
Smart Scheduling of Household Appliances to
Decarbonise Domestic Energy Consumption
Kitty Stacpoole, Hongjian Sun

Department of Engineering
Durham University, Durham, UK

hongjian.sun@durham.ac.uk

Jing Jiang
Department of Mathematics, Physics & Electrical Engineering

Northumbria University, Newcastle, UK
jing.jiang@northumbria.ac.uk

Abstract—Demand side response (DSR) and the inter-
connectivity of smart technologies will be essential to transform
and revolutionize the way consumers engage with the energy
industry. The carbon intensity of electricity varies throughout
the day as a result of emissions released during generation.
These fluctuations in carbon intensity are predicted to increase
due to increased penetration of variable generation sources.
This paper proposes a novel insight into how reductions in
domestic emissions can be achieved, through the scheduling of
certain wet appliances to optimally manage low carbon electricity.
An appliance detecting and scheduling algorithm is presented
and results are generated using real demand data, electricity
generation and carbon intensity values. Reductions were achieved
from the variations in grid carbon intensity and the availability
of solar generation from a household photovoltaic (PV) supply.

I. INTRODUCTION

DUE to global concerns of climate change, there has been
an ever-increasing focus on the decarbonisation of the

energy industry [1]. Decarbonising domestic energy consump-
tion is an important step towards achieving low carbon future.

Aghaei et al. explored the potential for DSR to fundamen-
tally alter grid fuel mix by enabling intermittent renewable
energy sources (RESs) such as wind and solar [2], albeit this is
only at a conceptual level. Cooper et al. analysed the impact of
emissions of heat pumps and micro-cogenerators participating
in DSR [3]. This was a small scale, technology-specific study
but results showed that DSR programmes with heat-pumps
could cause significant reductions in CO2 emissions. Lau et al.
considered the carbon savings in a number of DSR initiatives,
comparing the business-as-usual case with various smart DSR
intervention programmes [4]. Smith et al. explored how DSR,
capacity planning and carbon emissions will interact in the
future. It was concluded that, contrary to expectations, DSR
carried out to reduce peak load did not increase carbon
emissions. However, this paper does not explore how carbon
emissions can be actively minimised through DSR.

The current literature on DSR focuses on economic in-
centives, for example the application of Time-of-Use (ToU)
tariffs to encourage consumers to reduce their consumption
during periods of high demand. Ozturk et al. used a ToU
tariff within a self organising home energy network to reduce
prices for the customer [5]. DSR can help to reduce peak
demand through the coordinated control of electric vehicles
(EVs), and PVs [6], [7]. Amongst the literature, there are

papers which model specific appliances, for example Good
et al. considered DSR based on thermal energy storage in the
form of hot water storage [8]. One of the methods to achieve
reduced expenditure on electricity bills without compromising
electricity needs is via a home energy management system
(HEMS) [9]. HEMSs allow consumers to participate in the
optimal management of renewable energy, storage and EVs
whilst meeting any constraints set by the distribution network
operators. A HEMS allows consumers to monitor, control
and manage household appliances. In most of the literature a
HEMS was employed to carry out DSR by means of appliance
monitoring and communication infrastructure. Gosselin et al.
studied the optimal management of storage and EVs as part of
an HEMS when subject to financial constraints [10]. The paper
looked into how bi-directional charging of EVs and energy
storage can result in a household becoming better adapted
to respond to generation. Joo et al. proposed a HEMS with
multiple smart homes. The control of appliances are managed
by the local HEMS, whilst energy storage and power trading
between households is carried out via the global HEMS [11].

In summary, the literature presents many examples of how
DSR can result in financial savings for the consumer, reduce
peak demand and help stabilise the grid. However, the variabil-
ity of grid carbon intensity on a daily basis is rarely considered
as an incentive for DSR. With increasing shares of variable
generation technologies, such as wind and solar, it is vital
to manage the availability of low carbon electricity. Different
from existing research, this paper conducts novel research
on the variability of electricity carbon intensity and how
appliance scheduling can minimise domestic carbon emissions.
It investigates the carbon footprint of two wet appliances
(washing machine and dishwasher) when scheduling their start
time to minimise carbon intensity. Results were generated
using a real time carbon intensity that integrates the carbon
intensity of the grid with renewable energy such as PV. This
paper creates a model to detect the appliances in the real
demand data and reschedules these appliances to minimise
carbon footprint. A simulation was then built to detect and
reschedule appliances throughout the year to determine the
impacts of rescheduling appliances and installing PV.

