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Abstract—X-ray imagery security screening is essential to
maintaining transport security against a varying profile of pro-
hibited items. Particular interest lies in the automatic detection
and classification of prohibited items such as firearms and firearm
components within complex and cluttered X-ray security imagery.
We address this problem by exploring various end-to-end object
detection Convolutional Neural Network (CNN) architectures.
We evaluate several leading variants spanning the Faster R-
CNN, Mask R-CNN, and RetinaNet architectures. Overall, we
achieve maximal detection performance using a Faster R-CNN
architecture with a ResNet101 classification network, obtaining
0.91 and 0.88 of mean Average Precision (mAP) for a two-class
problem from varying X-ray imaging dataset. Our results offer
very low false positive (FP) complimented by a high accuracy (A)
(FP=0.00%, A=99.96%). This result illustrates the applicability
and superiority of such integrated region based detection models
within this X-ray security imagery context.

Index Terms—CNN architecture, Object detection, X-ray se-
curity imagery, Prohibited item

I. INTRODUCTION

The Transportation Security Administration (TSA) is estab-
lished to ensures the safety of the travelling public within
the US, including the over 2.6 million aviation passengers
daily across all US airports [1]. Subsequently, TSA screens
approximately 4.9 million carry-on bags for explosives and
other prohibited items daily [2]. Recently, TSA announced that
it found 4,239 firearms in carry-on bags in the year 2018, of
which 3,656 were loaded - the largest number in TSA history.
Statistically, this is a 7% increase over 2017 and part of an
increasing annual trend, as illustrated in the Figure 1. This
implies an average of around 12 firearms were intercepted at
security screening each day within the USA in 2018 [3].

When a firearm is discovered by TSA officers at a check-
point, it is immediately reported to local law enforcement.
While firearm possession laws vary by locale, TSA may
impose civil penalties of up to $13,333 per incident. With
increasing firearm occurrences at airport checkpoints, the
security and safety of the passengers has become a prime
concern. Within all the screening options available at the
airports, multiple view, dual-energy X-ray screening is widely
used as the primary means to maintain aviation and transport
security. By using such X-ray screening, it will produce a
colour-mapped image showing the material properties for the
security officer to examine. This current current concept of
operation presents a very challenging human image analysis
task because this process of screening baggage in public places
is highly complex, due to the nature of compact, cluttered
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Fig. 1. Firearms discovered at TSA checkpoints, 2008-2018 [4].

and highly varying baggage contents to be examined within
the limited available time. It can also be challenging due to
inherent monotony leading to a varying concentration levels
[5].

Considering the key challenge of firearm detection in com-
pact cluttered X-ray imagery, we examine three different
approaches to illustrate an automated pipeline for firearm
detection in X-ray security imagery using recent advances
in deep learning. Current scanners already implement algo-
rithms that calculate material properties from dual-energy
multiple view scans, automatically highlighting objects or
regions that might contain prohibited material threat within
the X-ray imagery. However, within baggage X-ray screening,
the automated detection of prohibited items by their shape
characteristics is still an open problem due to factors such as
limited robustness, loss of generality and required optimization
between false alarms and probabilty of detection [6].

Therefore, in this work we fully leverage the rapid advance
of deep learning for image understanding [7], building on
the original transfer learning based work of [8], for this X-
ray imagery screening task. Building on our earlier work on
this topic [8], [9], our goal is to detect and automatically
highlight (i.e. localize) prohibited items within X-ray baggage
security imagery whilst determining the varying performance
of these approaches on different datasets collected for this
study. In this approach, we fully utilize large-scale X-ray
security imagery provided by [9] and [10]. Denoted as Dbf2 [9]

1



and SIXray [10] respectively, we aim to provide an insight into
baseline performance for three CNN architectural variants:-
Faster R-CNN [11], Mask R-CNN [12] and RetinaNet [13].
Although our prior work has considered a broader definition
of prohibited items [8], [9], our discussion will be limited to
the detection of firearms and firearm components.

