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Abstract22

Temporal graphs are used to abstractly model real-life networks that are inherently dynamic in nature,23

in the sense that the network structure undergoes discrete changes over time. Given a static underlying24

graph G = (V, E), a temporal graph on G is a sequence of snapshots {Gt = (V, Et) ⊆ G : t ∈ N}, one25

for each time step t ≥ 1. In this paper we study stochastic temporal graphs, i.e. stochastic processes26

G = {Gt ⊆ G : t ∈ N} whose random variables are the snapshots of a temporal graph on G. A27

natural feature of stochastic temporal graphs which can be observed in various real-life scenarios is28

a memory effect in the appearance probabilities of particular edges; that is, the probability an edge29

e ∈ E appears at time step t depends on its appearance (or absence) at the previous k steps. In30

this paper we study the hierarchy of models memory-k, k ≥ 0, which address this memory effect31

in an edge-centric network evolution: every edge of G has its own probability distribution for its32

appearance over time, independently of all other edges. Clearly, for every k ≥ 1, memory-(k − 1)33

is a special case of memory-k. However, in this paper we make a clear distinction between the34

values k = 0 (“no memory”) and k ≥ 1 (“some memory”), as in some cases these models exhibit a35

fundamentally different computational behavior for these values of k, as our results indicate. For36

every k ≥ 0 we investigate the computational complexity of two naturally related, but fundamentally37

different, temporal path (or journey) problems: Minimum Arrival and Best Policy. In the first38

problem we are looking for the expected arrival time of a foremost journey between two designated39

vertices s, y. In the second one we are looking for the expected arrival time of the best policy for40

actually choosing a particular s-y journey. We present a detailed investigation of the computational41

landscape of both problems for the different values of memory k. Among other results we prove that,42

surprisingly, Minimum Arrival is strictly harder than Best Policy; in fact, for k = 0, Minimum43

Arrival is #P-hard while Best Policy is solvable in O(n2) time.44

2012 ACM Subject Classification Mathematics of computing→ Graph theory, Path and connectivity45

problems, Graph algorithms.46

Keywords and phrases Temporal network, stochastic temporal graph, temporal path, #P-hard47

problem, polynomial-time approximation scheme.48

© Eleni C. Akrida, George B. Mertzios, Sotiris Nikoletseas, Christoforos Raptopoulos,
Paul G. Spirakis, and Viktor Zamaraev;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1126-1623
mailto:eleni.akrida@liverpool.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:george.mertzios@durham.ac.uk
mailto:nikole@cti.gr
https://orcid.org/0000-0002-9837-2632
mailto:raptopox@ceid.upatras.gr
https://orcid.org/0000-0001-5396-3749
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5755-4141
mailto:viktor.zamaraev@durham.ac.uk
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 How fast can we reach a target vertex in stochastic temporal graphs?

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2349

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.03636.50

Funding This work was supported by the NeST initiative of the EEE/CS School of the University51

of Liverpool and by the EPSRC grants EP/P020372/1 and EP/P02002X/1.52

1 Introduction53

Dynamic network analysis, i.e. analysis of networks that change over time, is currently one54

of the most active topics of research in network science and theory. A common task in55

this field is to use our prior knowledge of the network link dynamics to answer questions56

about the behavior of the network over time, e.g. how quickly information can flow through57

it. Many modern real-life networks are dynamic in nature, in the sense that the network58

structure undergoes discrete changes over time [31, 36]. Here we deal with the discrete-time59

dynamicity of the network links (edges) over a fixed set of nodes (vertices). That is, given an60

underlying static graph G, the network evolution over G is given by the successive appearance61

or absence of each edge of G at every time step t = 1, 2, . . .. This concept of dynamic network62

evolution is given by temporal graphs [27, 29], which are also known by other names such as63

evolving graphs [6, 20], or time-varying graphs [1]. For a recent attempt to integrate existing64

models, concepts, and results from the distributed computing perspective, see the survey65

papers [12, 13] and the references therein.66

I Definition 1 (Temporal graph). Given an underlying static graph G = (V,E) on n vertices67

and m edges, a temporal graph on G is a sequence G = {Gt = (V,Et) : t ∈ N} of graphs68

such that Et ⊆ E for all t ∈ N. Every Gt is the snapshot of G at time step t.69

Another way to think about temporal graphs is by assigning time-labels on the edges;70

for example, if an edge e appears in the snapshots G3, G5, and G8, then we equivalently71

assign to e the set of labels λ(e) = {3, 5, 8}. Due to the vast applicability of temporal graphs,72

various structural and algorithmic properties of them have been studied extensively, both73

via theoretical/algorithmic analysis and via empirical simulation-based analysis. In many74

of these works, one of the central temporal notions is that of a temporal path. A path in75

the underlying (static) graph G is a temporal path (or journey) if there exists an increasing76

sequence of time-labels as one walks along the edges of the path [27, 29]. Motivated by the fact77

that, due to causality, information in temporal graphs can only flow along sequences of edges78

that appear in an increasing time order, many temporal graph parameters and optimization79

problems that have been studied so far are based on the notion of a temporal path and other80

related notions, e.g. temporal analogs of distance, diameter, connectivity, reachability, and81

exploration [3, 4, 7, 8, 10, 14, 18, 19, 21, 23, 28, 33]. In addition to temporal paths, recently82

also various temporal non-path problems have been introduced and algorithmically studied,83

such as temporal vertex cover [5], temporal coloring [30], and temporal ∆-cliques [24, 38].84

