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Abstract
Temporal graphs are used to abstractly model real-life networks that are inherently dynamic in nature,
in the sense that the network structure undergoes discrete changes over time. Given a static underlying
graph G = (V, E), a temporal graph on G is a sequence of snapshots {Gt = (V, Et) ⊆ G : t ∈ N}, one
for each time step t ≥ 1. In this paper we study stochastic temporal graphs, i.e. stochastic processes
G = {Gt ⊆ G : t ∈ N} whose random variables are the snapshots of a temporal graph on G. A
natural feature of stochastic temporal graphs which can be observed in various real-life scenarios is
a memory effect in the appearance probabilities of particular edges; that is, the probability an edge
e ∈ E appears at time step t depends on its appearance (or absence) at the previous k steps. In
this paper we study the hierarchy of models memory-k, k ≥ 0, which address this memory effect
in an edge-centric network evolution: every edge of G has its own probability distribution for its
appearance over time, independently of all other edges. Clearly, for every k ≥ 1, memory-(k − 1)
is a special case of memory-k. However, in this paper we make a clear distinction between the
values k = 0 (“no memory”) and k ≥ 1 (“some memory”), as in some cases these models exhibit a
fundamentally different computational behavior for these values of k, as our results indicate. For
every k ≥ 0 we investigate the computational complexity of two naturally related, but fundamentally
different, temporal path (or journey) problems: Minimum Arrival and Best Policy. In the first
problem we are looking for the expected arrival time of a foremost journey between two designated
vertices s, y. In the second one we are looking for the expected arrival time of the best policy for
actually choosing a particular s-y journey. We present a detailed investigation of the computational
landscape of both problems for the different values of memory k. Among other results we prove that,
surprisingly, Minimum Arrival is strictly harder than Best Policy; in fact, for k = 0, Minimum
Arrival is #P-hard while Best Policy is solvable in O(n2) time.
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1 Introduction

Dynamic network analysis, i.e. analysis of networks that change over time, is currently one
of the most active topics of research in network science and theory. A common task in
this field is to use our prior knowledge of the network link dynamics to answer questions
about the behavior of the network over time, e.g. how quickly information can flow through
it. Many modern real-life networks are dynamic in nature, in the sense that the network
structure undergoes discrete changes over time [31, 36]. Here we deal with the discrete-time
dynamicity of the network links (edges) over a fixed set of nodes (vertices). That is, given an
underlying static graph G, the network evolution over G is given by the successive appearance
or absence of each edge of G at every time step t = 1, 2, . . .. This concept of dynamic network
evolution is given by temporal graphs [27, 29], which are also known by other names such as
evolving graphs [6, 20], or time-varying graphs [1]. For a recent attempt to integrate existing
models, concepts, and results from the distributed computing perspective, see the survey
papers [12, 13] and the references therein.

I Definition 1 (Temporal graph). Given an underlying static graph G = (V,E) on n vertices
and m edges, a temporal graph on G is a sequence G = {Gt = (V,Et) : t ∈ N} of graphs
such that Et ⊆ E for all t ∈ N. Every Gt is the snapshot of G at time step t.

Another way to think about temporal graphs is by assigning time-labels on the edges;
for example, if an edge e appears in the snapshots G3, G5, and G8, then we equivalently
assign to e the set of labels λ(e) = {3, 5, 8}. Due to the vast applicability of temporal graphs,
various structural and algorithmic properties of them have been studied extensively, both
via theoretical/algorithmic analysis and via empirical simulation-based analysis. In many
of these works, one of the central temporal notions is that of a temporal path. A path in
the underlying (static) graph G is a temporal path (or journey) if there exists an increasing
sequence of time-labels as one walks along the edges of the path [27, 29]. Motivated by the fact
that, due to causality, information in temporal graphs can only flow along sequences of edges
that appear in an increasing time order, many temporal graph parameters and optimization
problems that have been studied so far are based on the notion of a temporal path and other
related notions, e.g. temporal analogs of distance, diameter, connectivity, reachability, and
exploration [4, 3, 23, 33, 10, 8, 14, 19, 21, 7, 28, 18]. In addition to temporal paths, recently
also various temporal non-path problems have been introduced and algorithmically studied,
such as temporal vertex cover [5], temporal coloring [30], and temporal ∆-cliques [38, 24].

Apart from the focus on the various algorithmic problems that one can study on temporal
graphs, one can also view temporal graphs through several different levels of knowledge about
the actual network evolution. On the one extreme, we may be given the whole temporal graph
instance in advance, i.e. the times of appearance and absence of every edge at all times, as it
typically happens e.g. when modeling transportation networks. On the other extreme, the
temporal graph may be created by an adversary who reveals it to us snapshot-by-snapshot
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at every time step. Here we focus on the intermediate knowledge settings, captured by
stochastic temporal graphs, where the network evolution is given by a probability distribution
that governs the appearance of each edge over time.

