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Abstract18

A k-colouring c of a graph G is a mapping V (G)→ {1, 2, . . . k} such that c(u) 6= c(v) whenever u19

and v are adjacent. The corresponding decision problem is Colouring. A colouring is acyclic, star,20

or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and21

edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an22

acyclic colouring. The corresponding decision problems are Acyclic Colouring, Star Colouring23

and Injective Colouring (the last problem is also known as L(1, 1)-Labelling).24

A classical complexity result on Colouring is a well-known dichotomy for H-free graphs, which25

was established twenty years ago (in this context, a graph is H-free if and only if it does not contain26

H as an induced subgraph). Moreover, this result has led to a large collection of results, which27

helped us to better understand the complexity of Colouring. In contrast, there is no systematic28

study into the computational complexity of Acyclic Colouring, Star Colouring and Injective29

Colouring despite numerous algorithmic and structural results that have appeared over the years.30

We initiate such a systematic complexity study, and similar to the study of Colouring we use31

the class of H-free graphs as a testbed. We prove the following results:32

1. We give almost complete classifications for the computational complexity of Acyclic Colouring,33

Star Colouring and Injective Colouring for H-free graphs.3435

2. If the number of colours k is fixed, that is, not part of the input, we give full complexity36

classifications for each of the three problems for H-free graphs.37

From our study we conclude that for fixed k the three problems behave in the same way, but this is38

no longer true if k is part of the input. To obtain several of our results we prove stronger complexity39

results that in particular involve the girth of a graph and the class of line graphs.40
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1 Introduction47

We study the complexity of three classical colouring problems. We do this by focusing on48

hereditary graph classes, i.e., classes closed under vertex deletion, or equivalently, classes49

characterized by a (possibly infinite) set F of forbidden induced subgraphs. As evidenced by50

numerous complexity studies in the literature, even the case where |F| = 1 captures a rich51

family of graph classes suitably interesting to develop general methodology. Hence, we usually52

first set F = {H} and consider the class of H-free graphs, i.e., graphs that do not contain H53

as an induced subgraph. We then investigate how the complexity of a problem restricted to54

H-free graphs depends on the choice of H and try to obtain a complexity dichotomy.55

To give a well-known and relevant example, the Colouring problem is to decide, given56

a graph G and integer k ≥ 1, if G has a k-colouring, i.e., a mapping c : V (G)→ {1, . . . , k}57

such that c(u) 6= c(v) for every two adjacent vertices u and v. Král’ et al. [37] proved58

that Colouring on H-free graphs is polynomial-time solvable if H is an induced subgraph59

of P4 or P1 + P3 and NP-complete otherwise. Here, Pn denotes the n-vertex path and60

G1 +G2 = (V (G1)∪ V (G2), E(G1)∪E(G2)) the disjoint union of two vertex-disjoint graphs61

G1 and G2. If k is fixed (not part of the input), then we obtain the k-Colouring problem.62

No complexity dichotomy is known for k-Colouring if k ≥ 3. In particular, the complexities63

of 3-Colouring for Pt-free graphs for t ≥ 8 and k-Colouring for sP4-free graphs for s ≥ 264

and k ≥ 3 are still open. Here, we write sG for the disjoint union of s copies of G. We refer65

to the survey of Golovach et al. [27] for further details and to [13, 36] for updated summaries.66

For a colouring c of a graph G, a colour class consists of all vertices of G that are mapped67

by c to a specific colour i. We consider the following special graph colourings. A colouring of68

a graph G is acyclic if the union of any two colour classes induces a forest. The (r+ 1)-vertex69

star K1,r is the graph with vertices u, v1, . . . , vr and edges uvi for every i ∈ {1, . . . , r}. An70

acyclic colouring is a star colouring if the union of any two colour classes induces a star71

forest, that is, a forest in which each connected component is a star. A star colouring is72

injective (or an L(1, 1)-labelling) if the union of any two colour classes induces an sP1 + tP273

for some integers s ≥ 0 and t ≥ 0. An alternative definition is to say that all the neighbours74

of every vertex of G are uniquely coloured. These definitions lead to the following three75

decision problems:76

Acyclic Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have an acyclic k-colouring?

77

Star Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have a star k-colouring?

78

Injective Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have an injective k-colouring?

79

If k is fixed, we write Acyclic k-Colouring, Star k-Colouring and Injective k-80

Colouring, respectively.81

All three problems have been extensively studied. We note that in the literature on82

the Injective Colouring problem it is often assumed that two adjacent vertices may be83

coloured alike by an injective colouring (see, for example, [29, 30, 33]). However, in our84



J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma and S. Smith 23:3

paper, we do not allow this; as reflected in their definitions we only consider colourings that85

are proper. This enables us to compare the results for the three different kinds of colourings86

with each other.87

So far, systematic studies mainly focused on structural characterizations, exact values,88

lower and upper bounds on the minimum number of colours in an acyclic colouring or89

star colouring (i.e., the acyclic and star chromatic number); see, e.g., [2, 9, 19, 20, 21, 34,90

35, 50, 51, 53], to name just a few papers, whereas injective colourings (and the injective91

chromatic number) were mainly considered in the context of the distance constrained labelling92

framework (see the survey [11] and Section 6 therein). The problems have also been studied93

from a complexity perspective, but apart from a study on Acyclic Colouring for graphs94

of bounded maximum degree [45], known results are scattered and relatively sparse. We95

perform a systematic and comparative complexity study by focusing on the following research96

question both for k part of the input and for fixed k:97

What are the computational complexities of Acyclic Colouring, Star Colouring and98

Injective Colouring for H-free graphs?99

Before discussing our new results and techniques, we first briefly discuss some known results.100

Coleman and Cai [14] proved that for every k ≥ 3, Acyclic k-Colouring is NP-complete101

for bipartite graphs. Afterwards, a number of hardness results appeared for other hereditary102

graph classes. Alon and Zaks [3] showed that Acyclic 3-Colouring is NP-complete for line103

graphs of maximum degree 4. Angelini and Frati [4] showed that Acyclic 3-Colouring104

is NP-complete for planar graphs of maximum degree 4. Mondal et al. [45] proved that105

Acyclic 4-Colouring is NP-complete for graphs of maximum degree 5 and for planar106

graphs of maximum degree 7. Albertson et al. [1] and recently, Lei et al. [38] proved that107

Star 3-Colouring is NP-complete for planar bipartite graphs and line graphs, respectively.108

Bodlaender et al. [7], Sen and Huson [48] and Lloyd and Ramanathan [41] proved that109

Injective Colouring is NP-complete for split graphs, unit disk graphs and planar graphs,110

respectively. Mahdian [44] proved that for every k ≥ 4, Injective k-Colouring is NP-111

complete for line graphs, whereas Injective 4-Colouring is known to be NP-complete for112

cubic graphs (see [11]); observe that Injective 3-Colouring is trivial for general graphs.113

On the positive side, Lyons [43] showed that every acyclic colouring of a P4-free graph114

is, in fact, a star colouring. Lyons [43] also proved that Acyclic Colouring and Star115

Colouring are polynomial-time solvable for P4-free graphs; we note that Injective116

Colouring is trivial for P4-free graphs, as every injective colouring must assign each vertex117

of a connected P4-free graph a unique colour. The results of Lyons have been extended to118

P4-tidy graphs and (q, q− 4)-graphs [40]. Cheng et al. [12] complemented the aforementioned119

result of Alon and Zaks [3] by proving that Acyclic Colouring is polynomial-time solvable120

for claw-free graphs of maximum degree at most 3. Calamoneri [11] observed that Injective121

Colouring is polynomial-time solvable for comparability and co-comparability graphs.122

Zhou et al. [52] proved that Injective Colouring is polynomial-time solvable for graphs123

of bounded treewidth (which is best possible due to the W[1]-hardness result of Fiala et124

al. [22]).125

Our Complexity Results and Methodology126

The girth of a graph G is the length of a shortest cycle of G (if G is a forest, then its girth127

is ∞). To answer our research question we focus on two important graph classes, namely128

the classes of graphs of high girth and line graphs, which are interesting classes on their129

own. If a problem is NP-complete for both classes, then it is NP-complete for H-free graphs130