II. RELATED WORK

There has been a steady increase in research work con-
sidering prohibited item detection based CNN architecture
variants in X-ray baggage security imagery. Preliminary work
on [8] classifies baggage objects by type, by optimizing CNN
structure designed by Krizhevsky et al. [14] to the X-ray
baggage screening problem. The work of [8] shows that by
leveraging the use of transfer learning, CNN architectures
outperformed hand-crafted features, by achieving 98.92% de-
tection accuracy in firearm classification. The comparison
of CNN architecture and hand-crafted features were further
evaluated in [15], where hand-crafted features such as bag-of-
visual-words (BOVW), sparse representation and codebooks
is compared with deep features. Consistent with results in [8],
CNN architecture achieve superior results with more than 95%
of recognition rate in classification of three prohibited items
{Gun, Shuriken, Razor blade}. The work on [9] exhaustively
compares various CNN architecture and the impact of its over-
all performance in classifying six prohibited items {Firearm,
Firearm Component, Ceramic Knife, Laptop, Camera, Knife}.
Fine tuning the entire network architecture for this problem
domain yields 0.996% true positive, 0.011% false positive and
0.994% accuracy for prohibited item classification tasks.

Techniques such as transfer learning for CNN architectures
have shown themselves capable on classifying prohibited
item even when the X-ray security imagery dataset is very
limited [16]. However, in order to detect and automatically
highlight the region that might contain prohibited item, such
as abnormalities in an object or any explosive devices [17],
an advanced CNN architecture are needed. With the recent
development of object-based CNN architecture detection ap-
proaches, [9] examines the relative performance of contem-
porary region-based CNN variants in X-ray security imagery
[18] [19] [11]. Methods such as Faster R-CNN [11], R-
FCN [18], and YOLOv2 [19], achieves maximal 0.885 and
0.974 mean Average Precision (mAP) over six-class object
detection {Firearm, Firearm Component, Ceramic Knife, Lap-
top, Camera, Knife} and and two-class firearm detection
{Firearm, Firearm Component} problems respectively. Here,
we further investigate this performance with our evaluation on
X-ray security imagery on larger dataset taken from different
source, namely Durham University Full Two-Class and Secu-
rity Inspection X-ray images [10]. Denoted as Dbf2 [9] and
SIXray [10] respectively, it provide more inter-occluding X-
ray security imagery examples with large variations in pose,
scale and item construction.

III. PROPOSED APPROACH

The task on automatic prohibited item detection and local-
isation follows the recent work of [9], where we employ the
convolutional neural network based object detection on X-ray
security imagery. While most of the work on CNN architec-
tures is based on natural photographic colour images, X-ray
security imagery posses certain unique aspects. X-ray security
scan images are produced by transmission, where photons
pass completely through the baggage item. This means that
individual items can overlap on top of each other, in any pose,
orientation and scale. Deep learning has already demonstrated
its capability for x-ray imagery security screening [20] [9]
[17]. Contemporary region based CNN variants such as Faster
R-CNN [11], R-FCN [18] and YOLOv2 [19] were adapted in
[9] for detection and classification of prohibited item in X-
ray security imagery. Here we extend the capability of region
based CNN variants by incorporating Faster R-CNN [11],
Mask R-CNN [12] and RetinaNet [13] for prohibited item
detection.

A. Faster R-CNN

Faster R-CNN [11] is an object detection algorithm which
combine Fast R-CNN [21] and Region Proposal Network
(RPN). This architecture has its own region proposal network,
which is consists of convolutional layers that generate object
proposals and two fully connected layers that predict coordi-
nates of object bounding boxes. The corresponding locations
and bounding boxes are then fed into objectness classification
and bounding box regression layers. Finally the objectness
classification layer classify whether a given region proposal
is an object or a background region while a bounding box
regression layer predicts object localisation, at the end of the
overall detection process.

