such
graphs G′ and H ′, then, as the vertices of LG \ (AG

1 ∪AG
2 ) are interchangeable,

we can extend it to a full isomorphism of G and H by mapping the remaining
vertices of LG \ (AG

1 ∪AG
2 ) to LH \ (AH

1 ∪AH
2 ) arbitrarily. This completes Case 2.

Case 3. G[DG] contains at least two non-trivial components and contains an
induced K4.
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Recall that G[DG] is P3-free by Claim 1, so every component of G[DG] is a clique.
We claim that DG ⊆ NG

i ∪ BG for some i ∈ {1, . . . , p}. Let C be a component
of G[DG] that contains at least four vertices, and let C ′ be a component of G[DG]
other than C, and note that such components exist by assumption. By Claim 3,
there is an i ∈ {1, . . . , p} such that DG \ C ⊂ NG

i ∪BG and all but at most one
vertex of C belongs to NG

i . In particular, this implies that C ′ ⊂ NG
i ∪BG. By

Claim 2, it follows that C cannot have a vertex in NG
j for some j ∈ {1, . . . , p}\{i},

and so C ⊂ NG
i ∪BG. Without loss of generality, we may therefore assume that

NG
j = ∅ for j ∈ {2, . . . , p} and so DG = NG

1 ∪ BG. Now if j ∈ {2, . . . , p}, then

the vertices of AG
j are anti-complete to DG, so Claim 4 implies that |AG

j | = 1.

This implies that LG \AG
1 is a clique.

By Claim 4 there is at most one vertex xG ∈ AG
1 that has two non-neighbours

in the same non-trivial component C of G[DG] and if such a vertex exists, then it
must be anti-complete to DG. Let A∗G1 = AG

1 \{xG} if such a vertex xG exists and
A∗G1 = AG

1 otherwise. Then every vertex in A∗G1 has at most one non-neighbour
in each component of G[DG]. Note that A∗G is non-empty, since DG is non-empty
and G is connected.

Suppose C is a component of G[DG] on at least four vertices. Now suppose,
for contradiction, that there are two vertices y, y′ ∈ A∗G1 with different neigh-
bourhoods in C. Then without loss of generality there is a vertex x ∈ C that is
adjacent to y, but not to y′. Since |C| ≥ 4 and every vertex in A∗G1 has at most
one non-neighbour in C, there must be two vertices z, z′ ∈ C that are adjacent to
both y and y′. Now G[z, z′, x, y′, y] is a 2P1 + P3, a contradiction. We conclude
that every vertex in A∗G1 has the same neighbourhood in C. This implies that
every vertex of C is either complete or anti-complete to A∗G1 . If a vertex of C is
anti-complete to A∗G1 , then it is anti-complete to AG

1 , and so it lies in BG.
Let D∗G be the set of vertices in DG that are in components of G[DG] that

have at most three vertices. Then every vertex of DG \ D∗G is complete or
anti-complete to A∗G1 and anti-complete to AG

1 \A∗G1 .
Now let G′ = G[D∗G ∪LG \ (AG

1 \A∗G1 )] and note that this graph is uniquely
defined by G and KG. Then G′[D∗G] is K4-free, so G′[D∗G ∪A∗G1 ] is K5-free, so
every induced K5 in G′ is entirely contained in LG \ (AG

1 \A∗G1 ). Furthermore,
since p ≥ 5, every vertex in LG \ (AG

1 \A∗G1 ) is contained in an induced K5 in G′.
Therefore every isomorphism q from G′ to H ′ satisfies q(LG \ (AG

1 \ A∗G1 )) =
LH \ (AH

1 \ A∗H1 ). Therefore a bijection f : V (G) → V (H) is an isomorphism
from G to H such that f(LG) = LH if and only if all of the following hold:

1. The restriction of f to V (G′) is an isomorphism from G′ to H ′ such that
f(A∗G1 ) = A∗H1 .

2. f(AG
1 \A∗G1 ) = AH

1 \A∗H1 .
3. For every component C of G[DG] with at least four vertices, f(C) is a

component of H[DH ] on the same number of vertices and |C ∩ BG| =
|f(C) ∩BH |.