CVIT 2016
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whenever H has a cycle or a claw. It then remains to analyze the case when H is a linear131

forest, i.e., a disjoint union of paths; see [8, 10, 25, 37] for examples of this approach, which132

we discuss in detail below.133

The construction of graph families of high girth and large chromatic number is well134

studied in graph theory (see, e.g. [18]). To prove their complexity dichotomy for Colouring135

on H-free graphs, Král’ et al. [37] first showed that for every integer g ≥ 3, 3-Colouring is136

NP-complete for the class of graphs of girth at least g. This approach can be readily extended137

to any integer k ≥ 3 [17, 42]. The basic idea is to replace edges in a graph by graphs of high138

girth and large chromatic number, such that the resulting graph has sufficiently high girth139

and is k-colourable if and only if the original graph is so (see also [28, 32]).140

By a more intricate use of the above technique we are able to prove that for every g ≥ 3,141

Acyclic 3-Colouring is NP-complete for the class of graphs of girth at least g. This142

implies that Acyclic 3-Colouring is NP-complete for H-free graphs whenever H has a143

cycle. We prove the same result for every k ≥ 4 by combining known results, just as we144

use known results to prove that Star k-Colouring (k ≥ 3) and Injective k-Colouring145

(k ≥ 4) are NP-complete for H-free graphs if H has a cycle.146

A classical result of Holyer [31] is that 3-Colouring is NP-complete for line graphs147

(and Leven and Galil [39] proved the same for k ≥ 4). As line graphs are claw-free, Král’ et148

al. [37] used Holyer’s result to show that 3-Colouring is NP-complete for H-free graphs149

whenever H has an induced claw. For Acyclic 3-Colouring, this follows from Alon and150

Zaks’ result [3], which we extend to work for k ≥ 4. For Injective k-Colouring (k ≥ 4)151

we can use the aforementioned result on line graphs of Mahdian [44].152

The above hardness results leave us to consider the case where H is a linear forest. In153

Section 2 we will use a result of Atminas et al. [5] to prove a general result from which it154

follows that for fixed k, all three problems are polynomial-time solvable for H-free graphs if155

H is a linear forest. Hence, we have full complexity dichotomies for the three problems when156

k is fixed. However, these positive results do not extend to the case where k is part of the157

input: we prove NP-completeness for graphs that are Pr-free for some small value of r or158

have a small independence number, i.e., that are sP1-free for some small integer s.159

Our complexity results for H-free graphs are summarized in the following three theorems,160

proven in Sections 3–5, respectively; see Table 1 for a comparison. For two graphs F and G,161

we write F ⊆i G or G ⊇i F to denote that F is an induced subgraph of G.162

I Theorem 1. Let H be a graph. For the class of H-free graphs it holds that:163164

(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H is165

not a forest or H ⊇i 19P1, 3P3 or 2P5;166167

(ii) For every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H is a linear168

forest and NP-complete otherwise.169

I Theorem 2. Let H be a graph. For the class of H-free graphs it holds that:170171

(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete for any172

H 6= 2P2.173174

(ii) For every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a linear forest175

and NP-complete otherwise.176

I Theorem 3. Let H be a graph. For the class of H-free graphs it holds that:177178

(i) Injective Colouring is polynomial-time solvable if H ⊆i P4 or H ⊆i P1 + P3 and179

NP-complete if H is not a forest or 2P2 ⊆i H or 6P1 ⊆i H.180181
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polynomial time NP-complete
Colouring [37] H ⊆i P4 or P1 + P3 else
Acyclic Colouring H ⊆i P4 else except for at most 1991 open cases
Star Colouring H ⊆i P4 else except for 1 open case
Injective Colouring H ⊆i P4 or P1 + P3 else except for 10 open cases
k-Colouring (see [13, 27, 36]) depends on k infinitely many open cases for all k ≥ 3
Acyclic k-Colouring (k ≥ 3) H is a linear forest else
Star k-Colouring (k ≥ 3) H is a linear forest else
Injective k-Colouring (k ≥ 4) H is a linear forest else

Table 1 The state-of-the-art for the three problems in this paper and the original Colouring
problem; both when k is fixed and when k is part of the input.

(ii) For every k ≥ 4, Injective k-Colouring is polynomial-time solvable if H is a linear182

forest and NP-complete otherwise.183

In Section 6 we give a number of open problems that resulted from our systematic study; in184

particular we will discuss the distance constrained labelling framework in more detail.185

186

2 A General Polynomial Result187

A biclique or complete bipartite graph is a bipartite graph on vertex set S ∪ T , such that188

S and T are independent sets and there is an edge between every vertex of S and every189

vertex of T ; if |S| = s and |T | = t, we denote this graph by Ks,t , and if s = t, the biclique is190

balanced and of order s. We say that a colouring c of a graph G satisfies the balance biclique191

condition (BB-condition) if c uses at least k + 1 colours to colour G, where k is the order of192

a largest biclique that is contained in G as a (not necessarily induced) subgraph.193

Let π be some colouring property; e.g., π could mean being acyclic, star or injective.194

Then π can be expressed in MSO2 (monadic second-order logic with edge sets) if for every195

k ≥ 1, the graph property of having a k-colouring with property π can be expressed in MSO2.196

The general problem Colouring(π) is to decide, on a graph G and integer k ≥ 1, if G has a197

k-colouring with property π. If k is fixed, we write k-Colouring(π). We now prove the198

following result.199

I Theorem 4. Let H be a linear forest, and let π be a colouring property that can be expressed200

in MSO2, such that every colouring with property π satisfies the BB-condition. Then, for201

every integer k ≥ 1, k-Colouring(π) is linear-time solvable for H-free graphs.202

Proof. Atminas, Lozin and Razgon [5] proved that that for every pair of integers ` and k,203

there exists a constant b(`, k) such that every graph of treewidth at least b(`, k) contains an204

induced P` or a (not necessarily induced) biclique Kk,k. Let G be an H-free graph, and let `205

be the smallest integer such that H ⊆i P`; observe that ` is a constant. Hence, we can use206

Bodlaender’s algorithm [6] to test in linear time if G has treewidth at most b(`, k)− 1.207

First suppose that the treewidth of G is at most b(`, k)− 1. As π can be expressed in208

MSO2, the result of Courcelle [15] allows us to test in linear time whether G has a k-colouring209

with property π. Now suppose that the treewidth of G is at least b(`, k). As G is H-free, G is210

P`-free. Then, by the result of Atminas, Lozin and Razgon [5], we find that G contains Kk,k211

as a subgraph. As π satisfies the BB-condition, G has no k-colouring with property π. J212

CVIT 2016
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We now apply Theorem 4 to obtain the polynomial cases for fixed k in Theorem 1–3.213

I Corollary 5. Let H be a linear forest. For every k ≥ 1, Acyclic k-Colouring, Star214

k-Colouring and Injective k-Colouring are polynomial-time solvable for H-free graphs.215

Proof. All three kinds of colourings use at least s colours to colour Ks,s (as the vertices216

from one bipartition class of Ks,s must receive unique colours). Hence, every acyclic, star217

and injective colouring of every graph satisfies the BB-condition. Moreover, it is readily seen218

that the colouring properties of being acyclic, star or injective can all be expressed in MSO2.219

Hence, we may apply Theorem 4. J220

3 Acyclic Colouring221

In this section, we prove Theorem 1. For a graph G and a colouring c, the pair (G, c) has a222

bichromatic cycle C if C is a cycle of G with |c(V (C)| = 2, i.e., the vertices of C are coloured223

by two alternating colours (so C is even). A path P in G is an i-j-path if the vertices of P224

have alternating colours i and j. We now prove the following result.225

I Lemma 6. For every g ≥ 3, Acyclic 3-Colouring is NP-complete for graphs of girth226

at least g.227

Proof. We reduce from Acyclic 3-Colouring, which is known to be NP-complete [14].228