I Definition 2 (Stochastic temporal graph). A stochastic temporal graph is a stochastic
process G = {Gt : t ∈ N} whose random variables are snapshots Gt ⊆ G of an underlying
graph G. Every instantiation of G is a temporal graph.

A natural feature of stochastic temporal graphs which can be observed in various real-
life scenarios (and which we address in this paper) is that the appearance probability of
a particular edge at a given time step t depends on the appearance (or absence) of the
same edge at the previous k ≥ 1 time steps. This “memory effect” can often be observed,
among others, in faulty network communication and in mobile, social, and peer-to-peer
networks [15, 37, 34]. Several other models of temporal networks which exhibit some sort of
probabilistic behavior have been considered in the past, see e.g. [25].

In this paper, we study a hierarchy of models for stochastic temporal graphs which address
an edge-centric network evolution, i.e. they assign to every edge of the underlying graph G a
probability distribution for its appearance over time, independently of all the other edges.
The first and most basic model (memoryless or memory-0) assigns independently to every
edge e a probability pe such that, at every time step, e appears with probability pe. In the
general model (memory-k), at every time step the appearance probability of every edge is a
function of the history of its appearances/absences in the last k ≥ 1 time steps. Clearly, for
every k ≥ 1, the memory-(k − 1) model is a special case of the memory-k model. However,
in this paper we make a clear distinction between the values k = 0 (“no memory”) and
k ≥ 1 (“some memory”), as in some cases these models exhibit a fundamentally different
computational behavior for these values of k, as our results indicate (see Section 4).

Our memory-k model, k ≥ 1, is a direct generalization of the homogeneous version of the
memory-1 model that was introduced in a seminal paper by Clementi et al. [16], in which
all edges have the same probability distribution for their appearance, based on their own
appearance/absence at the previous step. In this homogeneous memory-1 model, Clementi
et al. gave upper bounds for the flooding time and they provided tight characterizations of
the graphs on which the flooding time is constant [16]. It is worth noting here that Avin et
al. [7] studied the completely opposite extreme of our edge-centric evolution; namely they
considered a graph-centric evolution model where a global probability distribution assigns
specific transition probabilities among different snapshots [7]. Between the two extremes
of the edge-centric and the graph-centric network evolution models, there exists a whole
hierarchy of locally interdependent probabilistic patterns, i.e. probability distributions where
the appearance probability of one edge also depends on the appearance of other edges over
time; such models remain mostly unexplored.

In both our memoryless and memory-k variations of stochastic temporal graphs, we study
two fundamental temporal path (i.e. journey) problems that are defined on two designated
vertices s and y. Consider a piece of information that is generated at s at time 1, which we
would like to send to y via an s-y journey. The arrival time of an s-y journey in a realization
of a stochastic temporal graph is the time the information reaches y using this journey. A
foremost s-y journey is one with the smallest arrival time. In the first part of the paper we
investigate the complexity of computing the expected arrival time of a foremost s-y journey.
Basu et al. [9] and Nain et al. [32] studied a similar problem but their work is restricted to
the simpler cases where the underlying graph is either a path or a grid.

In the second part of the paper we investigate the complexity of computing the arrival
time of a best policy for actually choosing a particular s-y journey in the stochastic temporal
graph. To illustrate this notion of a best policy, assume that some piece of information
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is carried by an entity, say Alice. Alice is given as input the parameters of the stochastic
temporal graph (i.e. the probabilistic rules on the edges) and, at every time step, she knows
the current snapshot and her current location. Based on this information, Alice has to
decide at every step for her next action, while her goal is to reach y as quickly as possible on
expectation, starting at time 1. In a very inspiring paper, Basu et al. [8] consider this problem
in the special case of the memoryless model where all edges have the same probability of
appearance at every time, and give a Dijkstra-like polynomial-time algorithm. Special cases
of the memory-1 model were considered in [11].

To illustrate the difference between the two problems we study, we make the following
analogy. In the first problem (Minimum Arrival) we try to transfer information from s

to y using an unbounded number of messages, i.e. we “flood” the stochastic temporal graph
with information. Initially the information is stored at s at time 1 and then, at every step,
every informed vertex informs all its neighbors as soon as the edge between them becomes
available. In the second problem (Best Policy) we try to transfer a package with a tangible
good from s to y. Now, at every step we need to decide for the actual route of the package
through the network: when an edge appears, should we ship the package along it or rather
wait where we currently are? Best Policy is more relevant to real-life applications than
Minimum Arrival, where an actual good journey needs to be found in real time.