The remainder of this paper is organised as follows: Section
II presents system and algorithm. Simulations and discussions
are presented in Section III, and Section IV draws conclusions.



II. SYSTEM AND ALGORITHM

A. Carbon Emission

Carbon intensity values for grid electricity consumption are
generated using 2018 grid generation data [12] and generation
carbon intensity factors as shown in Table I [13].

TABLE I
CARBON INTENSITY BY GENERATION TYPE.

Generation Type 2018 Demand CO2e (g/kWh)
Coal 5.8% 910
Nuclear 23.0% 0
CCGT 43.7% 360
Wind 14.9% 0
Pumped Storage 0.9% 0
Hydro 1.2% 0
Biomass 6.1% 300
Oil 0% 610
Solar 4.1% 0
OCGT 0% 480
French Interconnector - 90
Dutch Interconnector - 550
Irish Interconnector - 450

Firstly, the model generates a carbon intensity of grid
electricity at time t, Ct

g , using (1). It sums the individual
contributions of emissions from different generation types to
produce a real-time carbon intensity value depending on the
energy mix. The grid carbon intensity is given by:

Ct
g =

K∑
k=1

[
Dt

k

Dt
total

Ct
k

]
(1)

where, at time t, k represents the generation type, Dt
k repre-

sents the national electricity generation from k, Dt
total is the

total national electricity demand and Ct
k is the carbon intensity

factor for k.
The carbon intensity of household electricity consumption,

Ct
h, includes electricity contributions from the grid and from

the household PV supply. It is calculated using (2):

Ct
h =

P t
gC

t
g + P t

sC
t
s

P t
g + P t

s

(2)

where P t
g and P t

s represent the electricity taken from the
grid and PV system respectively at time, t. Ct

g is the carbon
intensity of the grid, calculated using (1) and Ct

s is the carbon
intensity of electricity from the household PV supply.

The amount of electricity taken from the grid, P t
g is calcu-

lated using (3):
P t
g = P t

d − P t
s (3)

where, at time t, P t
d the electricity demand of the household

and P t
s is the electricity generated from the household PV

source. The carbon intensity for the household PV source, Ct
s

is taken to be zero. There is a carbon intensity associated
with the embedded carbon of PV cells during manufacture.
However, this is disregarded for the scope of this model as the
carbon intensity factors in Table I do not include the embedded
carbon of plant construction.

It can be seen in (2) that when there is no PV generation
(P t

s = 0) the household carbon intensity equals grid carbon
intensity (Ct

h = Ct
g). When the PV generation exceeds the

household demand, P t
s > P t

d, then P t
g < 0 and this represents

the case where there is a surplus of PV generation. In this
case, the renewable energy could be sold back to the grid. This
will be important in future scenarios when PV exports can be
curtailed to manage energy balancing and network issues.

However, this model does not include the option to sell
electricity back to the grid. The electricity taken from the
grid is taken to be zero when there is a surplus of electricity
generated from the PV supply, P t

s > P t
d. Equation (4) is

applied to ensure the calculated household carbon intensity
is always a positive integer of zero:

P t
g =

{
P t
d − P t

s if P t
d > P t

s

0 otherwise
(4)

The carbon emission calculator provides a household carbon
intensity (gCO2e/kWh) which represents the carbon emission
per kWh of electricity consumption in the household. Fig. 1
shows an example of the calculated carbon intensity on a typi-
cal summers day with Fig. 1(a) showing the carbon intensity of
the national grid electricity and a typical daily household PV
generation. The model combines these two data sets with the
demand data to produce a carbon intensity of the household,
shown in Fig. 1(b).
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Fig. 1. (a) Typical grid electricity carbon intensity and household PV
generation. (b) Calculated household carbon intensity from a typical day’s
electricity demand.

Fig. 1(b) shows there can be significant variations in
household carbon intensity. The calculated household carbon
intensity was then used to reschedule certain appliances to
times of low carbon intensity.