B. Mask R-CNN

Mask R-CNN [12] is build upon Faster R-CNN [11], where
Faster R-CNN is augmented by adding convolutional layers
to construct an object boundary segmentation mask. This is
done by adding an additional branch to Faster R-CNN that
outputs an image mask indicating pixel membership of a
given detected object. Mask R-CNN also address feature map
misalignment in Faster R-CNN [11] by applying bi-linear
boundary interpolation onto feature map boundaries.

C. RetinaNet

RetinaNet is another object detection approach [13] where
the key idea is to solve the extreme class imbalance between
foreground and background class. To solve the imbalance
classes, RetinaNet employs Focal loss as loss function, where
it modifies the cross-entropy loss such that it down-weights
the loss in easy negative samples so that the loss is instead
focused on the sparse set of more challenging samples.
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Fig. 2. X-ray baggage security imagery with threat objects (Firearm, Firearm Components) highlighted from dataset (A) Dbf2 and (B) SIXRay10.

IV. EVALUATION

The prohibited item detection task is carried out across the
X-ray security imagery datasets to analyse the performance of
different CNN detection architectures as presented in Section
III.

A. Experimental Setup

Our evaluation comprises on two varying X-ray security
imagery datasets.
Dbf2 is the X-ray security imagery from Durham Dataset Full
Two-class, consists of of two classes, {Firearm, Firearm Com-
ponents}. To generate the dataset, a systematic process was
performed to acquire the dataset whereby metallic prohibited
items such as firearms and firearm components are placed
inside various styles of bags, which cover the full dimensions
of airline cabin luggage. It consists of 3,192 images of firearms
and 1,204 images of firearm components. Figure 2A depicts
exemplary images from this dataset.
SIXray is public dataset [10] for prohibited item detection in
security inspection X-ray images. These images are collected
from several metro sub-way stations, using a Nuctech dual-
energy X-ray scanner, where the distribution of the general
baggage/parcel items corresponds to stream-of-commerce oc-
currence. We use a subset of SIXray dataset {SIXray10} where
we incorporate 3,130 images of firearms, as depicted in in
Figure 2B.

In our experiments, we use the CNN implementation of
[22], where we trained the models on GTX 1080 Ti GPU, op-
timised by Stochastic Gradient Descent (SGD) with a weight
decay of 0.0001, learning rate of 0.01 and termination at 180k
iterations. The ResNet101 [23] is used as a network backbone.
We split the datasets into training (60%), validation (20%)
and test sets (20%) such that each split has similar class
distribution. All experiments are initialised with ImageNet pre-
trained weights for their respective model [14].

B. Results and Discussions

The performance is evaluated in terms of mean Average
Precision (mAP) as well as by the comparison of True Positive
Rate (TP) (%), False Positive Rate (FP) (%) together with
Precision (P), Accuracy (A) and F-score (F) (harmonic mean
of precision and true positive rate), following the statistical
evaluation of [9].

Table I shows prohibited items detection in X-ray security
imagery using the CNN architecture set out in Section III
with network configuration of ResNet101. The AP/mAP in
bold in the tables signifies the best results. In the first set
of experiments (Table I, upper), we observe maximal mAP
performance (mAP = 0.89) is achieved on Dbf2 by Faster R-
CNN with ResNet101 configuration, in two classes, {Firearm,
Firearm Components}. In the second set of experiments (Table
I, lower), RetinaNet architecture with ResNet101 configuration
outperforms other CNN architectures. As reported in the
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TABLE I
DETECTION RESULTS OF FASTER R-CNN [11], MASK R-CNN [12] AND RETINANET [13] ON TWO DATASETS. CLASS NAME REFLECTS CORRESPONDING

AVERAGE PRECISION (AP) FOR THE INDIVIDUAL OBJECT CLASS AND MAP IS THE MEAN AVERAGE PRECISION ACROSS ALL OBJECT CLASSES.