It is therefore sufficient to test whether there is a bijection from G to H with the
above properties. Note that these properties are defined on pairwise disjoint vertex
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sets, and the edges in G and H between these sets are completely determined
by the definition of the sets. Thus it is sufficient to independently test whether
there are bijections satisfying each of these properties. If D∗G is empty, then G′

is a complete multipartite graph, so we can easily test if Property 1 holds in
this case. Otherwise, since AG

j has no neighbours outside LG for j ∈ {2, . . . , p},
every isomorphism from G′ to H ′ satisfies f(A∗G1 ) = A∗H1 , so it is sufficient to
test if G′ and H ′ are isomorphic, and we can do this by applying Case 1 or
Case 2. The sets AG

1 \A∗G1 and AH
1 \A∗H1 consist of at most one vertex, so we

can test if Property 2 can be satisfied in polynomial time. To satisfy Property 3,
we only need to check whether there is a bijection q from the components of
G[D∗G \ DG] to the components of H[D∗H \ DH ] such that |q(C)| = |C| and
|q(C)∩BH | = |C ∩BG| for every component of G[D∗G \DG] and this can clearly
be done in polynomial time. This completes the proof of Case 3. ut

4 New GI-complete Results

We state Theorems 4, 5 and 6, which establish that Graph Isomorphism is
GI-complete on (diamond, 2P3)-free, (diamond, P6)-free and (gem, P1 + 2P2)-free
graphs, respectively. The complexity of Graph Isomorphism on (2P1 + P3, 2P3)-
free graphs and (gem, P6)-free graphs was previously unknown, but as these classes
contain the classes of (diamond, 2P3)-free graphs and (diamond, P6)-free graphs,
respectively, Theorems 4 and 5, respectively, imply that Graph Isomorphism is
also GI-complete on these classes. In Theorems 4 and 5, GI-completeness follows
from the fact that the constructions used in our proofs (which we omit) fall into
the framework of so-called simple path encodings (see [25]). The construction
used in the proof of Theorem 6 does not fall into this framework and we give a
direct proof of GI-completeness in this case.

Theorem 4. Graph Isomorphism is GI-complete on (diamond, 2P3)-free
graphs.

Theorem 5. Graph Isomorphism is GI-complete on (diamond, P6)-free graphs.

Theorem 6. Graph Isomorphism is GI-complete on (gem, P1 + 2P2)-free
graphs. Furthermore, (gem, P1 + 2P2)-free graphs have unbounded clique-width.

Proof Sketch. Let G be a graph. Let vG1 , . . . , v
G
n be the vertices of G and let

eG1 , . . . , e
G
m be the edges of G. We construct a graph q(G) from G as follows:

1. Create a complete multipartite graph with partition (AG
1 , . . . , A

G
n ), where

|AG
i | = dG(vGi ) for i ∈ {1, . . . , n} and let AG =

⋃
AG

i .
2. Create a complete multipartite graph with partition (BG

1 , . . . , B
G
m), where

|BG
i | = 2 for i ∈ {1, . . . ,m} and let BG =

⋃
BG

i .
3. Take the disjoint union of the two graphs above, then for each edge eGi = vGi1v

G
i2

in G in turn, add an edge from one vertex of BG
i to a vertex of AG

i1
and an

edge from the other vertex of BG
i to a vertex of AG

i2
. Do this in such a way

that the edges added between AG and BG form a perfect matching.
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It can be checked that q(G) is (gem, P1+2P2)-free for every graph G. Let G and H
be graphs. Let G∗ and H∗ be the graphs obtained from G and H, respectively,
by adding four pairwise adjacent vertices that are adjacent to every vertex of G
and H, respectively. Note that every vertex of G∗ and H∗ has degree at least 3.
We claim that G is isomorphic to H if and only if q(G∗) is isomorphic to q(H∗).
As the latter two graphs are (gem, P1 + 2P2)-free, this proves the first result.

Let Hn be the n×n grid. We use Lemma 5 with m = 1 combined with Fact 2
to prove that the set of graphs {q(Hn) | n ∈ N}, which are (gem, P1 + 2P2)-free
as stated above, has unbounded clique-width. ut

5 Classifying the Complexity of Graph Isomorphism for
(H1,H2)-free Graphs

Given four graphs H1, H2, H3, H4, the classes of (H1, H2)-free graphs and
(H3, H4)-free graphs are equivalent if the unordered pair H3, H4 can be obtained
from the unordered pair H1, H2 by some combination of the operations:

(i) complementing both graphs in the pair, and
(ii) if one of the graphs in the pair is K3, replacing it with the paw or vice

versa.