B. Appliance Classification and Detection

Two wet appliances were considered: a washing machine
and a dishwasher. These appliances were chosen as they are
considered to be flexible in their starting time, resulting in
minimal discomfort to the consumer. A two stage detection
algorithm was developed that both detected and verified ap-
pliances in the historic demand data.

The first part of the algorithm detects appliances in the
real demand data. Two search array signal templates were
used, Pwm and Pdw for the washing machine and dishwasher,
respectively. These template signals are shown in Fig. 2,
representing a typical operating cycle for each appliance [14].
These power search array signals were used to detect similar
appliance operating cycles in the historic electricity demand
data.
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Fig. 2. Operating cycles for two wet appliances: (a) washing machine (WM),
(b) dishwasher (DW) [14].

Appliances were detected using the Matlab function find-
signal which finds the location of a segment in the demand
data that best fits the search array, using a similarity search
when compared to the search array signals Pwm or Pdw. The
next stage is to verify the detected appliance by calculating the
Pearson correlation coefficient, R using equation (5) and (6).
This coefficient measures the strength between variables and
in this case it measures the similarity of the detected appliance
with the template signal. For each appliance that is detected,
the verification coefficient is calculated using (5) and (6):

R =
n(Σxy) − (Σx)(Σy)√

[nΣx2 − (Σx)2][nΣy2 − (Σx)2]
(5)

x = Pa, y =

{
Pwm if a = 1

Pdw if a = 2
(6)

where Pwm and Pdw are the template search array signals
for the washing machine and dishwasher respectively, given
in Fig. 2, n is the number of data points, and Pa is the

segment of the demand of the detected appliance. In (5)
and (6), x represents the data points of the detected signal
and y represents the template appliance data points. R must
be greater than the given threshold value, α, to verify the
appliance detection method as shown in (7). This value α can
be increased or reduced which would result in the detection
of more or fewer appliances. However, if this value is set too
low, this could result in inaccurate detection. Equations (5)
and (6) are subject to the following constraint:

R ≥ α, 0 ≤ α ≤ 1 (7)

If an appliance is detected and verified, it is removed from
the household electricity demand data. Pa is the power demand
of the detected appliance, a, that was removed from the data
at a time of detection td and a duration T. The detection
of an appliance is subject to the following constraint shown
in equation (8), which ensures that the operating power of
the detected appliance does not exceed the original electricity
demand at time t:

P t
a < P t

d, t0 ≤ t ≤ t0 + T (8)

where P t
a represents the operating power cycle of the detected

appliance at time t and P t
L represents the historic demand

power at time t.

C. Appliance Scheduling

The aim of the appliance scheduling is to minimise the
carbon footprint of each detected appliance. The objective
function (9) finds the minimum carbon emission of the op-
eration of the appliance by choosing an optimal start time ts:

Cmin = min

ts+T∑
t=ts

A∑
a=1

Ct
hP

t
a, 0 ≤ ts ≤ 24 − T (9)

where ts is the rescheduled start time, T is the duration of
the appliance operation cycle, A is the number of rescheduled
appliances, Ct

h is the household carbon intensity and P t
a is the

operating power of the detected appliance. In order to ensure
the operation of the appliance does not exceed the length of
the day, limits are applied to ts shown in equation (9).

The original carbon footprint of the appliance without any
rescheduling, Coriginal, is found using equation (10):

Coriginal =

td+T∑
t=td

A∑
a=1

Ct
hP

t
a, (10)

where td is the time of detection, T is the duration of the
operating cycle, A is the total number of appliances. Using
equation (11) it is possible to calculate the reduction in carbon
emissions, ∆C, after the rescheduling process:

∆C = Coriginal − Cmin. (11)



D. Total Daily Carbon Emissions

If an appliance or multiple appliances are detected, the
power demand from their detected operating cycle is removed
from the daily demand at a time of detection, td. This is
repeated for any other appliances that have been successfully
detected and verified. The appliances are then rescheduled
to minimise the total carbon emissions for the day using
equation (9). For every possible start time ts, for each detected
appliance, the start time is rescheduled to produce a updated
household power demand, Pn for the day. This new electricity
demand is used to calculate a new household carbon intensity
using equation (2) and the carbon emissions for the entire day
using equation (12):

Ctotal =

24∑
t=0

Ct
hP

t
n. (12)

This equation is repeated for every combination of resched-
uled start time for each appliance. The rescheduling time at
which the total carbon emission is at a minimum is recorded.