Apart from the focus on the various algorithmic problems that one can study on temporal85

graphs, one can also view temporal graphs through several different levels of knowledge about86

the actual network evolution. On the one extreme, we may be given the whole temporal graph87

instance in advance, i.e. the times of appearance and absence of every edge at all times, as it88

typically happens e.g. when modeling transportation networks. On the other extreme, the89

temporal graph may be created by an adversary who reveals it to us snapshot-by-snapshot90

at every time step. Here we focus on the intermediate knowledge settings, captured by91

stochastic temporal graphs, where the network evolution is given by a probability distribution92

that governs the appearance of each edge over time.93

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://arxiv.org/abs/1903.03636
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I Definition 2 (Stochastic temporal graph). A stochastic temporal graph is a stochastic94

process G = {Gt : t ∈ N} whose random variables are snapshots Gt ⊆ G of an underlying95

graph G. Every instantiation of G is a temporal graph.96

A natural feature of stochastic temporal graphs which can be observed in various real-97

life scenarios (and which we address in this paper) is that the appearance probability of98

a particular edge at a given time step t depends on the appearance (or absence) of the99

same edge at the previous k ≥ 1 time steps. This “memory effect” can often be observed,100

among others, in faulty network communication and in mobile, social, and peer-to-peer101

networks [15, 34, 37]. Several other models of temporal networks which exhibit some sort of102

probabilistic behavior have been considered in the past, see e.g. [25].103

In this paper, we study a hierarchy of models for stochastic temporal graphs which address104

an edge-centric network evolution, i.e. they assign to every edge of the underlying graph G a105

probability distribution for its appearance over time, independently of all the other edges.106

The first and most basic model (memoryless or memory-0) assigns independently to every107

edge e a probability pe such that, at every time step, e appears with probability pe. In the108

general model (memory-k), at every time step the appearance probability of every edge is a109

function of the history of its appearances/absences in the last k ≥ 1 time steps. Clearly, for110

every k ≥ 1, the memory-(k − 1) model is a special case of the memory-k model. However,111

in this paper we make a clear distinction between the values k = 0 (“no memory”) and112

k ≥ 1 (“some memory”), as in some cases these models exhibit a fundamentally different113

computational behavior for these values of k, as our results indicate (see Section 4).114

Our memory-k model, k ≥ 1, is a direct generalization of the homogeneous version of the115

memory-1 model that was introduced in a seminal paper by Clementi et al. [16], in which116

all edges have the same probability distribution for their appearance, based on their own117

appearance/absence at the previous step. In this homogeneous memory-1 model, Clementi118

et al. gave upper bounds for the flooding time and they provided tight characterizations of119

the graphs on which the flooding time is constant [16]. It is worth noting here that Avin et120

al. [7] studied the completely opposite extreme of our edge-centric evolution; namely they121

considered a graph-centric evolution model where a global probability distribution assigns122

specific transition probabilities among different snapshots [7]. Between the two extremes123

of the edge-centric and the graph-centric network evolution models, there exists a whole124

hierarchy of locally interdependent probabilistic patterns, i.e. probability distributions where125

the appearance probability of one edge also depends on the appearance of other edges over126

time; such models remain mostly unexplored.127

In both our memoryless and memory-k variations of stochastic temporal graphs, we study128

two fundamental temporal path (i.e. journey) problems that are defined on two designated129

vertices s and y. Consider a piece of information that is generated at s at time 1, which we130

would like to send to y via an s-y journey. The arrival time of an s-y journey in a realization131

of a stochastic temporal graph is the time the information reaches y using this journey. A132

foremost s-y journey is one with the smallest arrival time. In the first part of the paper we133

investigate the complexity of computing the expected arrival time of a foremost s-y journey.134

Basu et al. [9] and Nain et al. [32] studied a similar problem but their work is restricted to135

the simpler cases where the underlying graph is either a path or a grid.136

In the second part of the paper we investigate the complexity of computing the arrival137

time of a best policy for actually choosing a particular s-y journey in the stochastic temporal138

graph. To illustrate this notion of a best policy, assume that some piece of information139

is carried by an entity, say Alice. Alice is given as input the parameters of the stochastic140

temporal graph (i.e. the probabilistic rules on the edges) and, at every time step, she knows141