We start by taking a graph F that has a 4-colouring but no 3-colouring and that is of girth229

at least g. By a seminal result of Erdős [18], such a graph F exists (and its size is constant,230

as it only depends on g which is a fixed integer). We now repeatedly remove edges from F231

until we obtain a graph F ′ that is acyclically 3-colourable. Let xy be the last edge that we232

removed. As F has no 3-colouring, the edge xy exists. Moreover, by our construction, the233

graph F ′ + xy is not acyclically 3-colourable. As edge deletions do not decrease the girth,234

F ′ + xy and F ′ have girth at least g.235

The basic idea (Case 1) is as follows. Let G be an instance of Acyclic 3-Colouring.236

We pick an edge uv ∈ E(G). In G− uv we “glue” F ′ by identifying u with x and y with v;237

see also Figure 1. We then prove that G has an acyclic 3-colouring if and only if G′ has an238

acyclic 3-colouring. Then, by performing the same operation for each other edge of G as well,239

we obtain a graph G′′, such that G has an acyclic 3-colouring if and only if G′′ has so. As240

the size of G′′ is polynomial in the size of G and the girth of G′′ is at least g, we have proven241

the theorem. The challenge in this technique is that we do not know how the graph F ′ looks.242

We can only prove its existence and therefore have to consider several possibilities for the243

properties of the acyclic 3-colourings of F ′. Hence, we distinguish between Cases 1–3, 4a,244

and 4b.245

u = x

v = y

G− uv F ′

Figure 1 The graph G′ from Case 1.
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Case 1: Every acyclic 3-colouring of F ′ assigns different colours to x and y.246

We construct the graph G′ as described above and in Figure 1. We claim that G is a247

yes-instance of Acyclic 3-Colouring if and only if G′ is a yes-instance of Acyclic248

3-Colouring.249

First suppose that G has an acyclic 3-colouring c. Let c∗ be an acyclic 3-colouring of F ′.250

We may assume without loss of generality that c(u) = c∗(x) and c(v) = c∗(y). Hence, we251

can define a vertex colouring c′ of G′ with c′(w) = c(w) if w ∈ V (G) and c′(w) = c∗(w) if252

w ∈ V (F ′). As c and c∗ are 3-colourings of G and F ′, respectively, c′ is a 3-colouring of G′.253

We claim that c′ is acyclic. For contradiction, assume that (G′, c′) has a bichromatic cycle C.254

If all edges of C are in G or all edges of C are in F ′, then (G, c) or (F ′, c∗) has a bichromatic255

cycle, which is not possible as c and c∗ are acyclic. Hence, at least one edge of C belongs to256

G and at least one edge of C belongs to F ′. This means that C contains both u = x and257

v = y. Recall that G contains the edge uv. Consequently, (G, c) has a bichromatic cycle,258

namely the cycle induced by V (C) ∩ V (G), a contradiction.259

Now suppose that G′ has an acyclic 3-colouring c′. Let c and c∗ be the restrictions of260

c′ to V (G) and V (F ′), respectively. Then c and c∗ are acyclic 3-colourings of G− uv and261

F ′, respectively. By our assumption and because c∗ is an acyclic 3-colouring of F ′, we find262

that c∗(x) 6= c∗(y), or equivalently, c(u) 6= c(v). This means that c is also a 3-colouring of G263

and c∗ is also a 3-colouring of F ′ + xy. We claim that c is acyclic on G. For contradiction,264

assume that (G, c) has a bichromatic cycle C. As c is an acyclic 3-colouring of G− uv, we265

deduce that C must contain the edge uv = xy. As F ′ + xy has no acyclic 3-colouring by266

construction and c∗ is a 3-colouring of F ′ + xy, we find that (F ′ + xy, c∗) has a bichromatic267

cycle D. As c∗ is an acyclic 3-colouring of F ′, this means that D contains the edge xy = uv.268

However, then (G′, c′) has a bichromatic cycle, namely the cycle induced by V (C) ∪ V (D), a269

contradiction.270

Let F ∗ be the graph obtained from F ′ by adding a new vertex x′ and edges xx′ and x′y. As271

F ′ + xy has girth at least g, we find that F ∗ and F ∗ − x′y have girth at least g. As x′ has272

degree 1 in F ∗ − x′y and F ′ has an acyclic 3-colouring, F ∗ − x′y has an acyclic 3-colouring.273

u = x′

v = y

G− uv F ′

x

Figure 2 The graph G′ from Case 2.

Case 2: All acyclic 3-colourings of F ′ assign the same colour to x and y and F ∗ has no274

acyclic 3-colouring.275

In this case we let G′ be the graph obtained from G − uv and F ∗ − x′y by identifying u276

with x′ and v with y; see also Figure 2. We claim that G is a yes-instance of Acyclic277

3-Colouring if and only if G′ is a yes-instance of Acyclic 3-Colouring.278

First suppose that G has an acyclic 3-colouring c. Let c∗ be an acyclic 3-colouring279

of F ∗ − x′y. Then the restriction of c∗ to F ′ is an acyclic 3-colouring of F ′. By our280

assumption, it holds therefore that c∗(x) = c∗(y) and thus c∗(x′) 6= c∗(y). We may assume281
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without loss of generality that c(u) = c∗(x′) and c(v) = c∗(y). Hence, we can define a vertex282

labelling c′ of G′ with c′(w) = c(w) if w ∈ V (G) and c′(w) = c∗(w) if w ∈ V (F ∗). As c and283

c∗ are 3-colourings of G and F ∗ − x′y, respectively, c′ is a 3-colouring of G′. We claim that284

c′ is acyclic. For contradiction, assume that (G′, c′) has a bichromatic cycle C. If the edges285

of C are all in G or all in F ∗ − x′y, then (G, c) or (F ∗ − x′y, c∗) has a bichromatic cycle,286

which is not possible as c and c∗ are acyclic. Hence, at least one edge of C belongs to G and287

at least one edge of C belongs to F ′. This means that C contains both u = x′ and v = y.288

Recall that G contains the edge uv. Consequently, (G, c) has a bichromatic cycle, namely289

the cycle induced by V (C) ∩ V (G), a contradiction.290

Now suppose that G′ has an acyclic 3-colouring c′. Let c and c∗ be the restrictions of291

c′ to V (G − uv) and V (F ∗ − x′y), respectively. Then c and c∗ are acyclic 3-colourings of292

G − uv and F ∗ − x′y, respectively. Moreover, the restriction of c′ to V (F ′) is an acyclic293

3-colouring of F ′. By our assumption, this means that c′(x) = c′(y) and thus c∗(x′) 6= c∗(y),294

or equivalently, c(u) 6= c(v). Consequently, c is also a 3-colouring of G and c∗ is also a295

3-colouring of F ∗. We claim that c is acyclic. For contradiction, assume that (G, c) has a296

bichromatic cycle C. As c is an acyclic 3-colouring of G−uv, we deduce that C must contain297

the edge uv = x′y. As F ∗ does not have an acyclic 3-colouring by our assumption and c∗298

is a 3-colouring of F ∗, we find that (F ∗, c∗) has a bichromatic cycle D. As c∗ is an acyclic299

3-colouring of F ∗ − x′y, this means that D must contain the edge x′y = uv. However, then300

(G′, c′) has a bichromatic cycle, namely the cycle induced by V (C) ∪ V (D), a contradiction.301

G− uv

u = x1

y1

v = y2

x2

F ′
2

F ′
1

Figure 3 The graph G′ with the graph F + from Case 3 (before we recursively repeat g times the
operation of placing the graph F + on the y1x2-edge).