Our contribution. In the first part of the paper, in Section 3, we provide our results for
the problem Minimum Arrival, i.e. for computing the expected arrival time of a foremost
s-y journey in a stochastic temporal graph. First we prove in Section 3.1 that Minimum
Arrival is #P-hard even for the memoryless model (and thus also for the memory-k model,
for every k ≥ 1). The reduction is done from the problem #PP2DNF which counts the
number of satisfying assignments in a positive partitioned 2-DNF Boolean formula [35].

Second, we provide in Section 3.2 a non-trivial approximation scheme for Minimum
Arrival, based on dynamic programming, for the memoryless model in the case where
the underlying graph G is a series-parallel graph with s and y being its terminals. More
specifically, it turns out that this is a Fully Polynomial-Time Approximation Scheme (FPTAS)
whenever the probabilities pe are lower bounded by 1

nc for some c ≥ 1. Let X be the random
variable that expresses the arrival time of a foremost s-y journey. For every ε ∈ (0, 1], our
FPTAS gives an algorithm that produces a value µ where E(X)− ε ≤ µ ≤ E(X), and runs
in polynomial time in both n and 1

ε . Although our main result of Section 3.2 concerns
series-parallel graphs, we actually present a more general FPTAS approach (see Theorem 11)
which is of independent interest and could lead to FPTASs also for more general classes of
underlying graphs G.

Third, we present in Section 3.3 a Fully Polynomial Randomized Approximation Scheme
(FPRAS) for Minimum Arrival in the memory-k model, for every k ≥ 0, under the
assumption that every edge appearance probability is lower bounded by 1

nc for some c ≥ 1.
Let X be the random variable that expresses the arrival time of a foremost s-y journey. For
every ε ∈ (0, 1), our FPRAS gives a randomized algorithm that produces an estimate X̃
where (1− ε)E(X) ≤ X̃ ≤ (1 + ε)E(X) with probability tending to 1 as n→∞, and runs in
polynomial time in both n and 1

ε .
In the second part of the paper, in Section 4, we provide our results for the problem

Best Policy, i.e. for computing the expected arrival time of a best policy for choosing a
particular s-y journey. Initially we provide in Section 4.1 a dynamic programming algorithm
for the memoryless model which runs in O(n2) time and space. In wide contrast, we prove in
Section 4.2 that Best Policy becomes #P-hard for the memory-k model, where k ≥ 3, again
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by providing a reduction from the problem #PP2DNF. Finally, we provide in Section 4.3 a
formulation of Best Policy in the memory-k model using the general Markov Decision
Process (MDP) framework which allows us to devise in Section 4 an exact doubly exponential-
time algorithm with running time O(2(kmn+n logn)·2km). Due to lack of space, many proofs
have been omitted; the full proofs of this paper can be found in our technical report [2].

2 Preliminaries

In this paper we consider temporal graphs (see Definition 1) in which the underlying (static)
graph G = (V,E) has n vertices and m edges . A subgraph H = (V,EH) of G, denoted
by H ⊆ G, is a graph where EH ⊆ E. For every vertex u ∈ V , the neighborhood ΓG(u)
of u in G is the set of adjacent vertices of u in G. The closed neighborhood ΓG[u] also
contains vertex u itself, i.e. ΓG[u] = ΓG(u) ∪ {u}. For simplicity of notation we denote
[n] = {1, 2, . . . , n} for every n ∈ N. Furthermore, sometimes we refer to the discrete time
steps t = 1, 2, . . . as days. Throughout the paper we consider stochastic temporal graphs
that exhibit an edge-centric evolution, i.e. every edge e of G is assigned one probability
distribution for its appearance over time, independently of all other edges. We investigate
the case where there is a “memory effect” that governs the probability of appearance of every
edge over time. We distinguish now the cases where the the memory is zero or non-zero.

Memoryless (or memory-0) model. Every edge e ∈ E evolves stochastically and independ-
ently of other edges as follows: at every time step t ∈ N, e appears in Gt with probability pe
and is absent with probability 1− pe, independently of any other time step. The numbers
{pe : e ∈ E} are given parameters of the model. We denote this (memoryless) stochastic
temporal graph by G(0) = (G, {pe : e ∈ E}) or simply G(0) = (G, {pe}).

Memory-k model. This model of temporal graphs exhibits stochastic time-dependency of the
edges: we assume an initial (arbitrary) sequence of k snapshots, G−k+1, . . . , G−1, G0 ⊆ G.
At every time step t ≥ 1, every edge e appears independently of all other edges with
probability that depends only on (the edge and) the history of appearance of e in the
k previous snapshots. At every time step t, this history is a k-bit binary vector, where
a 0-entry (resp. 1-entry) on the i-th position denotes absence (resp. appearance) of e
in Et−k+i−1, for i = 1, . . . , k. Therefore the snapshot Gt is the graph that appears
at time t ≥ 1 as the result of the following experiment: given the history H(k)

e of the
appearance of edge e ∈ E in the last k snapshots, e belongs to Et independently with
probability pe(H(k)

e ). We denote the memory-k stochastic temporal graph by G(k).