CVIT 2016
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the current snapshot and her current location. Based on this information, Alice has to142

decide at every step for her next action, while her goal is to reach y as quickly as possible on143

expectation, starting at time 1. In a very inspiring paper, Basu et al. [8] consider this problem144

in the special case of the memoryless model where all edges have the same probability of145

appearance at every time, and give a Dijkstra-like polynomial-time algorithm. Special cases146

of the memory-1 model were considered in [11].147

To illustrate the difference between the two problems we study, we make the following148

analogy. In the first problem (Minimum Arrival) we try to transfer information from s149

to y using an unbounded number of messages, i.e. we “flood” the stochastic temporal graph150

with information. Initially the information is stored at s at time 1 and then, at every step,151

every informed vertex informs all its neighbors as soon as the edge between them becomes152

available. In the second problem (Best Policy) we try to transfer a package with a tangible153

good from s to y. Now, at every step we need to decide for the actual route of the package154

through the network: when an edge appears, should we ship the package along it or rather155

wait where we currently are? Best Policy is more relevant to real-life applications than156

Minimum Arrival, where an actual good journey needs to be found in real time.157

Our contribution. In the first part of the paper, in Section 3, we provide our results for158

the problem Minimum Arrival, i.e. for computing the expected arrival time of a foremost159

s-y journey in a stochastic temporal graph. First we prove in Section 3.1 that Minimum160

Arrival is #P-hard even for the memoryless model (and thus also for the memory-k model,161

for every k ≥ 1). The reduction is done from the problem #PP2DNF which counts the162

number of satisfying assignments in a positive partitioned 2-DNF Boolean formula [35].163

Second, we provide in Section 3.2 a non-trivial approximation scheme for Minimum164

Arrival, based on dynamic programming, for the memoryless model in the case where the165

underlying graph G is a series-parallel graph. More specifically, it turns out that this is166

a Fully Polynomial-Time Approximation Scheme (FPTAS) whenever the probabilities pe167

are lower bounded by 1
nc for some c ≥ 1. Let X be the random variable that expresses the168

arrival time of a foremost s-y journey. For every ε ∈ (0, 1], our FPTAS gives an algorithm169

that produces a value µ where E(X)− ε ≤ µ ≤ E(X), and runs in polynomial time in both170

n and 1
ε . Although our main result of Section 3.2 concerns series-parallel graphs, we actually171

present a more general FPTAS approach (see Theorem 11) which is of independent interest172

and could lead to FPTASs also for more general classes of underlying graphs G.173

Third, we present in Section 3.3 a Fully Polynomial Randomized Approximation Scheme174

(FPRAS) for Minimum Arrival in the memory-k model, for every k ≥ 0, under the175

assumption that every edge appearance probability is lower bounded by 1
nc for some c ≥ 1.176

Let X be the random variable that expresses the arrival time of a foremost s-y journey. For177

every ε ∈ (0, 1), our FPRAS gives a randomized algorithm that produces an estimate X̃178

where (1− ε)E(X) ≤ X̃ ≤ (1 + ε)E(X) with probability tending to 1 as n→∞, and runs in179

polynomial time in both n and 1
ε .180

In the second part of the paper, in Section 4, we provide our results for the problem181

Best Policy, i.e. for computing the expected arrival time of a best policy for choosing a182

particular s-y journey. Initially we provide in Section 4.1 a dynamic programming algorithm183

for the memoryless model which runs in O(n2) time and space. In wide contrast, we prove in184

Section 4.2 that Best Policy becomes #P-hard for the memory-k model, where k ≥ 3, again185

by providing a reduction from the problem #PP2DNF. Finally, we provide in Section 4.3 a186

formulation of Best Policy in the memory-k model using the general Markov Decision187

Process (MDP) framework which allows us to devise in Section 4 an exact doubly exponential-188

time algorithm with running time O(2(kmn+n logn)·2km). Due to lack of space, many proofs189
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have been omitted; the full proofs of this paper can be found in our technical report [2].190

2 Preliminaries191

In this paper we consider temporal graphs (see Definition 1) in which the underlying (static)192

graph G = (V,E) has n vertices and m edges . A subgraph H = (V,EH) of G, denoted193

by H ⊆ G, is a graph where EH ⊆ E. For every vertex u ∈ V , the neighborhood ΓG(u)194

of u in G is the set of adjacent vertices of u in G. The closed neighborhood ΓG[u] also195

contains vertex u itself, i.e. ΓG[u] = ΓG(u) ∪ {u}. For simplicity of notation we denote196

[n] = {1, 2, . . . , n} for every n ∈ N. Furthermore, sometimes we refer to the discrete time197

steps t = 1, 2, . . . as days. Throughout the paper we consider stochastic temporal graphs198

that exhibit an edge-centric evolution, i.e. every edge e of G is assigned one probability199

distribution for its appearance over time, independently of all other edges. We investigate200

the case where there is a “memory effect” that governs the probability of appearance of every201

edge over time. We distinguish now the cases where the the memory is zero or non-zero.202

Memoryless (or memory-0) model. Every edge e ∈ E evolves stochastically and independ-203

ently of other edges as follows: at every time step t ∈ N, e appears in Gt with probability pe204

and is absent with probability 1− pe, independently of any other time step. The numbers205