Case 3: All acyclic 3-colourings of F ′ assign the same colour to x and y and F ∗ has an302

acyclic 3-colouring.303

We first construct a new graph F+ as follows. We take the disjoint union of two copies F ′1304

and F ′2 of F ′, where we denote the vertices x and y as x1 and y1 in F ′1 and as x2 and y2 in305

F ′2. We add edges x1x2, x2y1, and y1y2 to F ′1 + F ′2; see also Figure 3.306

We claim that F+ has an acyclic 3-colouring. First, observe that F+ is the union of307

two copies of F ∗ sharing exactly one edge, namely y1x2. That is, F ′1 + x1x2, y1x2 and308

F ′2 + y1y2, y1x2 are both isomorphic to F ∗. By our assumption on F ∗, graphs F ′1 +x1x2, x2y1309

and F ′2 + y1y2, y1x2 have acyclic 3-colourings c1 and c2, respectively. By our assumption on310

F ′, the restriction of c1 to F ′1 gives x1, y1 the same colour and the restriction of c2 to F ′2 gives311

x2 and y2 the same colour. We may assume without loss of generality that c1 assigns colour 1312

to x1 and y1 and colour 2 to x2, and that c2 assigns colour 2 to x2 and y2 and colour 1313

to y1. This yields a 3-colouring c+ of F+. We claim that c+ is acyclic. For contradiction,314

suppose (F+, c+) has a bichromatic cycle C. As the restrictions of c+ to F ′1 + x1x2, y1x2315

and F ′2 + y1y2, y1x2 (the 3-colourings c1 and c2) are acyclic, C must contain the edges x1x2316

and y1y2, so C has the chord y1x2. Hence, (F ′1 + x1x2, y1x2, c1) has a bichromatic cycle on317
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vertex set (V (C) \ V (F2)) ∪ {x2}, a contradiction.318

We now essentially reduce to Case 1. Set x = x1, y = y2 and take the graph F+. We319

proved above that F+ has an acyclic 3-colouring. As every acyclic 3-colouring c of F+ colours320

x1 and y1 alike, c colours x = x1 and y = y2 differently (as y1x2 is an edge). Finally, the321

graph F+ +xy = F+ +x1y2 has no acyclic 3-colouring, as for every 3-colouring c of F+ +x1y2,322

the 4-vertex cycle x1x2y1y2x1 is bichromatic for (F+ + x1y2, c). The only difference with323

Case 1 is that the graph F+ + x1y2 has girth 4 due to the cycle x1x2y1y2x1 whereas we need324

the girth to be at least g just as the graph F ′ + xy in Case 1 has girth g. Hence, before325

reducing to Case 1, we first recursively repeat g times the operation of placing the graph F+
326

on the y1x2-edge; note that the size of the resulting graph G′ is still polynomial in the size327

of G.328

Case 4: There exist acyclic 3-colourings c1 and c2 of F ′ with c1(x) = c1(y) and c2(x) 6= c2(y).329

We first construct a new graph J . We take two disjoint copies F ′1 and F ′2 of F ′ and identify330

the two x-vertices with each other and also the two y-vertices with each other. We write331

x = x1 = x2 and y = y1 = y2; see also Figure 4 (left).332

x

y

F ′
1 F ′

2

J J ′ x = x1

y

F ′
1 F ′

2

x2

Figure 4 The graph J from Case 4 (left) and the graph J ′ from Case 4b (right).

We distinguish between two sub-cases.333

Case 4a: J has an acyclic 3-colouring.334

Our goal is to reduce either to Case 2 or 3 by using J instead of F ′. We first observe that335

J and J + xy have girth at least g. We also note that J + xy has no acyclic 3-colouring,336

as otherwise F ′ + xy, being an induced subgraph of J + xy, has an acyclic 3-colouring.337

Hence, in order to reduce to Case 2 or 3 it remains to show that every acyclic 3-colouring338

of J assigns the same colour to x and y. For contradiction, suppose that J has an acyclic339

3-colouring c such that c(x) 6= c(y), say c(x) = 1 and c(y) = 2. Then in at least one of the340

two subgraphs F ′1 and F ′2 of J , say F ′1, there exists no 1-2 path from x to y; otherwise (J, c)341

has a bichromatic cycle formed by the union of the two 1-2-paths, which is not possible as c342

is acyclic. Let c′ be the restriction of c to V (F ′1). Then, as c(x) = 1 and c(y) = 2, we find343

that c′ is a 3-colouring of F ′1 + xy. As there is no 1-2 path from x to y in F ′1, we find that c′344

is even an acyclic 3-colouring of F ′1 + xy, a contradiction (recall that F ′ + xy has no acyclic345

3-colouring by construction).346

Case 4b: J has no acyclic 3-colouring.347

By assumption, F ′ has an acyclic 3-colouring that gives x and y different colours. We first348

prove a claim.1349

Claim 1. For every triple (h, i, j) with {h, i, j} = {1, 2, 3}, every acyclic 3-colouring c of F ′350

with c(x) = c(y) = h yields an h-i path and h-j path from x to y.351

1 Claim 1 only holds for k = 3 and is the reason we cannot generalize Lemma 6 to k ≥ 3.
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We prove Claim 1 as follows. For contradiction, suppose that F ′ has an acyclic 3-colouring c352

that colours x and y alike, say c(x) = c(y) = 1, such that F ′ contains no 1-2-path or no353

1-3-path, say F ′ contains no 1-2-path from x to y. Then by swapping colours 2 and 3, we354

obtain another acyclic 3-colouring c′ of F ′ such that F ′ contains no 1-3-path from x to y. In355

J we now colour the vertices of F ′1 by c and the vertices of F ′2 by c′. As c(x) = c(x′) = 1 and356

c(y) = c(y′) = 1, this yields a 3-colouring cJ . By assumption, cJ is not acyclic. Hence, (J, cJ )357

contains a bichromatic cycle C with colours 1 and i for some i ∈ {2, 3}. As the restrictions358

of cJ to F ′1 and F ′2 are acyclic, C must contain at least one vertex of V (F ′1) \ {x, y} and359

at least one vertex of V (F ′2) \ {x, y}. Thus C consists of 1-i-paths from x to y in both F ′1360

and F ′2. As at least one of these paths is missing in F ′1 or F ′2, this yields a contradiction.361

We now construct a new graph J ′ as follows. We take two disjoint copies F ′1 and F ′2 of F ′362

and still identify y1 and y2 as y, but instead of identifying x1 and x2 we add an edge between363

x1 and x2; see also Figure 4 (right).364

We now prove some more claims that will enable us to reduce to Case 1.365

(i) The graphs J ′ and J ′ + x1y have girth at least g.366

This follows directly from the fact that respectively, F ′ and F ′ + xy have girth at least g.367

(ii) The graph J ′ + x1y has no acyclic 3-colouring.368

This follows directly from the fact that F ′ + xy is an induced subgraph of J ′ + x1y and has369

no acyclic 3-colouring by construction.370

(iii) The graph J ′ has an acyclic 3-colouring.371

This can be seen as follows. By assumption, F ′ has an acyclic 3-colouring c that gives x and372

y different colours, say c(x) = 1 and c(y) = 3. By swapping colours 1 and 2 we obtain an373

acyclic 3-colouring c′ of F ′ with c′(x) = 2 and c′(y) = 3. As c(y) = c′(y) = 3, this yields a374

3-colouring cJ′ of J ′. As the restrictions of cJ′ to F ′1 and F ′2 are acyclic, any bichromatic375

cycle of (J ′, cJ′) must pass through x1, x2 and y. However, x1, x2 and y have colours 1, 2, 3,376

respectively. Hence, this is not possible.377

(iv) Every acyclic 3-colouring of J ′ gives x1 and y different colours.378

For contradiction, assume J ′ has an acyclic 3-colouring c that colours x1 and y alike, say379

c(x1) = c(y) = 1 and c(x2) = 2. The restriction of c to V (F ′1) is an acyclic 3-colouring of F ′1380

that gives x1 and y colour 1. Hence, by Claim 1, F ′1 contains a 1-2 path from x1 to y. The381

restriction of c′ to V (F ′2) is an acyclic 3-colouring of F ′2 that gives x2 colour 2 and y colour 1.382

Then F ′2 must contain a 1-2 path from x2 to y; otherwise we found an acyclic 3-colouring of383

F ′2 + x2y, which is not possible by construction. The two 1-2 paths now form, with the edge384

x1x2, a bichromatic cycle of (J ′, c). As c is acyclic, this is not possible.385

By (i)-(iv) we may take J ′ with x1 and y instead of F ′ with x and y and reduce to Case 1. J386

The line graph of a graph G has vertex set E(G) and an edge between two vertices e and f if387

and only if e and f share an end-vertex of G. In Lemma 7 we modify the construction of [3]388

for line graphs from k = 3 to k ≥ 3. In Lemma 8 we give a new construction for proving389

hardness when k is part of the input.390

I Lemma 7. For every k ≥ 3, Acyclic k-Colouring is NP-complete for line graphs.391