In the particular case where k = 1, the memory-1 stochastic temporal graph G(1) is
the sequence {Gt = (V,Et) : t ∈ N} of snapshots such that Et = {e ∈ E : Xe

t = 1},
where {Xe

t }t∈N is a Markov chain for the edge e ∈ E with states {0, 1} (corresponding to
non-appearance and appearance of e, respectively) and probability transition matrix:

Me =

 0 1
0 1− pe pe
1 qe 1− qe

 , where 0 ≤ pe, qe ≤ 1.

Using this formalism, pe (resp. qe) is the probability that the edge e changes its current
state from absence to appearance (resp. from appearance to absence) in the next snapshot.
Note here that, setting pe = p and qe = q for every edge e, we obtain exactly the
well-established edge-Markovian evolving graph model introduced by Clementi et al. [16].
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2.1 The problems

This work studies two main problems, each under the models of stochastic temporal graphs
defined above. To describe both of these problems, let us first recall that information in
temporal graphs flows via journeys, i.e. temporal paths.

I Definition 3 (Time-edge). A time-edge in a temporal graph G = {Gt : t ∈ N} is a pair
(e, t) such that e ∈ Et.

I Definition 4 (Journey / temporal path). Let G = {Gt : t ∈ N} be a temporal graph and
s, y be two vertices of G. An s-y journey (or an s-y temporal path) in G is a sequence(
(e1, t1), . . . , (ex, tx)

)
of time-edges over a path (e1, . . . , ex) from s to y in G, where t1 <

t2 < . . . < tx. The arrival time of the journey is the time tx of appearance of its last edge.

I Definition 5 (Foremost Journey). A foremost s-y journey in a temporal graph G is an s-y
journey with the minimum arrival time amongst all s-y journeys in G.

Notice that the arrival time of a foremost s-y journey in a stochastic temporal graph is a
random variable, which we henceforth denote by X(s, y). The first problem that we study
here is how to compute the expected value of the latter, namely E[X(s, y)].

I Problem 1 (Minimum Arrival). Given a stochastic temporal graph on an underlying
graph G = (V,E) and two distinct vertices s, y ∈ V , compute the expected value of the arrival
time of a foremost s-y journey, i.e. E[X(s, y)].

Now suppose that an individual (say Alice) is at day 0 at vertex s and would like to
arrive at vertex y through a temporal path as quickly as possible. Denote by st the vertex
where she is located at time t; then s0 = s. Every day t Alice “wakes up” in the morning and
looks at which edges are available in today’s snapshot; by only knowing her current position,
the history of the last k snapshots, and the input parameters of the stochastic temporal
graph (i.e. the probabilistic rules of edge appearance), Alice needs to decide whether:
(a) to stay at the vertex st she currently is, or
(b) to use an edge of Gt to move to a neighboring vertex.
That is, st+1 is either equal to st or equal to some vertex of ΓGt

(st).
A natural problem we can study here is to compute the expected arrival time of an s-y

journey that Alice can follow, using a best policy1 possible, i.e. a policy (sequence of actions)
that minimizes her expected arrival time at y. Notice that the arrival time of the journey
suggested to Alice by the best policy is a random variable Y (s, y), whose distribution depends
on the specific stochastic temporal graph. In particular, in the memoryless model, the
expectation of Y (s, y) depends only on the edges’ probabilities of appearance. In the memory-
k model, the expectation of Y (s, y) also depends on the initial snapshots G−k+1, . . . , G−1, G0.

I Problem 2 (Best Policy). Given a stochastic temporal graph G(k) on an underlying
graph G = (V,E) and two distinct vertices s, y ∈ V , compute EG(k) [Y (s, y)].

In particular, we will write h(s, y) def= EG(0) [Y (s, y)] and h(s, y,G0) def= EG(1) [Y (s, y)].

1 We use the term “policy” here (instead of “strategy”) since, as we will see later, this problem can be
formulated using a Markov Decision Process (MDP).
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Difference between the two problems

Before we proceed further, we first give an example illustrating that the problems Minimum
Arrival and Best Policy are different. In fact, the gap between the solution to Minimum
Arrival and the solution to Best Policy can be arbitrarily large: Consider the graph
consisting of vertices s and y and n− 2 vertex disjoint paths of length 2 between s and y.
Assume also that, under the memoryless model, every edge incident to s appears each day with
probability 1 and every edge incident to y appears each day independently with probability
n−0.9. Similarly to the above example of the graph with n− 2 vertex disjoint paths of length
2, here the expected arrival time of a best policy for Alice is h(s, y) = 1 + n0.9. On the other
hand, the arrival time of the foremost journey from s to y will be equal to the first day after
day 1 on which some edge incident to y appears. But the time needed for the latter to happen
follows the geometric distribution with success probability 1 − (1 − n−0.9)n−2 = 1 − o(1).
Therefore, the expected arrival time of the foremost journey will be E[X(s, y)] = 2 + o(1),
i.e. much smaller than h(s, y) = 1 + n0.9.

