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ABSTRACT

Recent studies on multi-label image classification have fo-
cused on designing more complex architectures of deep neu-
ral networks such as the use of attention mechanisms and re-
gion proposal networks. Although performance gains have
been reported, the backbone deep models of the proposed
approaches and the evaluation metrics employed in different
works vary, making it difficult to compare fairly. Moreover,
due to the lack of properly investigated baselines, the advan-
tage introduced by the proposed techniques are often ambigu-
ous. To address these issues, we make a thorough investi-
gation of the mainstream deep convolutional neural network
architectures for multi-label image classification and present
a strong baseline. With the use of proper data augmentation
techniques and model ensembles, the basic deep architectures
can achieve better performance than many existing more com-
plex ones on three benchmark datasets, providing great in-
sight for the future studies on multi-label image classification.

Index Terms— Multi-Label Image Classification, Deep
Convolutional Neural Network, Data Augmentation

1. INTRODUCTION

Multi-label image classification has been a hot topic in com-
puter vision community. Its extensive applications include
but are not limited to image retrieval, automatic image anno-
tation, web image search and image tagging [1, 2, 3, 4, 5].

The abundant labelled data (e.g. ImageNet [6]) and ad-
vanced computational hardware have promoted the devel-
opment of deep convolutional neural network (CNN) based
methods on single-label image classification [7, 8]. Recently,
such successful models have been extended to multi-label
classification tasks with promising performance reported by
[9, 10, 11, 12, 13, 14, 15], proving that CNN models are ca-
pable of handling this challenging and more general problem.
However, due to the varying backbones [15, 16] employed
in the deep models, the achieved performance cannot be di-
rectly compared with each other. In addition, the lack of
thoroughly investigated baselines of these deep CNN models
hinders an explicit evaluation of the benefit brought by ad-
vanced frameworks specially designed for multi-label image
classification.

To address the aforementioned issues, we present a thor-
ough investigation on different baseline deep CNN models
for multi-label image classification. We focus on two state-
of-the-art deep CNN architectures (i.e., VGG16 [17] and
ResNet101[8]) as they have been widely employed in multi-
label image classification [12, 15]. We evaluate the models
by taking advantage of varying data augmentation techniques
and model ensemble, surprisingly achieving comparable or
superior performance on three benchmark datasets than the
state-of-the-art results achieved by more complex models.

The contributions of this work are summarized as follows:

• We investigate the impacts of varying image sizes
and data augmentation techniques including “mixup”
which has not been employed in multi-label image
classification.

• We use score level fusion to investigate the complemen-
tarity of different models and point out possible direc-
tions for future model design.

• We present a strong baseline for multi-label image clas-
sification with performance comparable with state-of-
the-art on three benchmark datasets.

2. RELATED WORK

Impressive progress on multi-label image classification has
been made by using deep convolutional neural networks.
Wang et al. [9] propose a CNN-RNN framework to ex-
plore label co-occurrence using the long-short term memory
(LSTM). Although VGG16 was employed as a visual fea-
ture extractor, the model capacity was not fully exploited by
fine-tuning the parameters. Zhang et al. [15] extend the idea
by improving the component CNN. They propose a regional
latent semantic dependencies (RLSD) model for multi-label
image classification, which focuses on small objects in multi-
label images by generating subregions that potentially contain
multiple objects and visual concepts. An LSTM based model
is employed to generate multiple labels. Recently, attention
mechanisms have been introduced to deep neural networks
for multi-label image classification. It aims to explicitly or
implicitly extract multiple visual representations from a sin-
gle image characterizing different associated labels [10, 12].
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Fig. 1. An illustration of the employed framework. Varying
image scales and data augmentation techniques are used dur-
ing training which results in diverse trained models. These
models are used for testing individually and combined by
score level fusion.

The advantage of combining multi-scale input images for
multi-label image classification has been proved in [18, 19]
by employing varying fusion approaches.

Although improved performance has been reported by in-
troducing more advanced frameworks, we notice that the per-
formance of those proposed methods has marginal gains to-
wards the standard (“vanilla”) deep models, and the training
techniques employed in different works vary. Therefore it is
necessary to set up a uniform baseline for comparison.