{pe : e ∈ E} are given parameters of the model. We denote this (memoryless) stochastic206

temporal graph by G(0) = (G, {pe : e ∈ E}) or simply G(0) = (G, {pe}).207

Memory-k model. This model of temporal graphs exhibits stochastic time-dependency of the208

edges: we assume an initial (arbitrary) sequence of k snapshots, G−k+1, . . . , G−1, G0 ⊆ G.209

At every time step t ≥ 1, every edge e appears independently of all other edges with210

probability that depends only on (the edge and) the history of appearance of e in the211

k previous snapshots. At every time step t, this history is a k-bit binary vector, where212

a 0-entry (resp. 1-entry) on the i-th position denotes absence (resp. appearance) of e213

in Et−k+i−1, for i = 1, . . . , k. Therefore the snapshot Gt is the graph that appears214

at time t ≥ 1 as the result of the following experiment: given the history H(k)
e of the215

appearance of edge e ∈ E in the last k snapshots, e belongs to Et independently with216

probability pe(H(k)
e ). We denote the memory-k stochastic temporal graph by G(k).217

In the particular case where k = 1, the memory-1 stochastic temporal graph G(1) is218

the sequence {Gt = (V,Et) : t ∈ N} of snapshots such that Et = {e ∈ E : Xe
t = 1},219

where {Xe
t }t∈N is a Markov chain for the edge e ∈ E with states {0, 1} (corresponding to220

non-appearance and appearance of e, respectively) and probability transition matrix:221

Me =

 0 1
0 1− pe pe
1 qe 1− qe

 , where 0 ≤ pe, qe ≤ 1.222

Using this formalism, pe (resp. qe) is the probability that the edge e changes its current223

state from absence to appearance (resp. from appearance to absence) in the next snapshot.224

Note here that, setting pe = p and qe = q for every edge e, we obtain exactly the225

well-established edge-Markovian evolving graph model introduced by Clementi et al. [16].226

2.1 The problems227

This work studies two main problems, each under the models of stochastic temporal graphs228

defined above. To describe both of these problems, let us first recall that information in229

temporal graphs flows via journeys, i.e. temporal paths.230
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I Definition 3 (Time-edge). A time-edge in a temporal graph G = {Gt : t ∈ N} is a pair231

(e, t) such that e ∈ Et.232

I Definition 4 (Journey / temporal path). Let G = {Gt : t ∈ N} be a temporal graph and233

s, y be two vertices of G. An s-y journey (or an s-y temporal path) in G is a sequence234 (
(e1, t1), . . . , (ex, tx)

)
of time-edges over a path (e1, . . . , ex) from s to y in G, where t1 <235

t2 < . . . < tx. The arrival time of the journey is the time tx of appearance of its last edge.236

I Definition 5 (Foremost Journey). A foremost s-y journey in a temporal graph G is an s-y237

journey with the minimum arrival time amongst all s-y journeys in G.238

Notice that the arrival time of a foremost s-y journey in a stochastic temporal graph is a239

random variable, which we henceforth denote by X(s, y). The first problem that we study240

here is how to compute the expected value of the latter, namely E[X(s, y)].241

B Problem 1 (Minimum Arrival). Given a stochastic temporal graph on an underlying242

graph G = (V,E) and two distinct vertices s, y ∈ V , compute the expected value of the243

arrival time of a foremost s-y journey, i.e. E[X(s, y)].244

Now suppose that an individual (say Alice) is at day 0 at vertex s and would like to245

arrive at vertex y through a temporal path as quickly as possible. Denote by st the vertex246

where she is located at time t; then s0 = s. Every day t Alice “wakes up” in the morning and247

looks at which edges are available in today’s snapshot; by only knowing her current position,248

the history of the last k snapshots, and the input parameters of the stochastic temporal249

graph (i.e. the probabilistic rules of edge appearance), Alice needs to decide whether:250

(a) to stay at the vertex st she currently is, or251

(b) to use an edge of Gt to move to a neighboring vertex.252

That is, st+1 is either equal to st or equal to some vertex of ΓGt
(st).253

A natural problem we can study here is to compute the expected arrival time of an s-y254

journey that Alice can follow, using a best policy1 possible, i.e. a policy (sequence of actions)255

that minimizes her expected arrival time at y. Notice that the arrival time of the journey256

suggested to Alice by the best policy is a random variable Y (s, y), whose distribution depends257

on the specific stochastic temporal graph. In particular, in the memoryless model, the258

expectation of Y (s, y) depends only on the edges’ probabilities of appearance. In the memory-259

k model, the expectation of Y (s, y) also depends on the initial snapshots G−k+1, . . . , G−1, G0.260

B Problem 2 (Best Policy). Given a stochastic temporal graph G(k) on an underlying261

graph G = (V,E) and two distinct vertices s, y ∈ V , compute EG(k) [Y (s, y)].262

In particular, we will write h(s, y) def= EG(0) [Y (s, y)] and h(s, y,G0) def= EG(1) [Y (s, y)].263

Difference between the two problems.264

Before we proceed further, we first give an example illustrating that the problems Minimum265