Datasets Model Network
configuration

Average precision mAPFirearm Firearm Components

Dbf2
Faster R-CNN [11] ResNet101 0.91 0.88 0.89
Mask R-CNN [12] ResNet101 0.89 0.86 0.88
RetinaNet [13] ResNet101 0.89 0.86 0.88

SIXray10
Faster R-CNN [11] ResNet101 0.91 – 0.91
Mask R-CNN [12] ResNet101 0.89 – 0.89
RetinaNet [13] ResNet101 0.92 – 0.92

TABLE II
CLASSIFICATION RESULTS OF FASTER R-CNN [11], MASK R-CNN [12] AND RETINANET [13] ON TWO DATASETS.

Datasets Model Network A P F1 TP FPconfiguration

Dbf2
Faster R-CNN [11] ResNet101 99.96 100 99.93 99.87 0.00
Mask R-CNN [12] ResNet101 99.93 99.78 99.89 100 0.11
RetinaNet [13] ResNet101 97.25 100 95.69 91.74 0.00

SIXray10
Faster R-CNN [11] ResNet101 99.83 99.68 99.84 100 0.36
Mask R-CNN [12] ResNet101 99.66 99.68 99.68 99.68 0.36
RetinaNet [13] ResNet101 90.96 99.81 90.74 83.17 0.18

prior work of [10], the highest AP achieved for the class
{Firearm} is 90.64% with ResNet50 whereby our proposed
CNN architecture produces a marginally superior AP of 0.92.

Table II shows the binary threat classification results for
prohibited item detection in X-ray security imagery. In the
first set of experiments (Table II, upper), we classify whether
prohibited items, {Firearm, Firearm Components}, are present
in the X-ray security imagery Dbf2. We observe performance
such that all of the CNN architecture consistently offer very
low false positive (FP) complimented by a high true positive
(TP) classification across both problems. With a Dbf2 trained
model, Faster R-CNN with ResNet101 achieves maximal
performance with the lowest FP (0.00%) and accuracy of
(99.96%). In the second sets of experiments, (Table II, lower),
we classify whether prohibited item of {Firearm} is present
in the X-ray security imagery SIXray, or it just benign X-ray
imagery security. With SIXray as trained model, RetinaNet
offers low FP (0.18%) while Faster R-CNN gives the highest
TP (100.00%). These results shows a clear impact on CNN
architecture in detecting prohibited item under X-ray images.
It also clearly illustrates the applicability and performance
capability of deep learning within cluttered X-ray security
imagery context.

V. CONCLUSION

This paper assesses the performance of contemporary
region based CNN object detection variants within the
context of prohibited item detection in X-ray security
imagery. Experimentation demonstrates that Faster R-CNN
achieves superior performance (0.91/0.88 mAP) over a

two class prohibited item detection problem {Firearm,
Firearm Components}. On the other hand, RetinaNet achieves
superior results (0.92 mAP) over one class prohibited item
detection problem {Firearm} evaluated on two disparate
datasets. Furthermore, we directly evaluate the prohibited
item detection models in classification mode, where it
gives maximal performance with the lowest FP (0.00). This
provides strong insights that artificial intelligence techniques
such as CNN models can detect prohibited items with high
accuracy and at the same time with minimal false alarm
rates. Ultimately, the goal of this approach is to lessen the
burden on the security office by automating threat detection
system in aviation security checkpoint. While in this paper
we only focusing on firearm and firearm components, given
the promise shown by artificial intelligence in this initial
study, we are well positioned to bring artificial intelligence
security system in the near future.

Acknowledgements: The authors would like to thank
the UK Home Office for partially funding this work. Views
contained within this paper are not necessarily those of the
UK Home Office.

4



Fig. 3. Threat item (Firearm, Firearm Components) detection in X-ray security imagery by using CNN architecture such as Faster R-CNN [11], Mask R-CNN
[12] and RetinaNet [13] on Dbf2.
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Fig. 4. Threat item (Firearm) detection in X-ray security imagery by using CNN architecture such as Faster R-CNN [11], Mask R-CNN [12] and RetinaNet
[13] on SIXray10.
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