Proof. For an integer k ≥ 1, a k-edge colouring of a graph G = (V,E) is a mapping392

c : E → {1, . . . , k} such that c(e) 6= c(f) whenever the edges e and f share an end-vertex.393

A colour class consists of all edges of G that are mapped by c to a specific colour i. The394

pair (G, c) has a bichromatic cycle C if C is a cycle of G with its edges coloured by two395

alternating colours. The notion of a bichromatic path is defined in a similar manner. We say396
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that c is acyclic if (G, c) has no bichromatic cycle. For a fixed integer k ≥ 1, the Acyclic397

k-Edge Colouring problem is to decide if a given graph has an acyclic k-edge colouring.398

Alon and Zaks proved that Acyclic 3-Edge Colouring is NP-complete for multigraphs.399

We note that a graph has an acyclic k-edge colouring if and only if its line graph has an400

acyclic k-colouring. Hence, it remains to generalize the construction of Alon and Zaks [3]401

from k = 3 to k ≥ 3. Our main tool is the gadget graph Fk, depicted in Figure 5, about402

which we prove the following two claims.403

(i) The edges of Fk can be coloured acyclically using k colours, with no bichromatic path404

between v1 and v14.405

(ii) Every acyclic k-edge colouring of Fk using k colours assigns e1 and e2 the same colour.406

v1 v2

v3 v5

v4 v6

v7 v8

v9

v10

v11

v12

v13 v14
e1 e2

(k − 2)

(k − 2)

(k − 2)
(k − 2)

(k − 2)

Figure 5 The gadget multigraph Fk. The labels on edges are multiplicities.

We first prove (ii). We assume, without loss of generality, that v1v2 is coloured by 1, v2v4 by407

2 and the edges between v2 and v3 by colours 3, . . . , k. The edge v3v5 has to be coloured by408

1, otherwise we have a bichromatic cycle on v2v3v5v4. This necessarily implies that409

the edges between v4 and v5 are coloured by 3, . . . , k,410

the edge v5v7 is coloured by 2,411

the edge v4v6 is coloured by 1,412

the edges between v6 and v7 are coloured by 3, . . . , k, and413

the edge v7v8 is coloured by 1.414

Now assume that the edge v8v9 is coloured by a ∈ {2, . . . , k} and the edges between v8 and415

v10 by colours from the set A, where A = {2, . . . , k} \ a. The edge v10v11 is either coloured a416

or 1. However, if it is coloured 1, v9v11 is assigned a colour b ∈ A and necessarily we have417

either a bichromatic cycle on v8v9v11v13v12v10, coloured by b and a, or a bichromatic cycle418

on v10v11v13v12, coloured by a and 1. Thus v10v11 is coloured by a. To prevent a bichromatic419

cycle on v8v9v11v10, the edge v9v11 is assigned colour 1. The rest of the colouring is now420

determined as v10v12 has to be coloured by 1, the edges between v11 and v13 by A, v12v13 by421

a, and v13v14 by 1. We then have a k-colouring with no bichromatic cycles of size at least422

3 in Fk for every possible choice of a. This proves that v1v2 and v13v14 are coloured alike423

under every acyclic k-edge colouring.424

We prove (i) by choosing a different from 2. Then there is no bichromatic path between425

v1 and v14.426

We now reduce from k-Edge-Colouring to Acyclic k-Edge Colouring as follows.427

Given an instance G of k-edge Colouring we construct an instance G′ of Acyclic428

k-Edge Colouring by replacing each edge uv in G by a copy of Fk where u is identified429

with v1 and v is identified with v14.430

If G′ has an acyclic k-edge colouring c′ then we obtain a k-edge colouring c of G by431

setting c(uv) = c′(e1) where e1 belongs to the gadget Fk corresponding to the edge uv. If432
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1 2 3 0

0 1 2 3

1 3 0 2

0 1 2 3

2 3 0 1

0 1 2 3

2 0 3 1

0 1 2 3

3 0 1 2

0 1 2 3

3 2 0 1

0 1 2 3

2 3 0 1

0 1 2 3

3 2 1 0

0 1 2 3

1 0 3 2

0 1 2 3

Figure 6 Acyclic colourings in the proof of Lemma 8 for a vertex representing one of the three
colours (left and middle). Sample failures for an acyclic colouring from other permutations of
(0, 1, 2, 3) together with a failure cycle (right). Note that each row of quadruples is joined in a clique.

G has a k-edge colouring c then we obtain an acyclic k-edge colouring c′ of G′ by setting433

c′(e1) = c(uv) where e1 belongs to the gadget corresponding to the edge uv. The remainder434

of each gadget Fk can then be coloured as described above. J435

In our next result, k is part of the input.436

I Lemma 8. Acyclic Colouring is NP-complete for (19P1, 3P3, 2P5)-free graphs.437

Proof. We reduce from 3-Colouring with maximum degree 4 which is known to be NP-438

complete [26]. Let G be an instance of 3-Colouring with |V (G)| = n vertices and maximum439

degree 4. We will construct an instance G′ of Acyclic Colouring where k = 4n. Our440

vertex gadget is built from two k-cliques, J0 and J1, with a matching between them. We441

number the vertices of each of the cliques 0 to k − 1. The matching we insert into the graph442

is (0, 0), . . . , (k− 1, k− 1). In addition, we place an edge from i in J0 to j in J1 if and only if443

bi/4c < bj/4c. Suppose that some assignment of colours is given to J0. By recolouring, we444

assume it is the identity colouring of i to i on J0. Then the possible acyclic k-colourings of445

vertices (bi/4c+ 0, bi/4c+ 1, bi/4c+ 2, bi/4c+ 3) in J1 are446

447

(bi/4c+ 1, bi/4c+ 2, bi/4c+ 3, bi/4c+ 0),
(bi/4c+ 1, bi/4c+ 3, bi/4c+ 0, bi/4c+ 2),
(bi/4c+ 2, bi/4c+ 3, bi/4c+ 1, bi/4c+ 0),
(bi/4c+ 2, bi/4c+ 0, bi/4c+ 3, bi/4c+ 1),
(bi/4c+ 3, bi/4c+ 0, bi/4c+ 1, bi/4c+ 2),
(bi/4c+ 3, bi/4c+ 2, bi/4c+ 0, bi/4c+ 1).

448

449

They are built from the permutations of (0, 1, 2, 3) that do not contain a transposition. We450

draw all of them, to demonstrate it is not an acyclic colouring, in Figure 6 (keep in mind451

that vertices in a row are joined in a clique).452

In our reduction, the first two acyclic k-colourings will represent colour 1, the second453

two colour 2 and the third two colour 3 of the sought 3-colouring of G. To force similarly454

coloured copies of J0 we add a new k-clique J2 with edges from i in J0 to j in J2 if and only455
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if i < j. To prevent the existence of bichromatic cycles in our later construction, we add456

a k-clique J3 with edges from i in J2 to j in J3 if and only if i < j. This enforces that in457

any acyclic k-colouring of G′, the i-th vertices (where i ∈ {0, . . . , k − 1}) in cliques J0, J2, J3458

would have the same colour. Therefore, by the way we placed the edges between different459

cliques from {J0, J2, J3}, there is no bichromatic path with vertices from more than one460

clique in {J0, J2, J3}.461

J5 7 3

J4 6 2

J3 5 1

J1 • • • • • • • •

J0 0 1 2 3 4 5 6 7

Figure 7 Edge construction in the proof of Lemma 8 between vertices 0 and 1 of G. Everything
in a row is joined in a clique. Edges are omitted between J0 and J3, J4, J5, though they enforce the
colouring.