As a final note, the expected arrival time E[X(s, y)] of the foremost s-y journey is always
upper-bounded by the minimum among the expected values of the arrival times of all s-y
journeys in the temporal graph. This is actually implied by a more general and well-known
lemma in Probability Theory (Fatou’s lemma [17, p. 29]) which establishes that the expected
value of the minimum among n random variables is upper-bounded by the minimum among
all the variables’ expectations.

3 Computing the expected minimum arrival time

3.1 Hardness of exact computation in the memoryless model
In this section we show that, even in the memoryless model, Minimum Arrival is #P-hard
in both undirected graphs and directed acyclic graphs (DAGs). In the proof of the following
theorem, the edges can be treated either as oriented, in which case we obtain the result for
DAGs, or as non-oriented, in which case we obtain the result for undirected graphs.

I Theorem 6. Minimum Arrival in the memoryless model is #P-hard.

I Corollary 7. For every k ≥ 0, Minimum Arrival in the memory-k model is #P-hard.

3.2 The FPTAS for the memoryless model on series-parallel graphs

3.2.1 The case of paths
In this section we will consider a stochastic temporal graph P(0) = (P = (V,E), {pe}) with
the underlying graph being a path P = (s = v0, v2, . . . , vn = y).

I Lemma 8. E[XP(0)(s, y)] =
∑
e∈E

1
pe
.

Let us denote by µ the expectation µ def= E[XP(0)(s, y)] =
∑
e∈E

1
pe
. Note that

µ =
∞∑
i=1

Pr[XP(0)(s, y) ≥ i]. (1)

In the remainder of this section we will show that the first O(µ lnµ) terms of sum (1) already
give a very good approximation of µ. In our analysis we will use the following bound.
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I Theorem 9 ([26]). Let X =
∑n
i=1 Xi, where n ≥ 1 and Xi, i = 1, . . . , n, are independent

geometric random variables with parameters p1, p2, . . . , pn ∈ (0, 1], respectively. Let µ =
E[X] =

∑n
i=1

1
pi
. Then for any λ ≥ 1, Pr[X ≥ λµ] ≤ e1−λ.

I Lemma 10. Let ε be a number such that 0 < ε ≤ 1. Then

µ−
τ∑
i=1

Pr[XP(0)(s, y) ≥ i] =
∞∑

i=τ+1
Pr[XP(0)(s, y) ≥ i] < ε,

for every τ ≥ µ
(
ln µ

ε + 1
)
, where µ = E[XP(0)(s, y)].

3.2.2 A general FPTAS approach
While deriving analytically and computing efficiently the exact solution of Minimum Arrival
in a path is an easy task (cf. Lemma 8), it does not seem to be trivial for a slight generalization
of paths, called parallel compositions of paths. A parallel composition of paths is the graph
obtained from a collection of disjoint paths P1, P2, . . . , P` with end vertices si, yi, i = 1, . . . , `,
respectively, by identifying the vertices s1, s2, . . . , s` in a single vertex s, and by identifying
the vertices y1, y2, . . . , y` in a single vertex y.

It is not clear whether there exists an efficient procedure for computing the expected
arrival time from s to y in a parallel composition of paths, even if the parallel paths are of
equal length and all the probabilities of edge appearance are the same. In this section we
present a general approach for developing ε-additive approximation algorithms2 for computing
the expected arrival time of a foremost journey in special classes of stochastic temporal graphs.
In Section 3.2.3 we apply this approach to develop an efficient ε-additive approximation
algorithm for the problem on the class of stochastic temporal graphs with underlying graphs
being series-parallel graphs, which generalize parallel compositions of paths and graphs in
which all simple s-y paths are of the same length.

Throughout the section we denote by G(0) = (G = (V,E), {pe}) a memoryless stochastic
temporal graph with n vertices and m edges, and by s, y ∈ V two distinct vertices in G.
Furthermore, we denote by H = (V,E,w) the weighted graph obtained from the underlying
graph G by assigning to every edge e ∈ E the weight w(e) = 1

pe
.