E. Proposed Algorithm

The following flow chart in Fig. 3 outlines the structure of
the algorithm.

Fig. 3. Flowchart of proposed algorithm.

The algorithm’s input data includes historic electricity de-
mand data, Pd, PV generation data Ps, and template search
array signals for a washing machine and a dishwasher, Pwm

and Pdw respectively. The algorithm then searches the demand
data for waveforms that are similar to the search array signals.
These detected appliances are then verified using (5). The
start time of the appliance is optimally selected to minimise

the carbon emission of its operation as described in (9). The
reduction in carbon emissions due to rescheduling is calculated
using (11). Once the optimal start time is found, the daily
demand data can be updated with the rescheduled appliance
and the total carbon emission for the day is calculated using
(12). The algorithm outputs the following results:

• Number of appliances detected,
• Time of appliance detection in original demand data,
• Original daily carbon emission,
• Carbon emission with appliance rescheduling,
• Time that appliance was rescheduled to.

III. RESULTS AND DISCUSSION

A. Data Sources

Data for UK electricity generation and demand including
generation type for 2018 is taken from GridWatch [12].
This source provides data at 5 minute intervals including the
total demand and generation source. The household electricity
demand data P t

d at time, t, could be obtained from smart me-
ters or energy monitors, such as Efergy technologies Engage
system used in the SWIi project [15].

PV sources are considered as local generation in the
dwellings as the PV generation can be directed towards
a significant reduction in domestic carbon emissions. Solar
generation is considered for a household PV system with an
area of 10m2, system efficiency of 0.1 and a 40o slope of
panel. This outputs P t

s which is the PV electricity generation
at time t. To reduce carbon emission, this electricity generation
will be used in real time to meet the household electricity
demand (i.e. there is no household storage).

B. Simulation Set Up

The simulations were run for the duration of over half year
for three different dwelling types. The data for each dwelling
type included generation from a PV supply. The number of
hourly divisions, tp is taken to be 4 for each simulation (i.e.,
15 minutes interval) and the accuracy threshold for detection,
α, is taken to be 0.9. Appliances were only rescheduled if
they were detected in the demand data and the correlation
coefficient, R, is greater than the threshold value, α. Results
were collected for the three dwellings in four different events
to fully understand the effect of appliance scheduling. The four
events are given in Table II.

TABLE II
SCENARIOS FOR SIMULATION RESULTS.

PV supply Appliance Scheduling
No Intervention (NI) No No

Scenario 1 No Yes
Scenario 2 Yes No
Scenario 3 Yes Yes

Fig. 4 shows a typical sunny day where the rescheduling
process has been carried out. It can be seen that two appliances
have been rescheduled from approximately 18 hr and 22 hr
to the middle of day where the household carbon intensity is
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Fig. 4. A typical sunny day where two appliances have been rescheduled to minimise carbon emissions.

significantly reduced. This reduction in carbon intensity is due
to the PV generation.

C. Results

1) Appliance Carbon Footprint: When considering only the
carbon footprint of the appliance, before and after scheduling,
it was found that all three scenarios outlined in Table II
resulted in a reduction of carbon footprint. The results show
that on average, a household with only grid supply can reduce
the carbon footprint of a wet appliance by 23.9% by optimally
scheduling its start time. This reduction marginally improved
in scenario 2 (26.8%) where the appliance is not rescheduled
but some of the household demand is met with PV generation.
Finally, the greatest reduction in emissions is generated in
scenario 3, where the household has a PV supply and the
appliance start time is scheduled to minimise carbon footprint.
This scenario resulted in a significant average carbon footprint
reduction of 74.7% for the operation of an appliance.

TABLE III
AVERAGE REDUCTIONS IN CARBON FOOTPRINT OF APPLIANCES SUBJECT

TO SCENARIOS 1-3.