We now construct edge gadgets. We take another two k-cliques to join J2, say J4 and462

J5. We will want them coloured exactly like J0, so for i in J2 and j in J4 or J5, where463

i < j, we will add an edge ij. Suppose we have an edge in G between p and q for some464

p, q ∈ {0, . . . , n− 1}. Then we place an edge from the vertex 4p in J1 to 4q + 1 in J3 and465

from 4q in J1 to 4p+ 1 in J3 (recall that p, q ∈ {0, . . . , n− 1} and cliques J1 and J3 are of466

size 4n, so these edges are well defined). See Figure 7. Now we place an edge from 4p in J1467

to 4q + 2 in J4 and of 4q in J1 to 4p+ 2 in J4. Finally, we place an edge from 4p in J1 to468

4q + 3 in J5 and from 4q in J1 to 4p+ 3 in J5. This concludes the construction for the edge469

pq in E(G).470

Suppose we have an edge rs ∈ E(G) so that {p, q} ∩ {r, s} = ∅. Then we build a gadget471

for rs using the same additional three cliques that we used for the edge pq. However, if we472

have edges with a common endpoint, e.g. pq, ps ∈ E(G), then by adding the edges from 4p473

in J1 to 4q + 1 in J3, from 4q in J1 to 4p+ 1 in J3, from 4p in J1 to 4s+ 1 in J3, and from474

4s in J1 to 4p+ 1 in J3 we introduce new 4-cycles, one of them induced by the vertices 4q475

and 4p in J1 and 4p+ 1 and 4s+ 1 in J3. To avoid this, we add three additional k-cliques to476

build the gadget for ps. By Vizing’s Theorem [49], we obtain in polynomial time a 5-edge477

colouring of G (as G has maximum degree 4). Using this 5-edge colouring, we build gadgets478

for all the edges with at most 5× 3 = 15 additional k-cliques (we use 3 additional cliques for479

each colour class).480

The clique structure of G′ is drawn in Figure 8. As G′ consists of at most 18 cliques,481

G′ is 19P1-free. Furthermore, any induced linear forest where each connected component482

has size at least 3 contains vertices in at most five cliques. Hence G′ is (3P3, 2P5)-free. It483

remains to prove that G has a 3-colouring if and only if G′ has an acyclic k-colouring.484
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First, suppose that G′ has an acyclic k-colouring c′. Then each k-clique of G′ has to use485

each colour exactly once. We can permute colours so that vertex i in J0 (where 0 ≤ i ≤ 4n−1)486

has colour i. It follows from the connections between cliques that the i-th vertices in cliques487

J2, . . . , J17 also have colour i and the vertices 4j, 4j + 1, 4j + 2, 4j + 3, (0 ≤ j ≤ n− 1) in J1488

have colours from the set {4j, 4j+ 1, 4j+ 2, 4j+ 3}. For each vertex i in G, set c(i) = 1 if the489

colours of (4i, 4i+ 1, 4i+ 2, 4i+ 3) in J1 under c′ correspond to one of the first two possible490

colourings (listed above); set c(i) = 2 if it corresponds to one of the second two possible491

colourings; set c(i) = 3 if it corresponds to one of the last two colourings. We claim that c is492

a 3-colouring of G. Suppose that pq is an edge in G with edge gadget using cliques J3, J4, J5.493

Since c′ is acyclic and c′ is identity on J3, we have c′(4p) 6= 4p+ 1 in J1 or c′(4q) 6= 4q + 1 in494

J1. Both 4p and 4q are the first vertices of the respective quadruples, so p and q are not495

both coloured 1. Similarly, the edges going between cliques J1 and J4 ensure that they are496

not both coloured 2 and the edges going between cliques J1 and J5 ensure that they are not497

both coloured 3. Hence, c(p) 6= c(q) and c is a 3-colouring of G.498

Now suppose G has a 3-colouring c. We construct a labelling c′ of G′ where we colour499

each quadruple in J1 corresponding to a vertex of G by the first of each pair of colourings500

listed in the table for each of the three colours, respectively. The labelling c′ in other cliques501

of G′ is the identity. By the construction of G′ and particularly by the properties of edge502

gadgets in G′, we find that c′ is a k-colouring of G′.503

Finally, we need to verify that c′ is acyclic. We will begin with bichromatic cycles between504

two cliques. No bichromatic cycle can appear in J0 and J1 forming the vertex gadget. This505

is due to the edges from the former to the latter always pointing to a higher number (or506

the same but here we chose a 3-colouring to avoid such situation). A similar explanation507

works for all the clique pairs (0, 2), (2, 3), . . . , (2, 17) in Figure 8. The last possibility is a508

bichromatic cycle formed through J1 from one of the cliques J3 to J17. However, such a cycle509

would have to pass through an actual edge gadget (where it is forbidden by the 3-colouring)510

or through vertices in different edge gadgets, where it must form a cycle with four colours.511

Now we need to consider bichromatic cycles passing through three or more cliques, but they512

would have to involve a bichromatic path through J0, J2, J3 which is not possible. This513

completes the proof. J514

J3

J2 J4

J0 J1
...

J17

Figure 8 Connections between cliques in the construction from the proof of Lemma 8.

We combine the above results with results of Coleman and Cai [14] and Lyons [43] to prove515

Theorem 1.516
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v

u

1

2

3

23

31

1 2

Figure 9 The gadget replacing edges uv (on the left) and its natural star 3-colouring (on the
right) in the proof of Lemma 9.

Theorem 1 (restated). Let H be a graph. For the class of H-free graphs it holds that:517518

(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H is519

not a forest or H ⊇i 19P1, 3P3, 2P5 or P11;520521

(ii) For every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H is a linear522

forest and NP-complete otherwise.523

Proof. We first prove (ii). First suppose that H contains an induced cycle Cp. If p = 3,524

then we use the result of Coleman and Cai [14], who proved that for every k ≥ 3, Acyclic525

k-Colouring is NP-complete for bipartite graphs. Suppose that p ≥ 3. If k = 3, then we526

let g = p+ 1 and use Lemma 6. If k ≥ 4, we reduce from Acyclic 3-Colouring for graphs527

of girth p+ 1 by adding a dominating clique of size k − 3. Now assume H has no cycle so H528

is a forest. If H has a vertex of degree at least 3, then H has an induced K1,3. As every529

line graph is K1,3-free, we can use Lemma 7. Otherwise H is a linear forest and we use530

Corollary 5.531

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4, then532

we use the result of Lyons [43] that states that Acyclic Colouring is polynomial-time533

solvable for P4-free graphs. If H ⊇i 19P1, 3P3, 2P5 or P11, then we use Lemma 8. J534

4 Star Colouring535

In this section we prove Theorem 2. We first prove the following lemma.536

I Lemma 9. Let H be a graph with an even cycle. Then, for every k ≥ 3, Star k-537

Colouring is NP-complete for H-free graphs.538

Proof. We reduce from 3-Colouring for graphs of girth at least p+ 1. Given an instance539

G of this problem, we construct an instance G′ of Star 3-Colouring as follows. Take three540

vertex disjoint copies of P3 and form a triangle using one endpoint of each; see Figure 9.541

Replace each edge uv in G by this gadget with u and v identified with the non-adjacent542

endpoints of two paths. Then G′ is Cp-free since, aside from triangles, the construction543

cannot introduce any cycle shorter than those present in G.544

We first show that any star 3-colouring of G′ colours u and v differently. Assume not,545

their neighbours must be coloured differently since otherwise any 3-colouring of the remainder546

of the gadget will result in a bichromatic P4. Without loss of generality, assume that u and v547

are coloured 1, the neighbour u′ of u is coloured 2 and the neighbour v′ of v is coloured 3. Let548

x be the neighbour of u′ in the triangle and y the neighbour of v′ in the triangle. Neither x549

or y can be coloured 1 since this will result in a bichromatic P4. Therefore x is coloured 3, y550

is coloured 2 and the third vertex z of the triangle is coloured 1. This is a contradiction since551
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we have a bichromatic P4 on the vertices u′, x, y, v′. Therefore, we obtain a 3-colouring c of552

G by setting c(v) = c′(v) for some star 3-colouring c′ of G′.553

We extend a given 3-colouring of G to a star 3-colouring of G′, by locally star 3-colouring554

as in the right hand side of Figure 9 (or automorphically). Hence, G is 3-colourable if and555

only if G′ is star 3-colourable.556

We obtain NP-completeness for k ≥ 4 by a reduction from Star 3-Colouring for Cp-free557

graphs by adding a dominating clique of size k − 3. J558

In Lemma 10 we extend the recent result of Lei et al. [38] from k = 3 to k ≥ 3. In Lemma 11559

we show a result where k is part of the input. A graph is co-bipartite if it is the complement560

of a bipartite graph.561

v1 v2 v3 v4 v5 v6 v7 v8

v9 v10

. . .