Arrival and Best Policy are different. In fact, the gap between the solution to Minimum266

Arrival and the solution to Best Policy can be arbitrarily large: Consider the graph267

consisting of vertices s and y and n− 2 vertex disjoint paths of length 2 between s and y.268

Assume also that, under the memoryless model, every edge incident to s appears each day with269

1 We use the term “policy” here (instead of “strategy”) since, as we will see later, this problem can be
formulated using a Markov Decision Process (MDP).
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probability 1 and every edge incident to y appears each day independently with probability270

n−0.9. Similarly to the above example of the graph with n− 2 vertex disjoint paths of length271

2, here the expected arrival time of a best policy for Alice is h(s, y) = 1 + n0.9. On the other272

hand, the arrival time of the foremost journey from s to y will be equal to the first day after273

day 1 on which some edge incident to y appears. But the time needed for the latter to happen274

follows the geometric distribution with success probability 1 − (1 − n−0.9)n−2 = 1 − o(1).275

Therefore, the expected arrival time of the foremost journey will be E[X(s, y)] = 2 + o(1),276

i.e. much smaller than h(s, y) = 1 + n0.9.277

As a final note, the expected arrival time E[X(s, y)] of the foremost s-y journey is always278

upper-bounded by the minimum among the expected values of the arrival times of all s-y279

journeys in the temporal graph. This is actually implied by a more general and well-known280

lemma in Probability Theory (Fatou’s lemma [17, p. 29]) which establishes that the expected281

value of the minimum among n random variables is upper-bounded by the minimum among282

all the variables’ expectations.283

3 Computing the expected minimum arrival time284

3.1 Hardness of exact computation in the memoryless model285

In this section we show that, even in the memoryless model, Minimum Arrival is #P-hard286

in both undirected graphs and directed acyclic graphs (DAGs). In the proof of the following287

theorem, the edges can be treated either as oriented, in which case we obtain the result for288

DAGs, or as non-oriented, in which case we obtain the result for undirected graphs.289

I Theorem 6. Minimum Arrival in the memoryless model is #P-hard.290

I Corollary 7. For every k ≥ 0, Minimum Arrival in the memory-k model is #P-hard.291

3.2 The FPTAS for the memoryless model on series-parallel graphs292

3.2.1 The case of paths293

In this section we will consider a stochastic temporal graph P(0) = (P = (V,E), {pe}) with294

the underlying graph being a path P = (s = v0, v2, . . . , vn = y).295

I Lemma 8. E[XP(0)(s, y)] =
∑
e∈E

1
pe
.296

Let us denote by µ the expectation µ def= E[XP(0)(s, y)] =
∑
e∈E

1
pe
. Note that297

µ =
∞∑
i=1

Pr[XP(0)(s, y) ≥ i]. (1)298

In the remainder of this section we will show that the first O(µ lnµ) terms of sum (1) already299

give a very good approximation of µ. In our analysis we will use the following bound.300

I Theorem 9 ([26]). Let X =
∑n
i=1 Xi, where n ≥ 1 and Xi, i = 1, . . . , n, are independent301

geometric random variables with parameters p1, p2, . . . , pn ∈ (0, 1], respectively. Let µ =302

E[X] =
∑n
i=1

1
pi
. Then for any λ ≥ 1,303

Pr[X ≥ λµ] ≤ e1−λ.304
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I Lemma 10. Let ε be a number such that 0 < ε ≤ 1. Then305

µ−
τ∑
i=1

Pr[XP(0)(s, y) ≥ i] =
∞∑

i=τ+1
Pr[XP(0)(s, y) ≥ i] < ε, (2)306

for every τ ≥ µ
(
ln µ

ε + 1
)
, where µ = E[XP(0)(s, y)].307

3.2.2 A general FPTAS approach308

While deriving analytically and computing efficiently the exact solution of Minimum Arrival309

in a path is an easy task (cf. Lemma 8), it does not seem to be trivial for a slight generalization310

of paths, called parallel compositions of paths. A parallel composition of paths is the graph311

obtained from a collection of disjoint paths P1, P2, . . . , P` with end vertices si, yi, i = 1, . . . , `,312

respectively, by identifying the vertices s1, s2, . . . , s` in a single vertex s, and by identifying313

the vertices y1, y2, . . . , y` in a single vertex y.314

It is not clear whether there exists an efficient procedure for computing the expected315

arrival time from s to y in a parallel composition of paths, even if the parallel paths are of316

equal length and all the probabilities of edge appearance are the same. In this section we317

present a general approach for developing ε-additive approximation algorithms2 for computing318

the expected arrival time of a foremost journey in special classes of stochastic temporal graphs.319

In Section 3.2.3 we apply this approach to develop an efficient ε-additive approximation320

algorithm for the problem on the class of stochastic temporal graphs with underlying graphs321

being series-parallel graphs, which generalize parallel compositions of paths and graphs in322

which all simple s-y paths are of the same length.323

Throughout the section we denote by G(0) = (G = (V,E), {pe}) a memoryless stochastic324

temporal graph with n vertices and m edges, and by s, y ∈ V two distinct vertices in G.325