3. METHOD

We present the methods used to produce the strong baseline
performance in this section. We first formulate the multi-label
image classification problem. Subsequently, we describe the
adapted deep convolutional neural networks for multi-label
classification, as well as the essential data augmentation tech-
niques for training an improved deep model. Finally, A sim-
ple yet effective model ensemble approach is introduced to
investigate the complementarity of different models.

3.1. Problem Formulation

Assume we have a set of training examplesD = {(xi,yi)}, i =
1, 2, ..., n, where x is an image, y ∈ {0, 1}C is the corre-
sponding label vector, n and C are the numbers of training
images and associated class labels respectively, the element
values of zeros and ones in the label vector y denote the
absence and presence of the corresponding concepts in the
image. The objective of multi-label image classification is to
learn a model from the training data D, such that for a given
test image x̂ we can use the learned model to predict its label
vector ŷ. In practice, most parametric models do not directly
output a binary vector ŷ, instead they predict a score vector
ŝ = f(x̂; Θ) ∈ RC indicating the confidence of presence for
each label. ŷ can be derived from ŝ by setting a threshold
confidence or the number of positive labels [11].

3.2. Base Model

Deep convolutional neural networks can be used to implement
the model f(x; Θ) for multi-label image classification with an
image x as the input and a C-dimensional score vector s as
the output. In contrast to the traditional multi-label classifica-
tion approaches, deep models integrate the feature extraction
and classification in a single framework, enabling end-to-end
learning. More importantly, state-of-the-art deep CNN mod-
els are able to learn high-level visual representations and ap-
proximate very complex learning systems.

Model adaptation: we focus on two deep CNN architec-
tures which have been used in multi-label image classifica-
tion: VGG16 [17] and Resnet-101 [8] to which two changes
have been made in this study. First, we apply an adaptive
pooling layer to the last convolutional feature maps such that
different input sizes can be handled within the same architec-
ture. Second, the final output layer for single-label classifi-
cation in the original model is simply replaced with a fully
connected layer in which the number of neurons is set as C
(i.e. the number of concerned class labels).

Loss function: We use the cross-entropy loss for model
training. For a training example (xi,yi) and its predicted
score vector si = f(xi; Θ), the loss can be computed by the
following equation:

L(si,yi) = −
C∑

j=1

(
yij ·log(σ(sij))+(1−yij)·log(1−σ(sij))

)
(1)

where yij is the j-th element of the ground truth label vector
yi, sij is the j-th element of the predicted score vector si, and
σ(·) is the sigmoid function σ(x) = 1/(1 + exp(−x)).

Data Augmentation: we aim to investigate how differ-
ent data augmentation techniques affect the multi-label im-
age classification. This is non-trivial since some commonly
adopted data augmentation techniques such as random crop-
ping will change the semantics in the original image. For ex-
ample, a random cropping of a multi-label image might result
in image patches not containing all the objects in the original
image thus it is questionable whether they are still applicable
to multi-label classification.

Apart from the conventional data augmentation tech-
niques, we also adapt the mixup [20, 21] method to further
increase data variability. Specifically, we randomly select two
samples (xi,yi) and (xj ,yj) from the mini-batch (the sam-
ples in a mini-batch could be image patches cropped from the
original images, resized to the same size). The mixed sample
(x,y) can be created in the following way:

x = (xi + xj)/2,

y = yi ∨ yj , (2)

where the mixed image x is created by a pixel-wise average
on two original images and the corresponding label vector y
is obtained by an element-wise logical OR operation on yi



and yj . During training, the mixup is alternately enabled and
disabled for every epoch as suggested in [21]. We investigate
the mixup technique due to the fact that it expands the target
label space significantly which are quite different from other
traditional data augmentation techniques.

3.3. Model Ensemble

We explore the complementarity of models learned in differ-
ent settings by a simple score level fusion which is employed
during the testing phase. Suppose we have m score matri-
ces Si, i = 1, 2, ...,m predicted by m base models, the fused
score matrix Sfusion can be computed as follows:

Sfusion =
1

m

m∑
i=1

Si. (3)

We investigate two approaches to promote the diversity
of base models for better ensemble performance. Firstly, we
combine models trained with different input image sizes and
denote this ensemble as a multi-scale ensemble or ScaleEn.
The complementarity of multi-scale input images has been
explored before [18, 19] but in different ways. Secondly,
we combine models trained with different data augmentation
techniques. Using varying data augmentation results in differ-
ent training data distribution thus diversifies the learned mod-
els. We denote this ensemble as a distribution ensemble or
DistrEn.