% Reduction in carbon emissions
Scenario 1 Scenario 2 Scenario 3

Dwelling Type 1 23.0 26.3 74.7
Dwelling Type 2 24.6 26.7 74.8
Dwelling Type 3 24.1 27.4 74.7

Average 23.9 26.8 74.7

Fig. 5(a) represents the carbon footprint reductions in
scenario 1, where appliances are rescheduled in response to
variations in grid carbon intensity only. In this case, very few
appliances reduced their carbon footprint by more than 50%.
Scenario 2, where appliances are not rescheduled and reduc-
tions are due to the availability of household PV generation,
is shown in Fig. 5(b). Reductions were entirely due to the
availability of PV generation and whether it aligned with the
appliance operation. In this scenario, there was a significant
share of the appliances that reduced their footprint by 0−10%.
It is likely that this share is represented by the appliances

Fig. 5. Histogram showing the reduction in carbon footprint of rescheduled
appliances for (a) scenario 1, (b) scenario 2 and (c) scenario 3, when compared
to emissions with no intervention.

that were operated in the evening when the household carbon
intensity is not significantly effected by the presence of a PV
supply. However, some appliances had a reduction of over
80%. These greater reductions could represent the appliances
that were operated during the day, where the availability of PV
generation could dramatically reduce their carbon footprint.
Scenario 3 demonstrates appliance scheduling in a household
with electricity from the grid as well as a PV supply and
is shown in Fig. 5(c). This scenario resulted in the majority
of appliances reducing their footprint by over 60%. Fig. 5
shows that carbon footprint reductions can be made through
the scheduling of the appliance both with and without a PV
supply. The greatest reductions are achieved through optimally



scheduling the start time of the appliance in a household with
a PV supply (scenario 3).

Fig. 6 shows how the reductions in carbon footprint for the
three scenarios varied for the dwelling type 1. Data is only
included on the days when an appliance, or multiple appliances
are detected and rescheduled. It can be seen that the reductions
for scenarios 2 and 3 were significantly increased during
the summer. This could be due to increased solar radiation
providing an increased share of low carbon electricity.
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Fig. 6. Percentage decrease in carbon footprint of appliance usage in the case
of scenarios 1-3.

2) Total carbon emissions from electricity: Table IV shows
the predicted results of annual carbon emission. The total
annual carbon emission is given for each scenario and the
reduction in emission is found by subtracting the carbon
emission from the No Intervention (NI) case.

TABLE IV
ANNUAL CARBON EMISSIONS FROM TOTAL ELECTRICITY DEMAND.

Dwelling Type Type 1 Type 2 Type 3 Average
Scenario Carbon emissions (kg)

NI 1196.2 1175.7 1174.3 1182.1
1 1187.6 1166.4 1164.2 1172.8
2 900.4 880.7 880.7 887.3
3 882.8 863.5 861.3 869.2

Reduction in emissions (kg)
1 8.7 9.3 10.1 9.4
2 295.8 295.0 293.5 294.8
3 313.4 312.2 312.9 312.9

% reduction
1 0.7 0.8 0.9 0.8
2 24.7 25.1 25.0 24.9
3 26.2 26.6 26.7 26.5

When considering the total annual carbon emissions, each
of the three scenarios resulted in a reduction in emissions.
Across the three dwellings, on average 218 appliances were
detected and rescheduled. These appliances accounts for 40%
scheduling capability of wet appliances and wet appliances
only make up for 15% of electricity consumption. For scenario
1, where demand was only met with grid electricity, the
carbon emission reduction as a result of rescheduling 218
wet appliances was 0.8%. This reduction can be increased

to 26.5% in scenario 3 where appliance scheduling is applied
alongside generation from a PV supply.

IV. CONCLUSIONS

The results show that the scheduling of wet household
appliances as part of a DSR scheme can lead to reductions
in domestic carbon emissions. If there are no restrictions of
operation time, the average reduction in carbon emissions for
the operation cycle of a rescheduled appliance is 74.7% in
a dwelling with both PV and grid supply, and 23.9% in a
dwelling with only grid supply, respectively. These reductions
were due to the variations of grid carbon intensity and the
availability of PV generation. If more appliances were consid-
ered in the rescheduling process, this could lead to significant
savings in carbon emissions.
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