I Theorem 11. Let c ∈ N and ε ∈ (0, 1]. Let pe ≥ 1
nc for every e ∈ E and suppose that there

exists an algorithm A that computes in time O (f(`, n,m)) the probabilities Pr[XG(0)(s, y) ≥ i],
for all i = 1, . . . , `. Then there exists an algorithm B that approximates E[XG(0)(s, y)] within
the additive factor of ε in time

O
(
f
(
nc+1 ln n

ε
, n,m

)
+ n lnn+m

)
.

Consequently, if f(`, n,m) is a polynomial in variables `, n, and m, then B is an FPTAS on
the instance (G(0), s, y).

Proof. Let P = (s = v0, v1, . . . , vr = y) be a minimum weight s-y path in H, and let P(0) be
the stochastic temporal subgraph of G(0) restricted to the edges of P . For convenience, let us
denote ei = vi−1vi for every i = 1, . . . , r. Then, by definition and Lemma 8, the weight w∗

2 A feasible solution is ε-additive approximate if it is within ε additive factor from the optimal value.
An algorithm is called an ε-additive approximation algorithm if it returns an ε-additive approximate
solution for any instance.
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of P is equal to
∑r
i=1

1
pei

= E[XP(0)(s, y)]. Let τ := w∗
(

ln w∗

ε + 1
)
. Then, by Lemma 10,

we have that
∞∑

i=τ+1
Pr[XG(0)(s, y) ≥ i] ≤

∞∑
i=τ+1

Pr[XP(0)(s, y) ≥ i] < ε,

and hence
τ∑
i=1

Pr[XG(0)(s, y) ≥ i] ≤ E[XG(0)(s, y)] =
∞∑
i=1

Pr[XG(0)(s, y) ≥ i]

<

τ∑
i=1

Pr[XG(0)(s, y) ≥ i] + ε,

that is,
∑τ
i=1 Pr[XG(0)(s, y) ≥ i] approximates E[XG(0)(s, y)] within the additive factor of ε.

Now we define the desired algorithm B as follows:
1. Construct the graph H and compute the minimum weight w∗ of an s-y path in H using

Dijkstra’s algorithm.
2. Using algorithm A, compute the probabilities Pr[XG(0)(s, y) ≥ i], i = 1, . . . , τ , where

τ = w∗
(

ln w∗

ε + 1
)
.

3. Output
∑τ
i=1 Pr[XG(0)(s, y) ≥ i].

The above discussion implies that algorithm B correctly computes the declared approxim-
ation of E[XG(0)(s, y)]. It remains to justify the time complexity. First, Dijkstra’s algorithm
can be implemented to work in time O(n lnn + m) [22]. Second, the assumption on pe’s
implies that w∗ = O(nc+1), and hence τ = w∗

(
ln w∗

ε + 1
)

= O
(
nc+1 ln n

ε

)
. Therefore

the assumption of the theorem implies that the last two steps of the algorithm run in
time O

(
f
(
nc+1 ln n

ε , n,m
))

, which in turn implies the complexity bound and completes
the proof. J

3.2.3 The FPTAS for stochastic temporal series-parallel graphs
In the present section we use the approach from Section 3.2.2 to derive a polynomial-time
approximation scheme for stochastic temporal series-parallel graphs.

I Theorem 12. Let ε ∈ (0, 1] and let G(0) = {G = (V,E), {pe}} be a stochastic temporal
series-parallel graph, where s and y are the terminals of G and pe ≥ 1

nc for every e ∈ E.
Then Minimum Arrival on G(0) admits an FPTAS with running time O

(
m · n2c+2 ln2 n

ε

)
,

where |V | = n and |E| = m.

3.3 The FPRAS for general graphs in the memory-k model, k ≥ 0
In this section, we present our FPRAS for Minimum Arrival in the memory-k model, for
every k ≥ 0, under the assumption that the appearance probability of every edge e is lower
bounded by 1

nc for some c ≥ 1 regardless of the history H
(k)
e , i.e. pe(x) ≥ 1

nc holds for
all x ∈ {0, 1}k.

I Theorem 13. Let ε ∈ (0, 1) and let G(k) be a memory-k stochastic temporal graph with
two designated vertices s, y. Furthermore let every edge appearance probability be at least

1
nc for some c ≥ 1, regardless of the history H(k)

e of e. Then Minimum Arrival admits an
FPRAS which runs in O

(
mn5c+8

ε4 · log(nε )
)
time with probability of success at least 1− 2

n .
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4 Computing the expected arrival time of a best policy

In this section we investigate the computational complexity of our second problem, namely
Best Policy.

4.1 A polynomial-time algorithm for the memoryless model

In this section we focus on the memoryless model and we derive a polynomial-time dynamic-
programming algorithm for Best Policy. We define for every vertex v the expected arrival
time h(v, y) def= EG(0) [Y (v, y)] of the v-y journey suggested to Alice by a best policy (i.e. when
Alice starts her journey at vertex v). For simplicity of presentation, throughout Section 4.1
we write h(v) def= h(v, y).