1

k − 2

1

k − 2

. . .

e1 e2

Figure 10 The gadget Fk in the proof of Lemma 10.

562

I Lemma 10. For every k ≥ 3, Star k-Colouring is NP-complete for line graphs.563

Proof. Recall that for an integer k ≥ 1, a k-edge colouring of a graph G = (V,E) is a564

mapping c : E → {1, . . . , k} such that c(e) 6= c(f) whenever the edges e and f share an565

end-vertex. Recall also that the notions of a colour class and bichromatic subgraph for566

colourings has its natural analogue for edge colourings. An edge k-colouring c is a star567

k-edge colouring if the union of any two colour classes induces a star forest. For a fixed568

integer k ≥ 1, the Star k-Edge Colouring problem is to decide if a given graph has an569

star k-edge colouring. Lei et al. [38] proved that Star 3-Edge Colouring is NP-complete.570

Dvořák et al. [16] observed that a graph has a star k-edge colouring if and only if its line571

graph has a star k-colouring. Hence, it suffices to follow the proof of Lei et al.[38] in order to572

generalize the case k = 3 to k ≥ 3. As such, we give a reduction from k-Edge Colouring573

to Star k-Edge Colouring which makes use of the gadget Fk in Figure 10. First we574

consider separately the case where the edges e1 = v4v9 and e2 = v5v10 are coloured alike and575

the case where they are coloured differently to show that in any star k-edge colouring of the576

gadget Fk shown in Figure 10, v1v2 and v7v8 are assigned the same colour.577

Assume c(e1) = c(e2) = 1. We may then assume that the edge v4v5 is assigned colour 2578

and the remaining k − 2 colours are used for the multiple edges v3v4 and v5v6. The edge579

v2v3, and similarly v6v7, must then be assigned colour 1 to avoid a bichromatic P5 on the580

vertices {v2, v3, v4, v5, v6} using any two of the multiple edges in a single colour. The edge581

v1v2, and similarly v7v8 must then be assigned colour 2 to avoid a bichromatic P5 on the582

vertices {v1, v2, v3, v4, v9}.583

Next assume e1 and e2 are coloured differently. Without loss of generality, let c(e1) = 1,584

c(e2) = 2 and c(v4v5) = 3. The multiple edges v3v4 must then be assigned colours 2585

and 4 . . . k and v5v6 colour 1 and colours 4 . . . k. To avoid a bichromatic P5 on the vertices586

{v2, v3, v4, v5, v6}, v2v3 must be coloured 1. Similarly, v6v7 must be assigned colour 2. Finally,587
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to avoid a bichromatic P5 on the vertices {v1, v2, v3, v4, v9}, v1v2 must be coloured 3. By a588

similar argument, v7v8 must also be coloured 3, hence v1v2 and v7v8 must be coloured alike.589

We can then replace every edge e in some instance G of k-Edge-Colouring by a590

copy of Fk, identifying its endpoints with v1 and v8, to obtain an instance G′ of Star591

k-Edge-Colouring. If G is k-edge-colourable we can star k-edge-colour G′ by setting592

c′(v1v2) = c′(v7v8) = c(e). If G′ is star k-edge-colourable, we obtain a k-edge-colouring of G593

by setting c(e) = c′(v1v2). J594

We now let k be part of the input. The complement of a graph G is the graph G with vertex595

set V (G) and an edge between two vertices u and v if and only if uv /∈ E(G). A k-colouring596

of G can be seen as a partition of V (G) into k independent sets. Hence, a k-colouring of G597

corresponds to a clique-covering of G, which is a partition of V (G) = V (G) into k cliques. A598

graph is co-bipartite if it is the complement of a bipartite graph.599

I Lemma 11. Star Colouring is NP-complete for co-bipartite graphs.600

Proof. We show that finding an optimal star colouring of a co-bipartite graph G is equivalent601

to finding a maximum balanced biclique in its complement G. An optimal star colouring of602

G corresponds to an optimal clique-covering of G such that the graph induced by the vertices603

of any two cliques in the covering partition is P4 = P4-free and C4 = 2P2-free. Since G is604

triangle-free, the clique-covering number of G is n−M where n is the number of vertices of G605

and M is the number of edges in a maximum matching such that no two edges induce either606

2P2 or P4. Since G is bipartite, a maximum matching of this form is a maximum balanced607

biclique. It is NP-complete to find the maximum size of a balanced biclique in a bipartite608

graph [26]. Therefore Star Colouring is NP-complete for co-bipartite graphs. J609

We combine the above results with results of Albertson et al. [1] and Lyons [43] to prove610

Theorem 2.611

Theorem 2 (restated). Let H be a graph. For the class of H-free graphs it holds that:612613

(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete for any614

H 6= 2P2.615616

(ii) For every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a linear forest617

and NP-complete otherwise.618

Proof. We first prove (ii). First suppose that H contains an induced odd cycle. Then the619

class of bipartite graphs is contained in the class of H-free graphs. Lemma 7.1 in Albertson620

et al. [1] implies, together with the fact that for every k ≥ 3, k-Colouring is NP-complete,621

that for every k ≥ 3, Star k-Colouring is NP-complete for bipartite graphs. If H contains622

an induced even cycle, then we use Lemma 9. Now assume H has no cycle, so H is a forest.623

If H contains a vertex of degree at least 3, then H contains an induced K1,3. As every line624

graph is K1,3-free, we can use Lemma 10. Otherwise H is a linear forest, in which case we625

use Corollary 5.626

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4, then627

we use the result of Lyons [43] that states that Star Colouring is polynomial-time solvable628

for P4-free graphs. If 3P1 ⊆i H, then we use Lemma 11 after observing that co-bipartite629

graphs are 3P1-free. Otherwise H = 2P2, but this case was excluded from the statement of630

the theorem. J631
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5 Injective Colouring632

In this section we prove Theorem 3. We first show three lemmas.633

I Lemma 12. For every k ≥ 4, Injective k-Colouring is NP-complete for C3-free graphs.634

Proof. We reduce from Injective k-Colouring. Given an instance G of Injective k-635

Colouring, construct an instance G′ of Injective k-Colouring for triangle-free graphs636

as follows. For each edge uv of G, remove the edge uv and add two vertices u′v adjacent to637

u and v′u adjacent to v. Next, place an independent set of k − 2 vertices adjacent to both638

u′v and v′u. Then G′ is triangle-free since the edge gadget described is triangle-free, any two639

vertices of G are now at distance at least 4 and no vertex not belonging to an edge gadget640

has two adjacent neighbours belonging to edge gadgets. We claim that G′ has an injective641

k-colouring if and only if G has an injective k-colouring.642

First assume that G has an injective k-colouring c. Colour the vertices of G′ corresponding643

to vertices of G as they are coloured by c. We can extend this to an injective k-colouring644

c′ of G′ by considering the gadget corresponding to each edge uv of G. Set c′(u′v) = c′(v)645

and c′(v′u) = c′(u). We can now assign the remaining k − 2 colours to the vertices of the646

independent sets. Clearly c′ creates no bichromatic P3 involving vertices in at most one647

edge gadget. Assume there exists a bichromatic P3 involving vertices in more than one edge648

gadget, then this path must consist of a vertex u of G together with two gadget vertices u′v649

and u′w which are coloured alike. This is a contradiction since it implies the existence of a650

bichromatic path v, u, w in G.651

Now assume that G′ has an injective k-colouring c′. Let c be the restriction of c′ to those652

vertices of G′ which correspond to vertices of G. To see that c is an injective colouring of653

G, note that we must have c′(u′v) = c′(v) and c′(v′u) = c′(u) for any edge uv. Therefore,654

if c induces a bichromatic P3 on u, v, w, then c′ induces a bichromatic P3 on v′u, v, v′w. We655

conclude that c is injective. J656

In our next two results, k is part of the input.657

I Lemma 13. Injective Colouring is polynomial-time solvable for P4-free graphs and658