Furthermore, we denote by H = (V,E,w) the weighted graph obtained from the underlying326

graph G by assigning to every edge e ∈ E the weight w(e) = 1
pe
.327

I Theorem 11. Let c ∈ N and ε ∈ (0, 1]. Let pe ≥ 1
nc for every e ∈ E and suppose that there328

exists an algorithm A that computes in time O (f(`, n,m)) the probabilities Pr[XG(0)(s, y) ≥ i],329

for all i = 1, . . . , `. Then there exists an algorithm B that approximates E[XG(0)(s, y)] within330

the additive factor of ε in time331

O
(
f
(
nc+1 ln n

ε
, n,m

)
+ n lnn+m

)
.332

Consequently, if f(`, n,m) is a polynomial in variables `, n, and m, then B is an FPTAS on333

the instance (G(0), s, y).334

Proof. Let P = (s = v0, v1, . . . , vr = y) be a minimum weight s-y path in H, and let P(0) be335

the stochastic temporal subgraph of G(0) restricted to the edges of P . For convenience, let us336

denote ei = vi−1vi for every i = 1, . . . , r. Then, by definition and Lemma 8, the weight w∗337

of P is equal to
∑r
i=1

1
pei

= E[XP(0)(s, y)]. Let τ := w∗
(

ln w∗

ε + 1
)
. Then, by Lemma 10,338

we have that339

∞∑
i=τ+1

Pr[XG(0)(s, y) ≥ i] ≤
∞∑

i=τ+1
Pr[XP(0)(s, y) ≥ i] < ε,340

2 A feasible solution is ε-additive approximate if it is within ε additive factor from the optimal value.
An algorithm is called an ε-additive approximation algorithm if it returns an ε-additive approximate
solution for any instance.
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and hence341

τ∑
i=1

Pr[XG(0)(s, y) ≥ i] ≤ E[XG(0)(s, y)] =
∞∑
i=1

Pr[XG(0)(s, y) ≥ i]342

<

τ∑
i=1

Pr[XG(0)(s, y) ≥ i] + ε,343

that is,
∑τ
i=1 Pr[XG(0)(s, y) ≥ i] approximates E[XG(0)(s, y)] within the additive factor of ε.344

Now we define the desired algorithm B as follows:345

1. Construct the graph H and compute the minimum weight w∗ of an s-y path in H using346

Dijkstra’s algorithm.347

2. Using algorithm A, compute the probabilities Pr[XG(0)(s, y) ≥ i], i = 1, . . . , τ , where348

τ = w∗
(

ln w∗

ε + 1
)
.349

3. Output
∑τ
i=1 Pr[XG(0)(s, y) ≥ i].350

The above discussion implies that algorithm B correctly computes the declared approxim-351

ation of E[XG(0)(s, y)]. It remains to justify the time complexity. First, Dijkstra’s algorithm352

can be implemented to work in time O(n lnn + m) [22]. Second, the assumption on pe’s353

implies that w∗ = O(nc+1), and hence τ = w∗
(

ln w∗

ε + 1
)

= O
(
nc+1 ln n

ε

)
. Therefore354

the assumption of the theorem implies that the last two steps of the algorithm run in355

time O
(
f
(
nc+1 ln n

ε , n,m
))

, which in turn implies the complexity bound and completes the356

proof. J357

3.2.3 The FPTAS for stochastic temporal series-parallel graphs358

In the present section we use the approach from Section 3.2.2 to derive a polynomial-time359

approximation scheme for stochastic temporal series-parallel graphs.360

I Theorem 12. Let ε ∈ (0, 1] and let G(0) = {G = (V,E), {pe}} be a stochastic temporal361

series-parallel graph, where pe ≥ 1
nc for every e ∈ E. Then Minimum Arrival on G(0)

362

admits an FPTAS with running time O
(
m · n2c+2 ln2 n

ε

)
, where |V | = n and |E| = m.363

3.3 The FPRAS for general graphs in the memory-k model, k ≥ 0364

In this section, we present our FPRAS for Minimum Arrival in the memory-k model, for365

every k ≥ 0, under the assumption that the appearance probability of every edge e is lower366

bounded by 1
nc for some c ≥ 1 regardless of the history H(k)

e , i.e. pe(x) ≥ 1
nc holds for all367

x ∈ {0, 1}k.368

I Theorem 13. Let ε ∈ (0, 1) and let G(k) be a memory-k stochastic temporal graph with369

two designated vertices s, y. Furthermore let every edge appearance probability be at least370

1
nc for some c ≥ 1, regardless of the history H(k)

e of e. Then Minimum Arrival admits an371

FPRAS which runs in O
(
mn5c+8

ε4 · log(nε )
)
time with probability of success at least 1− 2

n .372

4 Computing the expected arrival time of a best policy373

In this section we investigate the computational complexity of our second problem, namely374

Best Policy.375

CVIT 2016
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4.1 A polynomial-time algorithm for the memoryless model376