4. EXPERIMENTS AND RESULTS

In this section, we describe our experiments on three bench-
marks and report the experimental results. We introduce the
datasets used in our experiments and the implementation de-
tails of the deep model training in the first two subsections re-
spectively, then experimental results are presented in the last
subsection.

4.1. Dataset

Table 1. A summary of datasets used in our experiments.
Dataset # Labels # Training Images # Test Images

NUS-WIDE [22] 81 100,893 67,742
MS-COCO [23] 80 82,081 40,137
VOC2007 [24] 20 5,011 4,952

We use three benchmark datasets for multi-label image
classification in our experiments, i.e., NUS-WIDE 1 [22],
MS-COCO [23] and VOC 2007 [24]. A summary of three
datasets is presented in Table 1.

1Many image urls are not valid now, as a result, our experiments are ac-
tually conducted on a subset of the original dataset.

4.2. Implementation

All the deep CNN models used in our experiments are im-
plemented in PyTorch 2 [25]. We use the model weights pre-
learned on the ImageNet [6] for single-label image classifi-
cation as the initialization and fine-tune the weights of all
layers. We use the stochastic gradient descent (SGD) opti-
mizer for model training with an initial learning rate of 0.1 for
the fully connected layer(s) and 0.01 for convolutional layers.
The learning rate decays to one tenth after 20 epochs. We
stop training after 40 epochs. The batch size is set 16 in all
experiments.

4.3. Experiments and Results

Table 2 shows experimental results on three datasets. For each
dataset, we use two deep models (i.e., VGG16 and ResNet101
denoted as V and R respectively in the table). We first inves-
tigate the impact of input image size. Three sizes (i.e., 384,
448 and 512) are employed for each experimental setting. The
results in Table 2 indicate different input image sizes do not
affect the results except on the MS-COCO dataset where a
larger input image size generally performs better. One possi-
ble explanation is that images in the MS-COCO dataset have
larger sizes than those in the other two datasets, as a results,
rescaling them to a small size (e.g., 384 × 384) causes infor-
mation loss.

We investigate the effectiveness of data augmentation by
using three models. The first model (M1) uses only random
flipping for data augmentation which has also been used in
all experiments. The second model (M2) uses randomly re-
sized cropping for data augmentation which randomly rescale
and crop the image 3. The mixup strategy [20] is employed in
the third model (M3). Experimental results in Table 2 show
superior performance when using data augmentation strate-
gies (e.g., M2 and M3 perform better than M1 except on the
VOC2007 dataset when ResNet101 is used where the model
without any data augmentation performs the best). By com-
paring the performance of M2 and M3, we find that mixup
does not improve the performance in most cases. However,
the models learned with mixup provides complementary in-
formation to those learned without it. This can be verified by
our model ensemble results shown in Table 3.

As described in Section 3.3, we employ multi-scale en-
semble (ScaleEn) and distribution ensemble (DistrEn). For
multi-scale ensemble, three M3 scores are fused since it gen-
erally performs better than M1 and M2 except on VOC dataset
when Resnet101 is used for which M1 scores are fused for the
best performance. For distribution ensemble, we choose M2
and M3 learned with the image size of 512. Results are shown
in Table 3. It is obvious that both types of ensembles can
achieve better performance than our best single model. Note

2https://github.com/hellowangqian/multi-label-image-classification
3See the implementation of transforms.RandomResizedCrop in PyTorch.



Table 2. Experimental results on three benchmark datasets.
The precision, recall and F1 are based on top-3 predictions without any
threshold conditions.(Notations: DS–DataSet, BM–Base Model, V–VGG16,
R–ResNet101, Size–input image Size, mAP–mean Average Precision, L-
P/R/F1 – Label centric Precision/Recall/F1 score, O-P/R/F1 – Overall
Precision/Recall/F1 score, M1 – Model with random flipping, M2 – Model
with random cropping, M3 – Model with mixup.)