Note that two graphs G and H are isomorphic if and only if their complements G
and H are isomorphic. Therefore, for every pair of graphs H1, H2, the Graph
Isomorphism problem is polynomial-time solvable or GI-complete for (H1, H2)-
free graphs if and only if the same is true for (H1, H2)-free graphs. Since Graph
Isomorphism can be solved component-wise, and it can easily be solved on
complete multipartite graphs in polynomial time, Lemma 2 implies that for every
graph H1, the Graph Isomorphism problem is polynomial-time solvable or
GI-complete for (H1,K3)-free graphs if and only if the same is true for (H1,paw)-
free graphs. Thus if two classes are equivalent, then the complexity of Graph
Isomorphism is the same on both of them. Here is the summary of known
results for the complexity of Graph Isomorphism on (H1, H2)-free graphs (see
Section 2 for notation; we omit the proof).

Theorem 7. For a class G of graphs defined by two forbidden induced subgraphs,
the following holds:

1. Graph Isomorphism is solvable in polynomial time on G if G is equivalent
to a class of (H1, H2)-free graphs such that one of the following holds:

(i) H1 or H2 ⊆i P4

(ii) H1 and H2 ⊆i K1,t + P1 for some t ≥ 1
(iii) H1 and H2 ⊆i tP1 + P3 for some t ≥ 1
(iv) H1 ⊆i Kt and H2 ⊆i 2K1,t,K

+
1,t or P5 for some t ≥ 1

(v) H1 ⊆i paw and H2 ⊆i P2 + P4, P6, S1,2,2 or K++
1,t + P1 for some t ≥ 1

(vi) H1 ⊆i diamond and H2 ⊆i P1 + 2P2

(vii) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5
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(viii) H1 ⊆i 2P1 + P3 and H2 ⊆i P2 + P3.
2. Graph Isomorphism is GI-complete on G if G is equivalent to a class of

(H1, H2)-free graphs such that one of the following holds:
(i) neither H1 nor H2 is a path star forest

(ii) neither H1 nor H2 is a path star forest
(iii) H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, P1 + 2P3, 2P1 + P4 or 3P2

(iv) H1 ⊇i K4 and H2 ⊇i K
++
1,4 , P1 + 2P2 or P1 + P4

(v) H1 ⊇i K5 and H2 ⊇i K
++
1,3

(vi) H1 ⊇i C4 and H2 ⊇i K1,3, 3P1 + P2 or 2P2

(vii) H1 ⊇i diamond and H2 ⊇i K1,3, P2 + P4, 2P3 or P6

(viii) H1 ⊇i gem and H2 ⊇i P1 + 2P2.

Open Problem 1. What is the complexity of Graph Isomorphism on
(H1, H2)-free graphs in the following cases?

(i) H1 = K3 and H2 ∈ {P7, S1,2,3}
(ii) H1 = K4 and H2 = S1,1,3

(iii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}
(iv) H1 = gem and H2 = P2 + P3

(v) H1 = 2P1 + P3 and H2 = P5

Note that all of the classes of (H1, H2)-free graphs in Open Problem 1 are
incomparable. We omit the proof of the next theorem.

Theorem 8. Let G be a class of graphs defined by two forbidden induced sub-
graphs. Then G is not equivalent to any of the classes listed in Theorem 7 if and
only if it is equivalent to one of the seven cases listed in Open Problem 1.

6 Conclusions

By combining known and new results we determined the complexity of Graph
Isomorphism in terms of polynomial-time solvability and GI-completeness for
(H1, H2)-free graphs for all but seven pairs (H1, H2). This also led to a new
class of (H1, H2)-free graphs whose clique-width is unbounded. In particular, we
developed a technique for showing polynomial-time solvability for (2P1 + P3, H)-
free graphs, which we illustrated for the case H = P2 + P3. For future work we
have some preliminary results for the case where H = P5.
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