Assume for now that for all v ∈ V , the value h(v) is given; let v1 = y, v2, . . . , vn be
an ordering of vertices of V in non-decreasing values of h (ties broken arbitrarily), namely
h(v1) ≤ h(v2) ≤ · · · ≤ h(vn). Clearly, v1 = y and h(v1) = h(y) = 0.

Let st be the vertex that Alice occupied at time t and recall that ΓGt(v) is the neighborhood
of vertex v in the snapshot Gt, for all v ∈ V and all t ∈ N. Notice that, the best strategy
of Alice at time t+ 1 is to look at all neighboring vertices of st in Gt+1 and find one with
minimum h-value, namely a vertex u ∈ arg min{h(v) : v ∈ ΓGt+1(st)}. If h(u) ≥ h(st), then
Alice has no incentive to change vertex and thus st+1 = st. Otherwise, if h(u) < h(st),
then st+1 = u.

Therefore, to find the best choice for Alice, it suffices to find the values h(v), v ∈ V .
In view of the above, if Alice is on vertex vi at time 0 (i.e. she is on the i-th best vertex
in terms of closeness to y), she will move to the j-th best (with j < i) only if an edge
appears between vi and vj in the next step, and no edge to a vertex better than vj appears
(i.e. no edge between vi and v`, 1 ≤ ` ≤ j − 1). This happens with probability Qi,j =
p{vi,vj}

∏j−1
`=1(1− p{vi,v`}), where {vi, v`} denotes the (undirected) edge between vi and v`.

Additionally, with probability Qi =
∏i−1
`=1(1 − p{vi,v`}) no edge to a vertex better than vi

will appear, in which case Alice will stay on vi. Therefore h(vi) can be recursively computed

by h(vi) =
∑i−1
j=1 Qi,jh(vj) +Qih(vi) + 1, or equivalently h(vi) =

∑i−1
j=1 Qi,jh(vj) + 1

1−Qi
, with

initial condition h(v1) = 0. Indeed, the above equation follows by observing that the expected
length of the foremost journey to y when Alice is on vi is equal to 1 + h(v1) with probability
Qi,1 (which is the probability that an edge between vi and v1 = y exists), plus 1 + h(v2)
with probability Qi,2 (which is the probability that an edge between vi and the second best
vertex v2 exists, but there is no edge between vi and v1), and so on. In general, the above
recurrence states that there is no incentive to visit vertices with larger index and also Alice
will visit the smallest index vertex vj for which the edge {vi, vj} is present (otherwise, if no
such edge exists, she will stay on vi). Using the above recurrence, we can compute all values
of h(vi) by a bottom-up dynamic programming algorithm.

I Theorem 14. Best Policy can be optimally computed in the memoryless model in O(n2)
time and space.

4.2 Hardness of computation for the memory-k model, k ≥ 3

We now show that Best Policy is #P-hard for memory-3 stochastic temporal graphs on
directed acyclic graphs, and consequently also for memory k ≥ 3.
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I Theorem 15. When the underlying graph is a Directed Acyclic Graph (DAG), it is #P-hard
to compute the expected arrival time of the best policy journey in the memory-3 model.

Proof. We will provide a reduction from the counting problem #PP2DNF which is known
to be #P-hard [35]. This problem takes as input a DNF formula Φ =

∨
(i,j)∈E xiyj on the

sets of variables X = {x1, . . . , xn} and Y = {y1, . . . , ym}, for some E ⊆ [n]× [m], and the
task is to compute the number ψ of truth assignments that satisfy Φ. We create a directed
acyclic graph (DAG) H as follows. First, H has one vertex for each of the variables in X ∪Y ;
then we add two distinct vertices s, y and one other vertex v. For every vertex xi ∈ X and
every vertex yi ∈ Y we add the directed edges (s, xi) and (yj , y). Furthermore we add the
edge (xi, yj) whenever xiyj is a clause in Φ. Finally we add the edges (s, v) and (v, y). The
construction of H is illustrated in Figure 1.

. . . . . .

X Y

s

v

y

Figure 1 The construction of the DAG H.