DS BM M Size mAP L-P L-R L-F1 O-P O-R O-F1

NUS

V

M1
384 55.8 37.7 57.3 42.2 54.0 66.5 59.6
448 55.5 37.1 57.0 41.6 53.9 66.3 59.5
512 56.5 39.4 57.0 43.1 54.3 66.9 59.9

M2
384 58.9 46.6 55.0 46.1 55.9 68.9 61.7
448 59.0 45.7 55.1 46.6 55.9 68.9 61.7
512 58.8 45.9 55.0 46.5 55.9 68.8 61.7

M3
384 58.8 46.5 54.9 47.0 55.9 68.8 61.7
448 58.5 46.5 54.4 46.7 55.9 68.8 61.7
512 58.3 46.4 54.3 46.6 55.9 68.8 61.6

R

M1
384 59.0 44.6 56.8 45.0 56.3 69.3 62.1
448 59.2 44.1 57.0 45.9 56.4 69.4 62.2
512 59.2 44.1 57.0 45.9 56.4 69.4 62.2

M2
384 60.8 46.1 60.6 48.4 56.1 69.0 61.9
448 60.8 45.8 60.6 49.2 56.2 69.2 62.0
512 60.6 45.4 60.9 49.0 56.1 69.0 61.9

M3
384 60.3 45.2 60.1 48.8 56.2 69.2 62.0
448 60.5 45.1 60.2 48.8 56.2 69.2 62.0
512 60.1 46.1 59.5 49.0 56.2 69.2 62.0

COCO

V

M1
384 71.6 55.2 61.6 56.5 62.6 64.7 63.6
448 71.4 54.7 61.6 56.2 62.5 64.6 63.5
512 72.3 55.3 62.0 56.8 63.0 65.1 64.0

M2
384 75.2 63.2 62.5 62.7 64.6 66.7 65.7
448 75.8 63.1 63.3 61.7 65.0 67.1 66.0
512 76.0 63.3 63.4 62.5 65.0 67.2 66.1

M3
384 75.1 64.2 62.3 63.1 64.7 66.9 65.8
448 75.9 64.3 62.6 63.4 65.0 67.1 66.1
512 75.8 64.3 62.6 63.4 65.0 67.1 66.1

R

M1
384 78.4 65.3 65.1 64.6 66.7 68.9 67.8
448 79.3 63.0 66.2 64.1 66.9 69.1 68.0
512 79.0 65.9 65.5 65.1 67.1 69.3 68.1

M2
384 79.8 68.9 66.2 65.7 67.2 69.4 68.2
448 80.7 69.4 67.0 66.4 67.7 69.9 68.8
512 80.9 69.6 66.9 68.4 67.9 70.2 69.0

M3
384 79.9 66.3 67.1 65.5 67.2 69.4 68.3
448 81.1 66.9 67.7 66.0 67.8 70.0 68.9
512 81.3 68.1 67.7 66.5 67.9 70.1 69.0

VOC

V

M1
384 89.1 40.0 92.1 54.9 44.1 93.5 59.9
448 89.3 39.3 92.1 54.2 44.1 93.4 59.9
512 89.2 39.9 91.9 54.7 44.1 93.4 59.9

M2
384 89.3 45.4 91.8 59.5 44.2 93.7 60.1
448 89.6 45.3 92.3 59.5 44.3 93.9 60.2
512 89.3 44.8 92.1 59.1 44.3 93.8 60.2

M3
384 89.9 41.0 92.9 56.2 44.5 94.2 60.4
448 90.0 40.5 92.8 55.7 44.5 94.3 60.5
512 90.2 42.0 92.8 57.0 44.4 94.2 60.4

R

M1
384 93.4 40.5 94.8 55.9 45.1 95.6 61.3
448 94.1 40.8 95.5 56.3 45.5 96.3 61.8
512 94.2 41.4 95.4 56.7 45.5 96.3 61.8

M2
384 92.4 44.9 94.1 60.1 45.1 95.5 61.2
448 92.7 44.9 94.0 60.0 45.1 95.5 61.2
512 92.9 45.6 94.7 60.7 45.3 96.0 61.6

M3
384 93.2 42.0 94.8 57.5 45.2 95.8 61.5
448 93.6 42.0 95.1 57.4 45.3 96.1 61.6
512 93.8 42.3 95.6 57.7 45.5 96.4 61.8

that the results of ScaleEn and DistrEn are based on the score
fusion of three and two models respectively, and a fusion of
more models would lead to better results.