In this section we focus on the memoryless model and we derive a polynomial-time dynamic-377

programming algorithm for Best Policy. We define for every vertex v the expected arrival378

time h(v, y) def= EG(0) [Y (v, y)] of the v-y journey suggested to Alice by a best policy (i.e. when379

Alice starts her journey at vertex v). For simplicity of presentation, throughout Section 4.1380

we write h(v) def= h(v, y).381

Assume for now that for all v ∈ V , the value h(v) is given; let v1 = y, v2, . . . , vn be382

an ordering of vertices of V in non-decreasing values of h (ties broken arbitrarily), namely383

h(v1) ≤ h(v2) ≤ · · · ≤ h(vn). Clearly, v1 = y and h(v1) = h(y) = 0.384

Let st be the vertex that Alice occupied at time t and recall that ΓGt
(v) is the neighborhood385

of vertex v in the snapshot Gt, for all v ∈ V and all t ∈ N. Notice that, the best strategy386

of Alice at time t+ 1 is to look at all neighboring vertices of st in Gt+1 and find one with387

minimum h-value, namely a vertex u ∈ arg min{h(v) : v ∈ ΓGt+1(st)}. If h(u) ≥ h(st), then388

Alice has no incentive to change vertex and thus st+1 = st. Otherwise, if h(u) < h(st), then389

st+1 = u.390

Therefore, to find the best choice for Alice, it suffices to find the values h(v), v ∈ V .391

In view of the above, if Alice is on vertex vi at time 0 (i.e. she is on the i-th best vertex392

in terms of closeness to y), she will move to the j-th best (with j < i) only if an edge393

appears between vi and vj in the next step, and no edge to a vertex better than vj appears394

(i.e. no edge between vi and v`, 1 ≤ ` ≤ j − 1). This happens with probability Qi,j =395

p{vi,vj}
∏j−1
`=1(1− p{vi,v`}), where {vi, v`} denotes the (undirected) edge between vi and v`.396

Additionally, with probability Qi =
∏i−1
`=1(1 − p{vi,v`}) no edge to a vertex better than vi397

will appear, in which case Alice will stay on vi. Therefore h(vi) can be recursively computed398

by h(vi) =
∑i−1
j=1 Qi,jh(vj) +Qih(vi) + 1, or equivalently:399

h(vi) =
∑i−1
j=1 Qi,jh(vj) + 1

1−Qi
,400

with initial condition h(v1) = 0. Indeed, the above equation follows by observing that the401

expected length of the foremost journey to y when Alice is on vi is equal to 1 + h(v1) with402

probability Qi,1 (which is the probability that an edge between vi and v1 = y exists), plus403

1 + h(v2) with probability Qi,2 (which is the probability that an edge between vi and the404

second best vertex v2 exists, but there is no edge between vi and v1), and so on. In general,405

the above recurrence states that there is no incentive to visit vertices with larger index406

and also Alice will visit the smallest index vertex vj for which the edge {vi, vj} is present407

(otherwise, if no such edge exists, she will stay on vi). Using the above recurrence, we can408

compute all values of h(vi) by a bottom-up dynamic programming algorithm.409

I Theorem 14. Best Policy can be optimally computed in the memoryless model in O(n2)410

time and space.411

4.2 Hardness of computation for the memory-k model, k ≥ 3412

We now show that Best Policy is #P-hard for memory-3 stochastic temporal graphs on413

directed acyclic graphs, and consequently also for memory k ≥ 3.414

I Theorem 15. When the underlying graph is a Directed Acyclic Graph (DAG), it is #P-hard415

to compute the expected arrival time of the best policy journey in the memory-3 model.416
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Proof. We will provide a reduction from the counting problem #PP2DNF which is known417

to be #P-hard [35]. This problem takes as input a DNF formula Φ =
∨

(i,j)∈E xiyj on the418

sets of variables X = {x1, . . . , xn} and Y = {y1, . . . , ym}, for some E ⊆ [n]× [m], and the419

task is to compute the number ψ of truth assignments that satisfy Φ. We create a directed420

acyclic graph (DAG) H as follows. First, H has one vertex for each of the variables in X ∪Y ;421

then we add two distinct vertices s, y and one other vertex v. For every vertex xi ∈ X and422

every vertex yi ∈ Y we add the directed edges (s, xi) and (yj , y). Furthermore we add the423

edge (xi, yj) whenever xiyj is a clause in Φ. Finally we add the edges (s, v) and (v, y). The424

construction of H is illustrated in Figure 1.425

. . . . . .

X Y

s

v

y

Figure 1 The construction of the DAG H.