Denote byM = 5·2n+m, and assume that 2n+m ≥ 3 in order to avoid trivialities. All edges
(xi, yj) appear constantly in H, i.e. they appear at every time step i ≥ 1 in a memoryless
fashion with probability 1. Both edges (s, v) and (v, y) also appear in a memoryless fashion,
each of them with probability 2

M at every step i ≥ 1. Moreover, each of the edges (s, xi) and
(yj , y) appears at each step i ≥ 1 according to the following table of memory 3. This table
has four columns and eight rows. Each column is labeled with the sequence of consecutive
time steps i− 3, i− 2, i− 1, and i. Each row corresponds to a different triple of appearances
of each of the edges in {(s, xi), (yj , y) : x ∈ X, y ∈ Y } at the time steps i− 3, i− 2, i− 1 (here
1 means “edge exists” and 0 means “edge does not exist”). At the end of each row there is a
pair of numbers (p, 1− p) which denotes that, with the particular history of memory 3, at
time step i the edge appears with probability p and it does not appear with probability 1− p.
For simplicity of notation, in the column of time step i, we write “0” and “1” to denote the
entries (0, 1) and (1, 0), respectively.

i− 3 i− 2 i− 1 i

0 0 1 0
0 1 0 ( 1

2 ,
1
2 )

1 0 0 0
0 0 0 0
1 0 1 1
0 1 1 1
1 1 1 1
1 1 0 1

To complete the description of our memory-3 instance, we specify that, in the fictitious
initialization snapshots G−2, G−1, G0, each of the edges (s, xi) and (yj , y) appears with
probability 0, 0, and 1, respectively, i.e. according to the first row of the above table.

ICALP 2019



131:12 How Fast Can We Reach a Target Vertex in Stochastic Temporal Graphs?

The intuition of this table for the edges (s, xi) and (yj , y) is as follows. In the snapshot
G1, none of these edges appears (see the first line of the table). Then, to determine whether
each of these edges appears at time step 2 (see the second row of the table), we need to toss
an unbiased coin which with probability 1

2 outputs “appear” and with probability 1
2 outputs

“does not appear”. Once this coin has been tossed at time step 2, the status of the edge
does not change any more in any subsequent time step i ≥ 3. That is, if one of the edges
(s, xi) and (yj , y) appears (resp. does not appear) at time 2, then it appears (resp. does not
appear) at all times i ≥ 3 too. This is easy to be verified by observing the rows 3-7 of the
table. Note that the last row of the table is included only for the sake of completeness, as it
does not affect the appearance of any edge of H at any time step i.

Let ` be the expected s-y arrival time of the best policy in the memory-3 model. Note
that, from the above construction of the temporal graph instance, each of the edges (s, xi)
and (yj , y) appears with probability 1

2 at all steps i ≥ 2, while it does not appear at any step
i ≥ 2 with probability 1

2 . Therefore, the probability that there exists a directed temporal
path (s, xi, yj , y) is equal to g = ψ

2n+m , where ψ is the number of satisfying truth assignments
of the DNF formula Φ. That is, with probability 1− g, there exists no such temporal path
from s to y with 3 edges through some vertices xi and yj . Furthermore, the expected s-y
arrival time through the edges (s, v) and (v, y) is equal to M

2 + M
2 = M . Therefore, since

with probability 1 − g any policy (also the best one) needs to travel from s to y through
vertex v, it follows that ` ≥M(1− g).

We now define the following policy: at time step 1 do nothing and just wait for the
outcome of the random coin tosses which occur at time step 2. Subsequently, at time step 2
do the following: if there exists a directed temporal path (s, xi, yj , y) then follow it, starting
at time step 2; otherwise follow the temporal path (s, v, y) which has an expected travel time
M
2 + M

2 = M . The expected arrival time of this particular policy is equal to 1+3g+M(1−g),
and thus it follows that ` ≤ 1 + 3g +M(1− g). Summarizing, we have:

M(1− g) ≤ ` ≤ 1 + 3g +M(1− g)⇔

5 · 2n+m − 5ψ ≤ ` ≤ 5 · 2n+m − 5ψ + 3 ψ

2n+m + 1.

The first inequality can be written as 2n+m − `
5 ≤ ψ, while the second one can be written as(

1− 3
5·2n+m

)
ψ ≤ 2n+m − `

5 + 1
5 . Therefore:

2n+m − `

5 ≤ ψ ≤
(

1 + 3
5 · 2n+m − 3

)(
2n+m − `

5 + 1
5

)
≤ 2n+m − `

5 + 1
5 + 3

4 ,

and thus 2n+m − `
5 ≤ ψ ≤ 0.95 + 2n+m − `

5 . Therefore, knowing the expected value ` for the
best policy we can derive the exact integer value for ψ in the counting problem #PP2DNF.
This completes the #P-hardness reduction. J

4.3 An exact algorithm for the memory-k model, k ≥ 1
In this section we present a doubly exponential-time exact algorithm for computing the
best policy for Alice in the memory-k model, where k ≥ 1. Our results in this section are
derived using a Markov Decision Process (MDP) formulation of our problem under the
memory-k model.

I Theorem 16. Let k ≥ 1 and G(k) be a stochastic temporal graph, where the underly-
ing graph G has n vertices and m edges. Then Best Policy can be solved on G(k) in
O(2(kmn+n logn)·2km) time.
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