(P1 + P3)-free graphs.659

Proof. Since connected P4-free graphs have diameter at most 2, no two vertices can be660

coloured alike in an injective colouring. Hence the injective chromatic number of a P4-free661

graph is equal to the number of its vertices.662

We now consider (P1 + P3)-free graphs. First, note that an injective colouring of G is663

equivalent to a clique-covering of its complement G such that the graph induced by the664

vertices of the union of any two clique classes is (P1 + P2)-free (as P3 = P1 + P2). Since G is665

(P1 + P3)-free, G is P1 + P3-free. By a result of Olariu [46], each connected component of666

G is either triangle-free or complete multi-partite. Let D1, . . . , Dp be the vertex sets of the667

connected components of G for some p ≥ 1. Then in G, every Di is complete to every Dj .668

Hence, the injective chromatic number of G is the sum of the injective chromatic numbers669

of the subgraphs Gi induced by Di (i ∈ {1, . . . , p}). As such, it remains to determine the670

injective chromatic number of each Gi, which we do below.671

Let 1 ≤ i ≤ p. If Gi is complete multi-partite, then Gi is a disjoint union of cliques and672

its injective chromatic number is equal to the size of its largest connected component. In673

the other case, Gi is triangle-free. Then each clique class in a clique-covering has size at674

most 2, and any clique class of size 2 must dominate the remaining vertices of Gi to avoid a675

bichromatic P1 + P2. Thus, the clique-covering is a matching, each edge of which dominates676
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Gi, together with the remaining vertices which each form clique classes of size 1. Therefore,677

we find an optimal (P1 + P2)-free clique-covering of G by finding a maximum matching in678

the graph consisting of dominating edges of Gi. The injective chromatic number of Gi is679

then the number of vertices of Gi minus the number of edges in such a matching. J680

I Lemma 14. Injective Colouring is NP-complete for 6P1-free graphs.681

Proof. We first show that Colouring remains NP-complete given a partition of the instance682

G into four cliques. The Clique Covering problem is NP-complete for planar graphs [37].683

A 4-colouring of a planar graph G can be found in quadratic time [47] and gives a partition684

of G into four cliques. Hence, given a planar instance G of clique-covering, we construct an685

instance (G, c) of Colouring where c is a 4-colouring of G such that the chromatic number686

of G is equal to the clique-covering number of G.687

We now give a reduction from this problem to Injective Colouring for 6P1-free graphs.688

Given a graph G and a partition c into four cliques C1 . . . C4, let G′ be the graph obtained689

from G by deleting those vertices with no neighbours outside of their own clique Ci. Then690

G can be coloured with k colours if and only if G′ can be coloured with k colours and the691

maximum size of a clique in the partition c of G is at most k. To see this, note that the692

vertices of G \G′ then have degree at most k− 1, hence we can greedily colour these vertices693

given a k-colouring of G′.694

This instance (G′, c) of Colouring given a partition of G′ into four cliques can then695

be transformed in polynomial time to an instance G′′ of Injective Colouring as follows.696

Add a fifth clique C0 with one vertex ve for each edge e = xy in G′ which has endpoints in697

two different cliques of c. For each such edge, replace e by two edges xve and yve. G′ has698

a colouring with k colours if and only if G′′ has an injective colouring with k +m colours699

where m is the number of edges in G with endpoints in different cliques. To see this, note700

that in any injective colouring of G′′, the set of colours used in C0 is disjoint from the set of701

those used in the cliques C1 . . . C4. Therefore if G′′ can be injective coloured with m + k702

colours then G′ can be coloured with k colours. On the other hand, colour the vertices of703

C1 . . . C4 as they are coloured in some k colouring of G′ and C0 with m further colours. This704

is an injective colouring of G′′ since any induced P3 contains either two vertices of C1 or one705

vertex of C0 and two vertices adjacent in G′. In either case the path must be coloured with706

three distinct colours. This implies that G′′ has an injective colouring with k +m colours if707

and only if G′ has a colouring with k colours. J708

We combine the above results with results of Bodlaender et al. [7] and Mahdian [44] to prove709

Theorem 3.710

Theorem 3 (restated). Let H be a graph. For the class of H-free graphs it holds that:711712

(i) Injective Colouring is polynomial-time solvable if H ⊆i P4 or H ⊆i P1 + P3 and713

NP-complete if H is not a forest or 2P2 ⊆i H or 6P1 ⊆i H.714715

(ii) For every k ≥ 4, Injective k-Colouring is polynomial-time solvable if H is a linear716

forest and NP-complete otherwise.717

Proof. We first prove (ii). If C3 ⊆i H, then we use Lemma 12. Now suppose Cp ⊆i H for718

some p ≥ 4. Mahdian [44] proved that for every g ≥ 4 and k ≥ 4, Injective k-Colouring719

is NP-complete for line graphs of bipartite graphs of girth at least g. These graphs may not720

be C3-free but for g ≥ p+ 1 they are Cp-free. Now assume H has no cycle, so H is a forest.721

If H contains a vertex of degree at least 3, then H contains an induced K1,3. As every line722
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graph is K1,3-free, we can use the aforementioned result of Mahdian [44] again. Otherwise723

H is a linear forest, in which case we use Corollary 5.724

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4 or725

H ⊆i P1 + P3, then we use Lemma 13. Now suppose that 2P2 ⊆i H. Then the class of726

(2P2, C4, C5)-free graphs (split graphs) are contained in the class of H-free graphs. Recall727

that Bodlaender et al. [7] proved that Injective Colouring is NP-complete for split graphs.728

If 6P1 ⊆i H, then we use Lemma 14. J729

6 Conclusions730

Our complexity study led to three complete and three almost complete complexity classi-731

fications (Theorems 1–3). Due to our systematic approach we were able to identify some732

interesting open questions for future research, which we collect below.733

B Open Problem 1. For k ≥ 4 and g ≥ 4, determine the complexity of Acyclic k-Colouring734

for graphs of girth at least g.735

For solving Open Problem 1 it would be helpful to have a better understanding of the736

structure of the critical graphs used in the proof of Lemma 6. We also aim to prove analogous737

results for the other two problems.738

B Open Problem 2. For every g ≥ 4, determine the complexities of Star Colouring and739

Injective Colouring for graphs of girth at least g.740

Naturally we also aim to settle the remaining open cases for our three problems in Table 1.741

In particular, there is one case left for Star Colouring.742

B Open Problem 3. Determine the complexity of Star Colouring for 2P2-free graphs.743

Recall that the other two problems and also Colouring are all NP-complete for 2P2-free744

graphs. However, none of the hardness constructions carry over to Star Colouring. In this745

context, the next open problem for split graphs ((2P2, C4, C5)-free graphs) is also interesting.746

B Open Problem 4. Determine the complexity of Star Colouring for split graphs.747

We proved that Injective Colouring is NP-complete for triangle-free graphs, but the748

following problem is still open.749

B Open Problem 5. Determine the complexity of Injective Colouring for bipartite750

graphs.751

Jin et al. [33] proved that the variant of Injective Colouring where adjacent vertices may752

be coloured alike is NP-complete for bipartite graphs. However, their hardness construction753

does not carry over to Injective Colouring.754

Finally, we recall that Injective Colouring is also known as L(1, 1)-labelling. The general755

distance constrained labelling problem L(a1, . . . , ap)-Labelling is to decide if a graph G has756

a labelling c : V (G)→ {1, . . . , k} for some integer k ≥ 1 such that for every i ∈ {1, . . . , p},757

|c(u)− c(v)| ≥ ai whenever u and v are two vertices of distance i in G. If k is fixed, we write758

L(a1, . . . , ap)-k-Labelling instead. By applying Theorem 4 we obtain the following result.759

I Theorem 15. For all k ≥ 1, a1 ≥ 1, . . . , ak ≥ 1, the L(a1, . . . , ap)-k-Labelling problem760

is polynomial-time solvable for H-free graphs if H is a linear forest.761

We leave a more detailed and systematic complexity study of problems in this framework762

for future work (see, for example, [11, 23, 24] for some complexity results for both general763

graphs and special graph classes).764
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