We also compare the proposed baseline performance
against that of state-of-the-art approaches including RCP
[18] which uses a random cropping pooling layer capturing
multi-scale information, WILDCAT [19] which designs novel
class-wise and spatial pooling strategies as well as employs
multi-scale input images, RLSD [15] which exploits the label
dependencies using a CNN-RNN framework, AttRegion [10]
and ResNet-SRN-att [12] employing attention mechanisms in

their models. Without these tricks, we only use the basic deep
models and score-level fusion but achieve better performance
on NUS-WIDE (e.g., 59.3% vs 54.1% mAP and 62.0% vs
60.5% overall F1 when using VGG16) and MS-COCO (e.g.,
76.8% vs 67.4% mAP when using VGG16 and 82.4% vs
80.7% mAP when using ResNet101) datasets, comparable
performance on VOC2007 when ResNet101 is used (e.g.,
94.7% vs 95.0% mAP) as indicated by the bold font in Table
3. As a result, our experimental results indicate that the basic
deep models with proper training strategies have more ca-
pabilities than what has been explored for multi-label image
classification and a strong baseline is presented.

Table 3. Comparison with state-of-the-art results on three
benchmark datasets. (Notations are the same as those in Ta-
ble 2. For a fair comparison, we do not list threshold based
precision/recall/F1 reported in literature [10, 26].)

DS BM Method mAP L-P L-R L-F1 O-P O-R O-F1

NUS

V CNN-RNN [9] - 40.5 30.4 34.7 49.9 61.7 55.2
V RLSD [15] 54.1 44.4 49.6 46.9 54.4 67.6 60.3
V WARP [11] - 43.8 57.1 - 54.5 67.9 60.5
V Single Best 59.0 45.7 55.1 46.6 55.9 68.9 61.7
V ScaleEn 59.1 47.2 54.9 47.2 56.1 69.0 61.9
V DistrEn 59.3 47.0 55.0 47.0 56.2 69.1 62.0
R ResNet-SRN-att [12] 61.8 47.4 57.7 47.7 56.2 69.6 62.2
R ResNet-SRN [12] 62.0 48.2 58.9 48.9 56.2 69.6 62.2
R Single Best 60.8 45.8 60.6 49.2 56.2 69.2 62.0
R ScaleEn 61.7 46.9 60.5 49.9 56.7 69.7 62.5
R DistrEn 62.0 46.8 61.1 49.9 56.7 69.8 62.6

COCO

V WARP [11] - 55.5 57.4 - 59.6 61.5 60.5
V Ranking [11] - 57.0 57.8 - 60.2 62.2 61.2
V RLSD [15] 67.4 - - - - - -
V Single Best 75.9 64.3 62.6 63.4 65.0 67.1 66.1
V ScaleEn 76.5 65.2 63.0 64.0 65.4 67.5 66.4
V DistrEn 76.8 64.8 63.6 63.2 65.5 67.7 66.6
R ResNet-SRN [12] 77.1 - - - - - -
R WIDECAT [19] 80.7 - - - - - -
R Single Best 81.3 68.1 67.7 66.5 67.9 70.1 69.0
R ScaleEn 82.2 68.7 68.3 67.3 68.4 70.6 69.5
R DistrEn 82.4 70.4 68.0 69.4 68.6 70.8 69.7

VOC

V CNN-RNN [9] 84.0 - - - - - -
V AttRegion[10] 91.9 - - - - - -
V RLSD [15] 87.3 50.5 90.6 64.9 47.5 92.4 62.7
V RCP [18] 92.5 - - - - - -
V Single Best 90.2 42.0 92.8 57.0 44.4 94.2 60.4
V ScaleEn 90.5 41.4 93.1 56.6 44.6 94.5 60.6
V DistrEn 90.6 43.0 93.3 58.1 44.7 94.6 60.7
R WILDCAT [19] 95.0 - - - - - -
R Single Best 94.2 41.4 95.4 56.7 45.5 96.3 61.8
R ScaleEn 94.5 41.2 95.7 56.7 45.5 96.5 61.9
R DistrEn 94.7 42.0 95.8 57.5 45.6 96.6 62.0

5. CONCLUSION

In summary, we investigate the impacts of varying input
image sizes and data augmentation techniques in multi-
label image classification and present a simple yet effec-
tive score level fusion to explore the complementarity of
different learned models, achieving state-of-the-art perfor-
mance on three benchmark datasets. The results of extensive
experiments presented in this paper demonstrate a proper ex-
ploration of multi-scale information and data augmentation
techniques will benefit multi-label image classification hence
should be considered when designing new deep architectures
for multi-label image classification in future studies.
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