Denote byM = 5·2n+m, and assume that 2n+m ≥ 3 in order to avoid trivialities. All edges426

(xi, yj) appear constantly in H, i.e. they appear at every time step i ≥ 1 in a memoryless427

fashion with probability 1. Both edges (s, v) and (v, y) also appear in a memoryless fashion,428

each of them with probability 2
M at every step i ≥ 1. Moreover, each of the edges (s, xi) and429

(yj , y) appears at each step i ≥ 1 according to the following table of memory 3. This table430

has four columns and eight rows. Each column is labeled with the sequence of consecutive431

time steps i− 3, i− 2, i− 1, and i. Each row corresponds to a different triple of appearances432

of each of the edges in {(s, xi), (yj , y) : x ∈ X, y ∈ Y } at the time steps i− 3, i− 2, i− 1 (here433

1 means “edge exists” and 0 means “edge does not exist”). At the end of each row there is a434

pair of numbers (p, 1− p) which denotes that, with the particular history of memory 3, at435

time step i the edge appears with probability p and it does not appear with probability 1− p.436

For simplicity of notation, in the column of time step i, we write “0” and “1” to denote the437

entries (0, 1) and (1, 0), respectively.438

i− 3 i− 2 i− 1 i

0 0 1 0
0 1 0 ( 1

2 ,
1
2 )

1 0 0 0
0 0 0 0
1 0 1 1
0 1 1 1
1 1 1 1
1 1 0 1

439

To complete the description of our memory-3 instance, we specify that, in the fictitious440

initialization snapshots G−2, G−1, G0, each of the edges (s, xi) and (yj , y) appears with441

probability 0, 0, and 1, respectively, i.e. according to the first row of the above table.442

The intuition of this table for the edges (s, xi) and (yj , y) is as follows. In the snapshot443

G1, none of these edges appears (see the first line of the table). Then, to determine whether444

each of these edges appears at time step 2 (see the second row of the table), we need to toss445

CVIT 2016
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an unbiased coin which with probability 1
2 outputs “appear” and with probability 1

2 outputs446

“does not appear”. Once this coin has been tossed at time step 2, the status of the edge447

does not change any more in any subsequent time step i ≥ 3. That is, if one of the edges448

(s, xi) and (yj , y) appears (resp. does not appear) at time 2, then it appears (resp. does not449

appear) at all times i ≥ 3 too. This is easy to be verified by observing the rows 3-7 of the450

table. Note that the last row of the table is included only for the sake of completeness, as it451

does not affect the appearance of any edge of H at any time step i.452

Let ` be the expected s-y arrival time of the best policy in the memory-3 model. Note453

that, from the above construction of the temporal graph instance, each of the edges (s, xi)454

and (yj , y) appears with probability 1
2 at all steps i ≥ 2, while it does not appear at any step455

i ≥ 2 with probability 1
2 . Therefore, the probability that there exists a directed temporal456

path (s, xi, yj , y) is equal to g = ψ
2n+m , where ψ is the number of satisfying truth assignments457

of the DNF formula Φ. That is, with probability 1− g, there exists no such temporal path458

from s to y with 3 edges through some vertices xi and yj . Furthermore, the expected s-y459

arrival time through the edges (s, v) and (v, y) is equal to M
2 + M

2 = M . Therefore, since460

with probability 1 − g any policy (also the best one) needs to travel from s to y through461

vertex v, it follows that ` ≥M(1− g).462

We now define the following policy: at time step 1 do nothing and just wait for the463

outcome of the random coin tosses which occur at time step 2. Subsequently, at time step 2464

do the following: if there exists a directed temporal path (s, xi, yj , y) then follow it, starting465

at time step 2; otherwise follow the temporal path (s, v, y) which has an expected travel time466

M
2 + M

2 = M . The expected arrival time of this particular policy is equal to 1+3g+M(1−g),467

and thus it follows that ` ≤ 1 + 3g +M(1− g). Summarizing, we have:468

M(1− g) ≤ ` ≤ 1 + 3g +M(1− g)⇔469

5 · 2n+m − 5ψ ≤ ` ≤ 5 · 2n+m − 5ψ + 3 ψ

2n+m + 1.470

The first inequality can be written as 2n+m − `
5 ≤ ψ, while the second one can be written as471 (

1− 3
5·2n+m

)
ψ ≤ 2n+m − `

5 + 1
5 . Therefore:472

2n+m − `

5 ≤ ψ ≤
(

1 + 3
5 · 2n+m − 3

)(
2n+m − `

5 + 1
5

)
≤ 2n+m − `

5 + 1
5 + 3

4 ,473

and thus474

2n+m − `

5 ≤ ψ ≤ 0.95 + 2n+m − `

5 . (3)475

Thus, knowing the expected value ` for the best policy we can derive the exact integer value476

for ψ in the counting problem #PP2DNF. This completes the #P-hardness reduction. J477

4.3 An exact algorithm for the memory-k model, k ≥ 1478

In this section we present a doubly exponential-time exact algorithm for computing the best479

policy for Alice in the memory-k model, where k ≥ 1. Our results in this section are derived480

using a Markov Decision Process (MDP) formulation of our problem under the memory-k481

model.482

I Theorem 16. Let k ≥ 1 and G(k) be a stochastic temporal graph, where the underly-483

ing graph G has n vertices and m edges. Then Best Policy can be solved on G(k) in484

O(2(kmn+n logn)·2km) time.485
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